Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files
src/envs/maze_env/client.py
CHANGED
|
@@ -23,10 +23,17 @@ from .models import MazeAction, MazeObservation, MazeState
|
|
| 23 |
if TYPE_CHECKING:
|
| 24 |
pass
|
| 25 |
|
|
|
|
| 26 |
class MazeEnv(HTTPEnvClient[MazeAction, MazeObservation]):
|
| 27 |
"""HTTP client for Maze Environment."""
|
| 28 |
|
| 29 |
-
def render_ascii_maze(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
"""
|
| 31 |
Render the maze grid as ASCII art in the terminal.
|
| 32 |
- 0 = free cell
|
|
@@ -49,8 +56,8 @@ class MazeEnv(HTTPEnvClient[MazeAction, MazeObservation]):
|
|
| 49 |
line += "G "
|
| 50 |
elif maze[r][c] == 1:
|
| 51 |
line += "█ "
|
| 52 |
-
elif r == rows-1 and c == cols-1:
|
| 53 |
-
line+= "E "
|
| 54 |
else:
|
| 55 |
line += ". "
|
| 56 |
print(line)
|
|
@@ -82,4 +89,4 @@ class MazeEnv(HTTPEnvClient[MazeAction, MazeObservation]):
|
|
| 82 |
episode_id=payload.get("episode_id", ""),
|
| 83 |
step_count=payload.get("step_count", 0),
|
| 84 |
done=payload.get("done", False),
|
| 85 |
-
)
|
|
|
|
| 23 |
if TYPE_CHECKING:
|
| 24 |
pass
|
| 25 |
|
| 26 |
+
|
| 27 |
class MazeEnv(HTTPEnvClient[MazeAction, MazeObservation]):
|
| 28 |
"""HTTP client for Maze Environment."""
|
| 29 |
|
| 30 |
+
def render_ascii_maze(
|
| 31 |
+
self,
|
| 32 |
+
maze: List[List[int]],
|
| 33 |
+
position: List[int],
|
| 34 |
+
start: List[int],
|
| 35 |
+
goal: List[int],
|
| 36 |
+
) -> None:
|
| 37 |
"""
|
| 38 |
Render the maze grid as ASCII art in the terminal.
|
| 39 |
- 0 = free cell
|
|
|
|
| 56 |
line += "G "
|
| 57 |
elif maze[r][c] == 1:
|
| 58 |
line += "█ "
|
| 59 |
+
elif r == rows - 1 and c == cols - 1:
|
| 60 |
+
line += "E "
|
| 61 |
else:
|
| 62 |
line += ". "
|
| 63 |
print(line)
|
|
|
|
| 89 |
episode_id=payload.get("episode_id", ""),
|
| 90 |
step_count=payload.get("step_count", 0),
|
| 91 |
done=payload.get("done", False),
|
| 92 |
+
)
|
src/envs/maze_env/models.py
CHANGED
|
@@ -29,6 +29,7 @@ class MazeObservation(Observation):
|
|
| 29 |
total_reward: float
|
| 30 |
legal_actions: List[int] = field(default_factory=list)
|
| 31 |
|
|
|
|
| 32 |
@dataclass
|
| 33 |
class MazeState(State):
|
| 34 |
episode_id: str
|
|
|
|
| 29 |
total_reward: float
|
| 30 |
legal_actions: List[int] = field(default_factory=list)
|
| 31 |
|
| 32 |
+
|
| 33 |
@dataclass
|
| 34 |
class MazeState(State):
|
| 35 |
episode_id: str
|
src/envs/maze_env/server/__init__.py
CHANGED
|
@@ -8,4 +8,4 @@
|
|
| 8 |
from .maze import Maze, Status
|
| 9 |
from .maze_environment import MazeEnvironment
|
| 10 |
|
| 11 |
-
__all__ = ["Maze","MazeEnvironment","Status"]
|
|
|
|
| 8 |
from .maze import Maze, Status
|
| 9 |
from .maze_environment import MazeEnvironment
|
| 10 |
|
| 11 |
+
__all__ = ["Maze", "MazeEnvironment", "Status"]
|
src/envs/maze_env/server/app.py
CHANGED
|
@@ -28,10 +28,11 @@ from core.env_server import create_app
|
|
| 28 |
from ..models import MazeAction, MazeObservation
|
| 29 |
from .maze_environment import MazeEnvironment
|
| 30 |
from .mazearray import maze
|
|
|
|
| 31 |
# Get game configuration from environment variables
|
| 32 |
|
| 33 |
# Create the environment instance
|
| 34 |
-
env = MazeEnvironment(maze_array=maze,start_cell=(0,0),exit_cell=(7,7))
|
| 35 |
|
| 36 |
