Update app_flash1.py
Browse files- app_flash1.py +202 -86
app_flash1.py
CHANGED
|
@@ -1,139 +1,232 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from datasets import load_dataset
|
| 4 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
| 5 |
from huggingface_hub import Repository
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# ============================================================
|
| 9 |
-
#
|
| 10 |
# ============================================================
|
| 11 |
-
class GemmaTrainer(nn.Module):
|
| 12 |
-
def __init__(self, input_dim, hidden_dim, output_dim):
|
| 13 |
super().__init__()
|
| 14 |
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
| 15 |
self.relu = nn.ReLU()
|
| 16 |
-
self.fc2 = nn.Linear(hidden_dim,
|
|
|
|
| 17 |
|
| 18 |
-
def forward(self, x):
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def from_flashpack(cls, repo_path, model=None):
|
| 26 |
-
local_path = os.path.expanduser(
|
| 27 |
-
f"~/.cache/huggingface/hub/models--{repo_path.replace('/', '--')}/snapshots/"
|
| 28 |
-
)
|
| 29 |
-
# Find the newest snapshot
|
| 30 |
-
for root, dirs, files in os.walk(local_path):
|
| 31 |
-
if "model.flashpack" in files:
|
| 32 |
-
file_path = os.path.join(root, "model.flashpack")
|
| 33 |
-
model.load_state_dict(torch.load(file_path, map_location="cpu"))
|
| 34 |
-
return model
|
| 35 |
-
raise FileNotFoundError("model.flashpack not found in repo cache")
|
| 36 |
|
| 37 |
# ============================================================
|
| 38 |
-
#
|
| 39 |
# ============================================================
|
| 40 |
-
def build_encoder(model_name="gpt2", max_length: int =
|
|
|
|
| 41 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 42 |
if tokenizer.pad_token is None:
|
| 43 |
tokenizer.pad_token = tokenizer.eos_token
|
| 44 |
-
|
|
|
|
| 45 |
embed_model.eval()
|
|
|
|
| 46 |
|
| 47 |
@torch.no_grad()
|
| 48 |
def encode(prompt: str) -> torch.Tensor:
|
| 49 |
-
inputs = tokenizer(
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
)
|
| 56 |
-
outputs = embed_model(**inputs).last_hidden_state.mean(dim=1)
|
| 57 |
-
return outputs.cpu()
|
| 58 |
|
| 59 |
return tokenizer, embed_model, encode
|
| 60 |
|
| 61 |
# ============================================================
|
| 62 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
# ============================================================
|
| 64 |
def train_flashpack_model(
|
| 65 |
dataset_name: str = "rahul7star/prompt-enhancer-dataset",
|
| 66 |
-
max_encode: int =
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
| 69 |
print("π¦ Loading dataset...")
|
| 70 |
dataset = load_dataset(dataset_name, split="train")
|
| 71 |
-
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
for i, item in enumerate(dataset):
|
| 77 |
-
short_list.append(encode_fn(item["short_prompt"]))
|
| 78 |
-
long_list.append(encode_fn(item["long_prompt"]))
|
| 79 |
-
if (i + 1) % 50 == 0:
|
| 80 |
-
print(f" β Encoded {i+1}/{len(dataset)}")
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
print("π Training model...")
|
| 93 |
-
for epoch in range(
|
| 94 |
model.train()
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
| 108 |
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
|
| 112 |
# ============================================================
|
| 113 |
-
#
|
| 114 |
# ============================================================
|
| 115 |
-
def get_flashpack_model(hf_repo="rahul7star/FlashPack", input_dim=
|
| 116 |
try:
|
| 117 |
print(f"π Loading FlashPack model from {hf_repo}...")
|
| 118 |
-
dummy_model = GemmaTrainer(input_dim,
|
| 119 |
model = GemmaTrainer.from_flashpack(hf_repo, model=dummy_model)
|
|
|
|
| 120 |
print("β
Model loaded successfully.")
|
| 121 |
-
tokenizer, embed_model, _ = build_encoder("gpt2", max_length=
|
| 122 |
return model, tokenizer, embed_model, None, None
|
| 123 |
except Exception as e:
|
| 124 |
print(f"β οΈ Load failed: {e}")
|
| 125 |
print("β¬ Training new model...")
