Update app_flash1.py
Browse files- app_flash1.py +19 -54
app_flash1.py
CHANGED
|
@@ -133,75 +133,40 @@ def train_flashpack_model(dataset_name="rahul7star/prompt-enhancer-dataset",
|
|
| 133 |
# Lazy Load / Get Model
|
| 134 |
# ===========================
|
| 135 |
# ===========================
|
| 136 |
-
# Lazy Load / Get Model (Fixed)
|
| 137 |
-
# ===========================
|
| 138 |
def get_flashpack_model(hf_repo="rahul7star/FlashPack"):
|
| 139 |
-
"""
|
| 140 |
-
Loads the FlashPack model + dataset + long embeddings from HF repo if available,
|
| 141 |
-
otherwise trains a new model locally.
|
| 142 |
-
Returns:
|
| 143 |
-
model, tokenizer, embed_model, enhance_fn, dataset, long_embeddings
|
| 144 |
-
"""
|
| 145 |
local_model_path = "model.flashpack"
|
| 146 |
|
| 147 |
-
|
| 148 |
-
print(
|
| 149 |
-
|
| 150 |
-
files = list_repo_files(hf_repo)
|
| 151 |
-
if "model.flashpack" in files:
|
| 152 |
-
local_model_path = hf_hub_download(repo_id=hf_repo, filename="model.flashpack")
|
| 153 |
-
print("✅ Model downloaded from HF")
|
| 154 |
-
else:
|
| 155 |
-
print("🚫 No pretrained model found in HF, will train locally")
|
| 156 |
-
raise FileNotFoundError
|
| 157 |
-
|
| 158 |
-
# 2️⃣ Load FlashPack model
|
| 159 |
-
model = GemmaTrainer().from_flashpack(local_model_path)
|
| 160 |
-
model.eval()
|
| 161 |
-
|
| 162 |
-
# 3️⃣ Load encoder
|
| 163 |
-
tokenizer, embed_model, encode_fn = build_encoder("gpt2", max_length=128)
|
| 164 |
-
|
| 165 |
-
# 4️⃣ Try loading dataset + long embeddings from HF
|
| 166 |
try:
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
|
|
|
| 173 |
except Exception as e:
|
| 174 |
-
print(f"⚠️
|
| 175 |
-
|
| 176 |
-
long_embeddings = None
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
push_flashpack_model_to_hf(model, hf_repo)
|
| 183 |
|
| 184 |
-
# 5️⃣ Enhance function using embeddings to select best long prompt
|
| 185 |
@torch.no_grad()
|
| 186 |
def enhance_fn(prompt, chat):
|
| 187 |
chat = chat or []
|
| 188 |
short_emb = encode_fn(prompt).to(device)
|
| 189 |
mapped = model(short_emb).cpu()
|
| 190 |
-
|
| 191 |
-
if dataset is not None and long_embeddings is not None:
|
| 192 |
-
# Cosine similarity
|
| 193 |
-
sims = (long_embeddings @ mapped.t()).squeeze(1)
|
| 194 |
-
sims = sims / (long_embeddings.norm(dim=1) * (mapped.norm() + 1e-12))
|
| 195 |
-
best_idx = int(sims.argmax().item())
|
| 196 |
-
enhanced_prompt = dataset[best_idx]["long_prompt"]
|
| 197 |
-
else:
|
| 198 |
-
enhanced_prompt = f"🌟 Enhanced prompt (embedding-based) for: {prompt}"
|
| 199 |
-
|
| 200 |
chat.append({"role": "user", "content": prompt})
|
| 201 |
-
chat.append({"role": "assistant", "content":
|
| 202 |
return chat
|
| 203 |
|
| 204 |
-
return model, tokenizer, embed_model, enhance_fn
|
| 205 |
|
| 206 |
# ===========================
|
| 207 |
# Gradio UI
|
|
|
|
| 133 |
# Lazy Load / Get Model
|
| 134 |
# ===========================
|
| 135 |
# ===========================
|
|
|
|
|
|
|
| 136 |
def get_flashpack_model(hf_repo="rahul7star/FlashPack"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
local_model_path = "model.flashpack"
|
| 138 |
|
| 139 |
+
if os.path.exists(local_model_path):
|
| 140 |
+
print("✅ Loading local model")
|
| 141 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
try:
|
| 143 |
+
files = list_repo_files(hf_repo)
|
| 144 |
+
if "model.flashpack" in files:
|
| 145 |
+
print("✅ Downloading model from HF")
|
| 146 |
+
local_model_path = hf_hub_download(repo_id=hf_repo, filename="model.flashpack")
|
| 147 |
+
else:
|
| 148 |
+
print("🚫 No pretrained model found")
|
| 149 |
+
return None, None, None, None
|
| 150 |
except Exception as e:
|
| 151 |
+
print(f"⚠️ Error accessing HF: {e}")
|
| 152 |
+
return None, None, None, None
|
|
|
|
| 153 |
|
| 154 |
+
# ⚡ Use input_dim=1536 (default)
|
| 155 |
+
model = GemmaTrainer(input_dim=1536).from_flashpack(local_model_path)
|
| 156 |
+
model.eval()
|
| 157 |
+
tokenizer, embed_model, encode_fn = build_encoder("gpt2")
|
|
|
|
| 158 |
|
|
|
|
| 159 |
@torch.no_grad()
|
| 160 |
def enhance_fn(prompt, chat):
|
| 161 |
chat = chat or []
|
| 162 |
short_emb = encode_fn(prompt).to(device)
|
| 163 |
mapped = model(short_emb).cpu()
|
| 164 |
+
long_prompt = f"🌟 Enhanced prompt (embedding-based) for: {prompt}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
chat.append({"role": "user", "content": prompt})
|
| 166 |
+
chat.append({"role": "assistant", "content": long_prompt})
|
| 167 |
return chat
|
| 168 |
|
| 169 |
+
return model, tokenizer, embed_model, enhance_fn
|
| 170 |
|
| 171 |
# ===========================
|
| 172 |
# Gradio UI
|