# Create the FastAPI app with web interface and README integration
|
| 37 |
app = create_app(env, MazeAction, MazeObservation, env_name="maze_env")
|
|
|
|
| 28 |
from ..models import MazeAction, MazeObservation
|
| 29 |
from .maze_environment import MazeEnvironment
|
| 30 |
from .mazearray import maze
|
| 31 |
+
|
| 32 |
# Get game configuration from environment variables
|
| 33 |
|
| 34 |
# Create the environment instance
|
| 35 |
+
env = MazeEnvironment(maze_array=maze, start_cell=(0, 0), exit_cell=(7, 7))
|
| 36 |
|
| 37 |
# Create the FastAPI app with web interface and README integration
|
| 38 |
app = create_app(env, MazeAction, MazeObservation, env_name="maze_env")
|
src/envs/maze_env/server/maze.py
CHANGED
|
@@ -39,52 +39,73 @@ class Status(Enum):
|
|
| 39 |
|
| 40 |
|
| 41 |
class Maze:
|
| 42 |
-
"""
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
"""
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
reward_exit = 10.0 # reward for reaching the exit cell
|
| 62 |
-
penalty_move =
|
|
|
|
|
|
|
| 63 |
penalty_visited = -0.25 # penalty for returning to a cell which was visited earlier
|
| 64 |
-
penalty_impossible_move =
|
|
|
|
|
|
|
| 65 |
|
| 66 |
def __init__(self, maze, start_cell=(0, 0), exit_cell=None):
|
| 67 |
-
"""
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
"""
|
| 73 |
self.maze = maze
|
| 74 |
|
| 75 |
-
self.__minimum_reward =
|
|
|
|
|
|
|
| 76 |
|
| 77 |
nrows, ncols = self.maze.shape
|
| 78 |
self.cells = [(col, row) for col in range(ncols) for row in range(nrows)]
|
| 79 |
-
self.empty = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
self.__exit_cell = (ncols - 1, nrows - 1) if exit_cell is None else exit_cell
|
| 81 |
self.empty.remove(self.__exit_cell)
|
| 82 |
|
| 83 |
# Check for impossible maze layout
|
| 84 |
if self.__exit_cell not in self.cells:
|
| 85 |
-
raise Exception(
|
|
|
|
|
|
|
| 86 |
if self.maze[self.__exit_cell[::-1]] == Cell.OCCUPIED:
|
| 87 |
-
raise Exception(
|
|
|
|
|
|
|
| 88 |
|
| 89 |
# Variables for rendering using Matplotlib
|
| 90 |
self.__render = Render.NOTHING # what to render
|
|
@@ -94,17 +115,21 @@ class Maze:
|
|
| 94 |
self.reset(start_cell)
|
| 95 |
|
| 96 |
def reset(self, start_cell=(0, 0)):
|
| 97 |
-
"""
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
"""
|
| 102 |
if start_cell not in self.cells:
|
| 103 |
-
raise Exception(
|
|
|
|
|
|
|
| 104 |
if self.maze[start_cell[::-1]] == Cell.OCCUPIED:
|
| 105 |
raise Exception("Error: start cell at {} is not free".format(start_cell))
|
| 106 |
if start_cell == self.__exit_cell:
|
| 107 |
-
raise Exception(
|
|
|
|
|
|
|
| 108 |
|
| 109 |
self.__previous_cell = self.__current_cell = start_cell
|
| 110 |
self.__total_reward = 0.0 # accumulated reward
|
|
@@ -119,10 +144,18 @@ class Maze:
|
|
| 119 |
self.__ax1.set_yticks(np.arange(0.5, ncols, step=1))
|
| 120 |
self.__ax1.set_yticklabels([])
|
| 121 |
self.__ax1.grid(True)
|
| 122 |
-
self.__ax1.plot(
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
self.__ax1.text(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
self.__ax1.imshow(self.maze, cmap="binary")
|
| 127 |
self.__ax1.get_figure().canvas.draw()
|
| 128 |
self.__ax1.get_figure().canvas.flush_events()
|
|
@@ -130,35 +163,43 @@ class Maze:
|
|
| 130 |
return self.__observe()
|
| 131 |
|
| 132 |