|
| 126 |
return train_flashpack_model()
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
# ============================================================
|
| 130 |
-
# Gradio UI
|
| 131 |
# ============================================================
|
| 132 |
-
with gr.Blocks(title="FlashPack
|
| 133 |
-
gr.Markdown("
|
| 134 |
|
| 135 |
-
status = gr.Textbox(
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
model_state = gr.State(None)
|
| 139 |
tokenizer_state = gr.State(None)
|
|
@@ -142,15 +235,10 @@ with gr.Blocks(title="FlashPack Trainer") as demo:
|
|
| 142 |
long_embeddings_state = gr.State(None)
|
| 143 |
|
| 144 |
def train_model():
|
|
|
|
| 145 |
model, tokenizer, embed_model, dataset, long_embeddings = get_flashpack_model()
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
tokenizer,
|
| 149 |
-
embed_model,
|
| 150 |
-
dataset,
|
| 151 |
-
long_embeddings,
|
| 152 |
-
"β
Model ready for use",
|
| 153 |
-
)
|
| 154 |
|
| 155 |
train_btn.click(
|
| 156 |
train_model,
|
|
@@ -158,4 +246,32 @@ with gr.Blocks(title="FlashPack Trainer") as demo:
|
|
| 158 |
outputs=[model_state, tokenizer_state, embed_model_state, dataset_state, long_embeddings_state, status],
|
| 159 |
)
|
| 160 |
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
import os
|
| 3 |
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.optim as optim
|
| 6 |
+
import tempfile
|
| 7 |
+
import gradio as gr
|
| 8 |
from datasets import load_dataset
|
| 9 |
from transformers import AutoTokenizer, AutoModel
|
| 10 |
+
from flashpack import FlashPackMixin
|
| 11 |
from huggingface_hub import Repository
|
| 12 |
+
from typing import Tuple
|
| 13 |
+
|
| 14 |
+
# ============================================================
|
| 15 |
+
# π₯ Device setup (CPU-only)
|
| 16 |
+
# ============================================================
|
| 17 |
+
device = torch.device("cpu")
|
| 18 |
+
torch.set_num_threads(4)
|
| 19 |
+
print(f"π§ Using device: {device} (CPU-only mode)")
|
| 20 |
|
| 21 |
# ============================================================
|
| 22 |
+
# 1οΈβ£ FlashPack model
|
| 23 |
# ============================================================
|
| 24 |
+
class GemmaTrainer(nn.Module, FlashPackMixin):
|
| 25 |
+
def __init__(self, input_dim: int, hidden_dim: int = 1024, output_dim: int = 1536):
|
| 26 |
super().__init__()
|
| 27 |
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
| 28 |
self.relu = nn.ReLU()
|
| 29 |
+
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
| 30 |
+
self.fc3 = nn.Linear(hidden_dim, output_dim)
|
| 31 |
|
| 32 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 33 |
+
x = self.fc1(x)
|
| 34 |
+
x = self.relu(x)
|
| 35 |
+
x = self.fc2(x)
|
| 36 |
+
x = self.relu(x)
|
| 37 |
+
x = self.fc3(x)
|
| 38 |
+
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# ============================================================
|
| 41 |
+
# 2οΈβ£ Encoder (mean + max pooling)
|
| 42 |
# ============================================================
|
| 43 |
+
def build_encoder(model_name="gpt2", max_length: int = 128):
|
| 44 |
+
print(f"π¦ Loading tokenizer and model for {model_name}...")
|
| 45 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 46 |
if tokenizer.pad_token is None:
|
| 47 |
tokenizer.pad_token = tokenizer.eos_token
|
| 48 |
+
|
| 49 |
+
embed_model = AutoModel.from_pretrained(model_name).to(device)
|
| 50 |
embed_model.eval()
|
| 51 |
+
print(f"β
Encoder ready: {model_name}")
|
| 52 |
|
| 53 |
@torch.no_grad()
|
| 54 |
def encode(prompt: str) -> torch.Tensor:
|
| 55 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True,
|
| 56 |
+
padding="max_length", max_length=max_length).to(device)
|
| 57 |
+
last_hidden = embed_model(**inputs).last_hidden_state
|
| 58 |
+
mean_pool = last_hidden.mean(dim=1)
|
| 59 |
+
max_pool, _ = last_hidden.max(dim=1)
|
| 60 |
+
return torch.cat([mean_pool, max_pool], dim=1).cpu() # double dimension
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
return tokenizer, embed_model, encode
|
| 63 |
|
| 64 |
# ============================================================
|
| 65 |
+
# 3οΈβ£ Push FlashPack model to HF
|
| 66 |
+
# ============================================================
|
| 67 |
+
def push_flashpack_model_to_hf(model, hf_repo: str):
|
| 68 |
+
logs = []
|
| 69 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
| 70 |
+
logs.append(f"π Temporary directory: {tmp_dir}")
|
| 71 |
+
repo = Repository(local_dir=tmp_dir, clone_from=hf_repo, use_auth_token=True)
|
| 72 |
+
pack_path = os.path.join(tmp_dir, "model.flashpack")
|
| 73 |
+
model.save_flashpack(pack_path, target_dtype=torch.float32)
|
| 74 |
+
readme_path = os.path.join(tmp_dir, "README.md")
|
| 75 |
+
with open(readme_path, "w") as f:
|
| 76 |
+
f.write("# FlashPack Model\nThis repo contains a FlashPack model.")