def __draw(self):
|
| 133 |
-
"""
|
| 134 |
-
self.__ax1.plot(
|
|
|
|
|
|
|
| 135 |
self.__ax1.plot(*self.__current_cell, "ro") # current cell is a red dot
|
| 136 |
self.__ax1.get_figure().canvas.draw()
|
| 137 |
self.__ax1.get_figure().canvas.flush_events()
|
| 138 |
|
| 139 |
def step(self, action):
|
| 140 |
-
"""
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
"""
|
| 145 |
reward = self.__execute(action)
|
| 146 |
self.__total_reward += reward
|
| 147 |
status = self.__status()
|
| 148 |
state = self.__observe()
|
| 149 |
-
logging.debug(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
return state, reward, status
|
| 151 |
|
| 152 |
def __execute(self, action):
|
| 153 |
-
"""
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
"""
|
| 158 |
possible_actions = self.__possible_actions(self.__current_cell)
|
| 159 |
|
| 160 |
if not possible_actions:
|
| 161 |
-
reward =
|
|
|
|
|
|
|
| 162 |
elif action in possible_actions:
|
| 163 |
col, row = self.__current_cell
|
| 164 |
if action == Action.MOVE_LEFT:
|
|
@@ -179,21 +220,27 @@ class Maze:
|
|
| 179 |
if self.__current_cell == self.__exit_cell:
|
| 180 |
reward = Maze.reward_exit # maximum reward when reaching the exit cell
|
| 181 |
elif self.__current_cell in self.__visited:
|
| 182 |
-
reward =
|
|
|
|
|
|
|
| 183 |
else:
|
| 184 |
-
reward =
|
|
|
|
|
|
|
| 185 |
|
| 186 |
self.__visited.add(self.__current_cell)
|
| 187 |
else:
|
| 188 |
-
reward =
|
|
|
|
|
|
|
| 189 |
|
| 190 |
return reward
|
| 191 |
|
| 192 |
def __possible_actions(self, cell=None):
|
| 193 |
-
"""
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
"""
|
| 198 |
if cell is None:
|
| 199 |
col, row = self.__current_cell
|
|
@@ -206,42 +253,48 @@ class Maze:
|
|
| 206 |
nrows, ncols = self.maze.shape
|
| 207 |
if row == 0 or (row > 0 and self.maze[row - 1, col] == Cell.OCCUPIED):
|
| 208 |
possible_actions.remove(Action.MOVE_UP)
|
| 209 |
-
if row == nrows - 1 or (
|
|
|
|
|
|
|
| 210 |
possible_actions.remove(Action.MOVE_DOWN)
|
| 211 |
|
| 212 |
if col == 0 or (col > 0 and self.maze[row, col - 1] == Cell.OCCUPIED):
|
| 213 |
possible_actions.remove(Action.MOVE_LEFT)
|
| 214 |
-
if col == ncols - 1 or (
|
|
|
|
|
|
|
| 215 |
possible_actions.remove(Action.MOVE_RIGHT)
|
| 216 |
|
| 217 |
return possible_actions
|
| 218 |
|
| 219 |
def __status(self):
|
| 220 |
-
"""
|
| 221 |
|
| 222 |
-
|
| 223 |
"""
|
| 224 |
if self.__current_cell == self.__exit_cell:
|
| 225 |
return Status.WIN
|
| 226 |
|
| 227 |
-
if
|
|
|
|
|
|
|
| 228 |
return Status.LOSE
|
| 229 |
|
| 230 |
return Status.PLAYING
|
| 231 |
|
| 232 |
def __observe(self):
|
| 233 |
-
"""
|
| 234 |
|
| 235 |
-
|
| 236 |
"""
|
| 237 |
return np.array([[*self.__current_cell]])
|
| 238 |
|
| 239 |
def play(self, model, start_cell=(0, 0)):
|
| 240 |
-
"""
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
"""
|
| 246 |
self.reset(start_cell)
|
| 247 |
|
|
@@ -254,9 +307,11 @@ class Maze:
|
|
| 254 |
return status
|
| 255 |
|
| 256 |
def check_win_all(self, model):
|
| 257 |
-
"""
|
| 258 |
previous = self.__render
|
| 259 |
-
self.__render =
|
|
|
|
|
|
|
| 260 |
|
| 261 |
win = 0
|
| 262 |
lose = 0
|
|
@@ -269,14 +324,18 @@ class Maze:
|
|
| 269 |
|
| 270 |
self.__render = previous # restore previous rendering setting
|
| 271 |
|
| 272 |
-
logging.info(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
result = True if lose == 0 else False
|
| 275 |
|
| 276 |
return result, win / (win + lose)
|
| 277 |
|
| 278 |
def render_q(self, model):
|
| 279 |
-
"""
|
| 280 |
|
| 281 |
:param class AbstractModel model: the prediction model to use
|
| 282 |
"""
|
|
@@ -293,8 +352,12 @@ class Maze:
|
|
| 293 |
self.__ax2.set_yticks(np.arange(0.5, ncols, step=1))
|
| 294 |
self.__ax2.set_yticklabels([])
|
| 295 |
self.__ax2.grid(True)
|
| 296 |
-
self.__ax2.plot(
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
for cell in self.empty:
|
| 300 |
q = model.q(cell) if model is not None else [0, 0, 0, 0]
|
|
@@ -315,9 +378,18 @@ class Maze:
|
|
| 315 |
# color (from red to green) represents the certainty of the preferred action(s)
|
| 316 |
maxv = 1
|
| 317 |
minv = -1
|
| 318 |
-
color = clip(
|
| 319 |
-
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
self.__ax2.imshow(self.maze, cmap="binary")
|
| 323 |
-
self.__ax2.get_figure().canvas.draw()
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
class Maze:
|
| 42 |
+
"""A maze with walls. An agent is placed at the start cell and must find the exit cell by moving through the maze.
|
| 43 |
+
|
| 44 |
+
The layout of the maze and the rules how to move through it are called the environment. An agent is placed
|
| 45 |
+
at start_cell. The agent chooses actions (move left/right/up/down) in order to reach the exit_cell. Every
|
| 46 |
+
action results in a reward or penalty which are accumulated during the game. Every move gives a small
|
| 47 |
+
penalty (-0.05), returning to a cell the agent visited earlier a bigger penalty (-0.25) and running into
|
| 48 |
+
a wall a large penalty (-0.75). The reward (+10.0) is collected when the agent reaches the exit. The
|
| 49 |
+
game always reaches a terminal state; the agent either wins or looses. Obviously reaching the exit means
|
| 50 |
+
winning, but if the penalties the agent is collecting during play exceed a certain threshold the agent is
|
| 51 |
+
assumed to wander around clueless and looses.
|
| 52 |
+
|
| 53 |
+
A note on cell coordinates:
|
| 54 |
+
The cells in the maze are stored as (col, row) or (x, y) tuples. (0, 0) is the upper left corner of the maze.
|
| 55 |
+
This way of storing coordinates is in line with what matplotlib's plot() function expects as inputs. The maze
|
| 56 |
+
itself is stored as a 2D numpy array so cells are accessed via [row, col]. To convert a (col, row) tuple
|
| 57 |
+
to (row, col) use (col, row)[::-1]
|
| 58 |
"""
|
| 59 |
+
|
| 60 |
+
actions = [
|
| 61 |
+
Action.MOVE_LEFT,
|
| 62 |
+
Action.MOVE_RIGHT,
|
| 63 |
+
Action.MOVE_UP,
|
| 64 |
+
Action.MOVE_DOWN,
|
| 65 |
+
] # all possible actions
|
| 66 |
|
| 67 |
reward_exit = 10.0 # reward for reaching the exit cell
|
| 68 |
+
penalty_move = (
|
| 69 |
+
-0.05
|
| 70 |
+
) # penalty for a move which did not result in finding the exit cell
|
| 71 |
penalty_visited = -0.25 # penalty for returning to a cell which was visited earlier
|
| 72 |
+
penalty_impossible_move = (
|
| 73 |
+
-0.75
|
| 74 |
+
) # penalty for trying to enter an occupied cell or moving out of the maze
|
| 75 |
|
| 76 |
def __init__(self, maze, start_cell=(0, 0), exit_cell=None):
|
| 77 |
+
"""Create a new maze game.