|
| 77 |
+
repo.push_to_hub()
|
| 78 |
+
logs.append(f"β
Model pushed to HF: {hf_repo}")
|
| 79 |
+
return logs
|
| 80 |
+
|
| 81 |
+
# ============================================================
|
| 82 |
+
# 4οΈβ£ Train FlashPack model
|
| 83 |
# ============================================================
|
| 84 |
def train_flashpack_model(
|
| 85 |
dataset_name: str = "rahul7star/prompt-enhancer-dataset",
|
| 86 |
+
max_encode: int = 1000,
|
| 87 |
+
hidden_dim: int = 1024,
|
| 88 |
+
hf_repo: str = "rahul7star/FlashPack",
|
| 89 |
+
push_to_hub: bool = True
|
| 90 |
+
) -> Tuple[GemmaTrainer, object, object, object, torch.Tensor]:
|
| 91 |
+
|
| 92 |
print("π¦ Loading dataset...")
|
| 93 |
dataset = load_dataset(dataset_name, split="train")
|
| 94 |
+
limit = min(max_encode, len(dataset))
|
| 95 |
+
dataset = dataset.select(range(limit))
|
| 96 |
+
print(f"β‘ Using {len(dataset)} prompts for training")
|
| 97 |
|
| 98 |
+
# Split train/test
|
| 99 |
+
train_size = int(0.9 * len(dataset))
|
| 100 |
+
dataset_train = dataset.select(range(train_size))
|
| 101 |
+
dataset_test = dataset.select(range(train_size, len(dataset)))
|
| 102 |
+
print(f"π§ͺ Train/Test split: {len(dataset_train)} / {len(dataset_test)}")
|
| 103 |
|
| 104 |
+
tokenizer, embed_model, encode_fn = build_encoder("gpt2", max_length=128)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
def encode_dataset(ds):
|
| 107 |
+
short_list, long_list = [], []
|
| 108 |
+
for i, item in enumerate(ds):
|
| 109 |
+
short_list.append(encode_fn(item["short_prompt"]))
|
| 110 |
+
long_list.append(encode_fn(item["long_prompt"]))
|
| 111 |
+
if (i+1) % 50 == 0 or (i+1) == len(ds):
|
| 112 |
+
print(f" β Encoded {i+1}/{len(ds)} prompts")
|
| 113 |
+
gc.collect()
|
| 114 |
+
return torch.vstack(short_list), torch.vstack(long_list)
|
| 115 |
|
| 116 |
+
short_train, long_train = encode_dataset(dataset_train)
|
| 117 |
+
short_test, long_test = encode_dataset(dataset_test)
|
| 118 |
+
print(f"β
Embeddings shapes: train {short_train.shape}/{long_train.shape}, test {short_test.shape}/{long_test.shape}")
|
| 119 |
|
| 120 |
+
input_dim = short_train.shape[1]
|
| 121 |
+
output_dim = long_train.shape[1]
|
| 122 |
+
model = GemmaTrainer(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim).to(device)
|
| 123 |
+
|
| 124 |
+
criterion = nn.CosineSimilarity(dim=1)
|
| 125 |
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
| 126 |
+
max_epochs = 50
|
| 127 |
+
batch_size = 32
|
| 128 |
+
n = short_train.shape[0]
|
| 129 |
|
| 130 |
print("π Training model...")