|
| 78 |
|
| 79 |
+
:param numpy.array maze: 2D array containing empty cells (= 0) and cells occupied with walls (= 1)
|
| 80 |
+
:param tuple start_cell: starting cell for the agent in the maze (optional, else upper left)
|
| 81 |
+
:param tuple exit_cell: exit cell which the agent has to reach (optional, else lower right)
|
| 82 |
"""
|
| 83 |
self.maze = maze
|
| 84 |
|
| 85 |
+
self.__minimum_reward = (
|
| 86 |
+
-0.5 * self.maze.size
|
| 87 |
+
) # stop game if accumulated reward is below this threshold
|
| 88 |
|
| 89 |
nrows, ncols = self.maze.shape
|
| 90 |
self.cells = [(col, row) for col in range(ncols) for row in range(nrows)]
|
| 91 |
+
self.empty = [
|
| 92 |
+
(col, row)
|
| 93 |
+
for col in range(ncols)
|
| 94 |
+
for row in range(nrows)
|
| 95 |
+
if self.maze[row, col] == Cell.EMPTY
|
| 96 |
+
]
|
| 97 |
self.__exit_cell = (ncols - 1, nrows - 1) if exit_cell is None else exit_cell
|
| 98 |
self.empty.remove(self.__exit_cell)
|
| 99 |
|
| 100 |
# Check for impossible maze layout
|
| 101 |
if self.__exit_cell not in self.cells:
|
| 102 |
+
raise Exception(
|
| 103 |
+
"Error: exit cell at {} is not inside maze".format(self.__exit_cell)
|
| 104 |
+
)
|
| 105 |
if self.maze[self.__exit_cell[::-1]] == Cell.OCCUPIED:
|
| 106 |
+
raise Exception(
|
| 107 |
+
"Error: exit cell at {} is not free".format(self.__exit_cell)
|
| 108 |
+
)
|
| 109 |
|
| 110 |
# Variables for rendering using Matplotlib
|
| 111 |
self.__render = Render.NOTHING # what to render
|
|
|
|
| 115 |
self.reset(start_cell)
|
| 116 |
|
| 117 |
def reset(self, start_cell=(0, 0)):
|
| 118 |
+
"""Reset the maze to its initial state and place the agent at start_cell.
|
| 119 |
|
| 120 |
+
:param tuple start_cell: here the agent starts its journey through the maze (optional, else upper left)
|
| 121 |
+
:return: new state after reset
|
| 122 |
"""
|
| 123 |
if start_cell not in self.cells:
|
| 124 |
+
raise Exception(
|
| 125 |
+
"Error: start cell at {} is not inside maze".format(start_cell)
|
| 126 |
+
)
|
| 127 |
if self.maze[start_cell[::-1]] == Cell.OCCUPIED:
|
| 128 |
raise Exception("Error: start cell at {} is not free".format(start_cell))
|
| 129 |
if start_cell == self.__exit_cell:
|
| 130 |
+
raise Exception(
|
| 131 |
+
"Error: start- and exit cell cannot be the same {}".format(start_cell)
|
| 132 |
+
)
|
| 133 |
|
| 134 |
self.__previous_cell = self.__current_cell = start_cell
|
| 135 |
self.__total_reward = 0.0 # accumulated reward
|
|
|
|
| 144 |
self.__ax1.set_yticks(np.arange(0.5, ncols, step=1))
|
| 145 |
self.__ax1.set_yticklabels([])
|
| 146 |
self.__ax1.grid(True)
|
| 147 |
+
self.__ax1.plot(
|
| 148 |
+
*self.__current_cell, "rs", markersize=30
|
| 149 |
+
) # start is a big red square
|
| 150 |
+
self.__ax1.text(
|
| 151 |
+
*self.__current_cell, "Start", ha="center", va="center", color="white"
|
| 152 |
+
)
|
| 153 |
+
self.__ax1.plot(
|
| 154 |
+
*self.__exit_cell, "gs", markersize=30
|
| 155 |
+
) # exit is a big green square
|
| 156 |
+
self.__ax1.text(
|
| 157 |
+
*self.__exit_cell, "Exit", ha="center", va="center", color="white"
|
| 158 |
+
)
|
| 159 |
self.__ax1.imshow(self.maze, cmap="binary")
|
| 160 |
self.__ax1.get_figure().canvas.draw()
|
| 161 |
self.__ax1.get_figure().canvas.flush_events()
|
|
|
|
| 163 |
return self.__observe()
|
| 164 |
|
| 165 |
def __draw(self):
|
| 166 |
+
"""Draw a line from the agents previous cell to its current cell."""
|
| 167 |
+
self.__ax1.plot(
|
| 168 |
+
*zip(*[self.__previous_cell, self.__current_cell]), "bo-"
|
| 169 |
+
) # previous cells are blue dots
|
| 170 |
self.__ax1.plot(*self.__current_cell, "ro") # current cell is a red dot
|
| 171 |
self.__ax1.get_figure().canvas.draw()
|
| 172 |
self.__ax1.get_figure().canvas.flush_events()
|
| 173 |
|
| 174 |
def step(self, action):
|
| 175 |
+
"""Move the agent according to 'action' and return the new state, reward and game status.
|
| 176 |
|
| 177 |
+
:param Action action: the agent will move in this direction
|
| 178 |
+
:return: state, reward, status
|
| 179 |
"""
|
| 180 |
reward = self.__execute(action)
|
| 181 |
self.__total_reward += reward
|
| 182 |
status = self.__status()
|
| 183 |
state = self.__observe()
|
| 184 |
+
logging.debug(
|
| 185 |
+
"action: {:10s} | reward: {: .2f} | status: {}".format(
|
| 186 |
+
Action(action).name, reward, status
|
| 187 |
+
)
|
| 188 |
+
)
|
| 189 |
return state, reward, status
|
| 190 |
|
| 191 |
def __execute(self, action):
|
| 192 |
+
"""Execute action and collect the reward or penalty.
|
| 193 |
|
| 194 |
+
:param Action action: direction in which the agent will move
|
| 195 |
+
:return float: reward or penalty which results from the action
|
| 196 |
"""
|
| 197 |
possible_actions = self.__possible_actions(self.__current_cell)
|
| 198 |
|
| 199 |
if not possible_actions:
|
| 200 |
+
reward = (
|
| 201 |
+
self.__minimum_reward - 1
|
| 202 |
+
) # cannot move anywhere, force end of game
|
| 203 |
elif action in possible_actions:
|
| 204 |
col, row = self.__current_cell
|
| 205 |
if action == Action.MOVE_LEFT:
|
|
|
|
| 220 |
if self.__current_cell == self.__exit_cell:
|
| 221 |
reward = Maze.reward_exit # maximum reward when reaching the exit cell
|
| 222 |
elif self.__current_cell in self.__visited:
|
| 223 |
+
reward = (
|
| 224 |
+
Maze.penalty_visited
|
| 225 |
+
) # penalty when returning to a cell which was visited earlier
|
| 226 |
else:
|
| 227 |
+
reward = (
|
| 228 |
+
Maze.penalty_move
|
| 229 |
+
) # penalty for a move which did not result in finding the exit cell
|
| 230 |
|
| 231 |
self.__visited.add(self.__current_cell)
|
| 232 |
else:
|
| 233 |
+
reward = (
|
| 234 |
+
Maze.penalty_impossible_move
|
| 235 |
+
) # penalty for trying to enter an occupied cell or move out of the maze
|
| 236 |
|
| 237 |
return reward
|
| 238 |
|
| 239 |
def __possible_actions(self, cell=None):
|
| 240 |
+
"""Create a list with all possible actions from 'cell', avoiding the maze's edges and walls.
|
| 241 |
|
| 242 |
+
:param tuple cell: location of the agent (optional, else use current cell)
|
| 243 |
+
:return list: all possible actions
|
| 244 |
"""
|
| 245 |
if cell is None:
|
| 246 |
col, row = self.__current_cell
|
|
|
|
| 253 |
nrows, ncols = self.maze.shape
|
| 254 |
if row == 0 or (row > 0 and self.maze[row - 1, col] == Cell.OCCUPIED):
|
| 255 |
possible_actions.remove(Action.MOVE_UP)
|
| 256 |
+
if row == nrows - 1 or (
|
| 257 |
+
row < nrows - 1 and self.maze[row + 1, col] == Cell.OCCUPIED
|
| 258 |
+
):
|
| 259 |
possible_actions.remove(Action.MOVE_DOWN)
|
| 260 |
|
| 261 |
if col == 0 or (col > 0 and self.maze[row, col - 1] == Cell.OCCUPIED):
|
| 262 |
possible_actions.remove(Action.MOVE_LEFT)
|
| 263 |
+
if col == ncols - 1 or (
|
| 264 |
+
col < ncols - 1 and self.maze[row, col + 1] == Cell.OCCUPIED
|
| 265 |
+
):
|
| 266 |
possible_actions.remove(Action.MOVE_RIGHT)
|
| 267 |
|
| 268 |
return possible_actions
|
| 269 |
|
| 270 |
def __status(self):
|
| 271 |
+
"""Return the game status.