|
| 131 |
+
for epoch in range(max_epochs):
|
| 132 |
model.train()
|
| 133 |
+
epoch_loss = 0.0
|
| 134 |
+
perm = torch.randperm(n)
|
| 135 |
+
for start in range(0, n, batch_size):
|
| 136 |
+
idx = perm[start:start+batch_size]
|
| 137 |
+
inputs = short_train[idx].to(device)
|
| 138 |
+
targets = long_train[idx].to(device)
|
| 139 |
+
optimizer.zero_grad()
|
| 140 |
+
outputs = model(inputs)
|
| 141 |
+
loss = 1 - criterion(outputs, targets).mean()
|
| 142 |
+
loss.backward()
|
| 143 |
+
optimizer.step()
|
| 144 |
+
epoch_loss += loss.item() * inputs.size(0)
|
| 145 |
+
epoch_loss /= n
|
| 146 |
|
| 147 |
+
model.eval()
|
| 148 |
+
with torch.no_grad():
|
| 149 |
+
test_outputs = model(short_test.to(device))
|
| 150 |
+
test_loss = 1 - criterion(test_outputs, long_test.to(device)).mean()
|
| 151 |
+
|
| 152 |
+
if epoch % 5 == 0 or epoch == max_epochs - 1:
|
| 153 |
+
print(f"Epoch {epoch+1}/{max_epochs} β Train Loss: {epoch_loss:.6f}, Test Loss: {test_loss:.6f}")
|
| 154 |
|
| 155 |
+
if test_loss < 0.01:
|
| 156 |
+
print("π― Early stopping β loss threshold reached.")
|
| 157 |
+
break
|
| 158 |
+
|
| 159 |
+
print("β
Training complete!")
|
| 160 |
+
|
| 161 |
+
if push_to_hub and test_loss < 0.05:
|
| 162 |
+
push_flashpack_model_to_hf(model, hf_repo)
|
| 163 |
+
else:
|
| 164 |
+
print("β οΈ Model not pushed β test loss not low enough.")
|
| 165 |
+
|
| 166 |
+
return model, dataset, embed_model, tokenizer, long_train
|
| 167 |
|
| 168 |
|
| 169 |
# ============================================================
|
| 170 |
+
# 5οΈβ£ Load or train
|
| 171 |
# ============================================================
|
| 172 |
+
def get_flashpack_model(hf_repo="rahul7star/FlashPack", input_dim=1536, output_dim=1536):
|
| 173 |
try:
|
| 174 |
print(f"π Loading FlashPack model from {hf_repo}...")
|
| 175 |
+
dummy_model = GemmaTrainer(input_dim=input_dim, hidden_dim=1024, output_dim=output_dim)
|
| 176 |
model = GemmaTrainer.from_flashpack(hf_repo, model=dummy_model)
|
| 177 |
+
model.eval()
|
| 178 |
print("β
Model loaded successfully.")
|
| 179 |
+
tokenizer, embed_model, _ = build_encoder("gpt2", max_length=128)
|
| 180 |
return model, tokenizer, embed_model, None, None
|
| 181 |
except Exception as e:
|
| 182 |
print(f"β οΈ Load failed: {e}")
|
| 183 |
print("β¬ Training new model...")
|
| 184 |
return train_flashpack_model()
|
| 185 |
|
| 186 |
+
# ============================================================
|
| 187 |
+
# 6οΈβ£ Encode and Enhance
|
| 188 |
+
# ============================================================
|
| 189 |
+
@torch.no_grad()
|
| 190 |
+
def encode_prompt(prompt, tokenizer, embed_model):
|
| 191 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True,
|
| 192 |
+
padding="max_length", max_length=128).to(device)
|
| 193 |
+
last_hidden = embed_model(**inputs).last_hidden_state
|
| 194 |
+
mean_pool = last_hidden.mean(dim=1)
|
| 195 |
+
max_pool, _ = last_hidden.max(dim=1)
|
| 196 |
+
return torch.cat([mean_pool, max_pool], dim=1).cpu()
|
| 197 |
+
|
| 198 |
+
def make_enhance_fn(model, long_embeddings, dataset, tokenizer, embed_model):
|
| 199 |
+
@torch.no_grad()
|
| 200 |
+
def fn(user_prompt, chat_history):
|
| 201 |
+
if model is None or dataset is None or long_embeddings is None:
|
| 202 |
+
return [{"role": "system", "content": "β οΈ Model not loaded. Please train or reload first."}]
|
| 203 |
+
chat_history = chat_history or []
|
| 204 |
+
short_emb = encode_prompt(user_prompt, tokenizer, embed_model)
|
| 205 |
+
mapped = model(short_emb.to(device)).cpu()
|
| 206 |
+
sims = (long_embeddings @ mapped.t()).squeeze(1)
|
| 207 |
+
long_norms = long_embeddings.norm(dim=1)
|
| 208 |
+
mapped_norm = mapped.norm()
|
| 209 |
+
sims = sims / (long_norms * (mapped_norm + 1e-12))
|
| 210 |
+
best_idx = int(sims.argmax().item())
|
| 211 |
+
enhanced_prompt = dataset[best_idx]["long_prompt"]
|
| 212 |
+
chat_history.append({"role": "user", "content": user_prompt})
|
| 213 |
+
chat_history.append({"role": "assistant", "content": enhanced_prompt})
|
| 214 |
+
return chat_history
|
| 215 |
+
return fn
|
| 216 |
|
| 217 |
# ============================================================
|
| 218 |
+
# 7οΈβ£ Gradio UI with Train Button
|
| 219 |
# ============================================================
|
| 220 |
+
with gr.Blocks(title="Prompt Enhancer β FlashPack (CPU)", theme=gr.themes.Soft()) as demo:
|
| 221 |
+
gr.Markdown("# β¨ Prompt Enhancer (FlashPack mapper)")
|
| 222 |
|
| 223 |
+
status = gr.Textbox(value="Model loading...", label="Status", interactive=False)
|
| 224 |
+
|
| 225 |
+
chatbot = gr.Chatbot(label="Enhanced Prompts", type="messages", height=400)
|
| 226 |
+
user_prompt = gr.Textbox(placeholder="Enter a short prompt...", label="Your Prompt", lines=3)
|
| 227 |
+
send_btn = gr.Button("π Enhance Prompt", variant="primary")
|
| 228 |
+
train_btn = gr.Button("π§ Train Model")
|
| 229 |
+
clear_btn = gr.Button("π§Ή Clear Chat")
|
| 230 |
|
| 231 |
model_state = gr.State(None)
|
| 232 |
tokenizer_state = gr.State(None)
|
|
|
|
| 235 |
long_embeddings_state = gr.State(None)
|
| 236 |
|
| 237 |
def train_model():
|
| 238 |
+
status_text = "π Training or loading model..."
|
| 239 |
model, tokenizer, embed_model, dataset, long_embeddings = get_flashpack_model()
|
| 240 |
+
status_text = "β
Model ready!"
|
| 241 |
+
return model, tokenizer, embed_model, dataset, long_embeddings, status_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
train_btn.click(
|
| 244 |
train_model,
|
|
|
|
| 246 |
outputs=[model_state, tokenizer_state, embed_model_state, dataset_state, long_embeddings_state, status],
|
| 247 |
)
|
| 248 |
|
| 249 |
+
def enhance(user_prompt, chat_history, model, tokenizer, embed_model, dataset, long_embeddings):
|
| 250 |
+
fn = make_enhance_fn(model, long_embeddings, dataset, tokenizer, embed_model)
|
| 251 |
+
return fn(user_prompt, chat_history)
|
| 252 |
+
|
| 253 |
+
send_btn.click(
|
| 254 |
+
enhance,
|
| 255 |
+
inputs=[user_prompt, chatbot, model_state, tokenizer_state, embed_model_state, dataset_state, long_embeddings_state],
|
| 256 |
+
outputs=chatbot,
|
| 257 |
+
)
|
| 258 |
+
user_prompt.submit(
|
| 259 |
+
enhance,
|
| 260 |
+
inputs=[user_prompt, chatbot, model_state, tokenizer_state, embed_model_state, dataset_state, long_embeddings_state],
|
| 261 |
+
outputs=chatbot,
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
clear_btn.click(lambda: [], None, chatbot)
|
| 265 |
+
|
| 266 |
+
# Auto-load model on startup
|
| 267 |
+
demo.load(
|
| 268 |
+
lambda: train_model(),
|
| 269 |
+
inputs=None,
|
| 270 |
+
outputs=[model_state, tokenizer_state, embed_model_state, dataset_state, long_embeddings_state, status],
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
# ============================================================
|
| 274 |
+
# 9οΈβ£ Launch
|
| 275 |
+
# ============================================================
|
| 276 |
+
if __name__ == "__main__":
|
| 277 |
+
demo.launch(show_error=True)
|