|
| 272 |
|
| 273 |
+
:return Status: current game status (WIN, LOSE, PLAYING)
|
| 274 |
"""
|
| 275 |
if self.__current_cell == self.__exit_cell:
|
| 276 |
return Status.WIN
|
| 277 |
|
| 278 |
+
if (
|
| 279 |
+
self.__total_reward < self.__minimum_reward
|
| 280 |
+
): # force end of game after too much loss
|
| 281 |
return Status.LOSE
|
| 282 |
|
| 283 |
return Status.PLAYING
|
| 284 |
|
| 285 |
def __observe(self):
|
| 286 |
+
"""Return the state of the maze - in this game the agents current location.
|
| 287 |
|
| 288 |
+
:return numpy.array [1][2]: agents current location
|
| 289 |
"""
|
| 290 |
return np.array([[*self.__current_cell]])
|
| 291 |
|
| 292 |
def play(self, model, start_cell=(0, 0)):
|
| 293 |
+
"""Play a single game, choosing the next move based a prediction from 'model'.
|
| 294 |
|
| 295 |
+
:param class AbstractModel model: the prediction model to use
|
| 296 |
+
:param tuple start_cell: agents initial cell (optional, else upper left)
|
| 297 |
+
:return Status: WIN, LOSE
|
| 298 |
"""
|
| 299 |
self.reset(start_cell)
|
| 300 |
|
|
|
|
| 307 |
return status
|
| 308 |
|
| 309 |
def check_win_all(self, model):
|
| 310 |
+
"""Check if the model wins from all possible starting cells."""
|
| 311 |
previous = self.__render
|
| 312 |
+
self.__render = (
|
| 313 |
+
Render.NOTHING
|
| 314 |
+
) # avoid rendering anything during execution of the check games
|
| 315 |
|
| 316 |
win = 0
|
| 317 |
lose = 0
|
|
|
|
| 324 |
|
| 325 |
self.__render = previous # restore previous rendering setting
|
| 326 |
|
| 327 |
+
logging.info(
|
| 328 |
+
"won: {} | lost: {} | win rate: {:.5f}".format(
|
| 329 |
+
win, lose, win / (win + lose)
|
| 330 |
+
)
|
| 331 |
+
)
|
| 332 |
|
| 333 |
result = True if lose == 0 else False
|
| 334 |
|
| 335 |
return result, win / (win + lose)
|
| 336 |
|
| 337 |
def render_q(self, model):
|
| 338 |
+
"""Render the recommended action(s) for each cell as provided by 'model'.
|
| 339 |
|
| 340 |
:param class AbstractModel model: the prediction model to use
|
| 341 |
"""
|
|
|
|
| 352 |
self.__ax2.set_yticks(np.arange(0.5, ncols, step=1))
|
| 353 |
self.__ax2.set_yticklabels([])
|
| 354 |
self.__ax2.grid(True)
|
| 355 |
+
self.__ax2.plot(
|
| 356 |
+
*self.__exit_cell, "gs", markersize=30
|
| 357 |
+
) # exit is a big green square
|
| 358 |
+
self.__ax2.text(
|
| 359 |
+
*self.__exit_cell, "Exit", ha="center", va="center", color="white"
|
| 360 |
+
)
|
| 361 |
|
| 362 |
for cell in self.empty:
|
| 363 |
q = model.q(cell) if model is not None else [0, 0, 0, 0]
|
|
|
|
| 378 |
# color (from red to green) represents the certainty of the preferred action(s)
|
| 379 |
maxv = 1
|
| 380 |
minv = -1
|
| 381 |
+
color = clip(
|
| 382 |
+
(q[action] - minv) / (maxv - minv)
|
| 383 |
+
) # normalize in [-1, 1]
|
| 384 |
+
|
| 385 |
+
self.__ax2.arrow(
|
| 386 |
+
*cell,
|
| 387 |
+
dx,
|
| 388 |
+
dy,
|
| 389 |
+
color=(1 - color, color, 0),
|
| 390 |
+
head_width=0.2,
|
| 391 |
+
head_length=0.1,
|
| 392 |
+
)
|
| 393 |
|
| 394 |
self.__ax2.imshow(self.maze, cmap="binary")
|
| 395 |
+
self.__ax2.get_figure().canvas.draw()
|
src/envs/maze_env/server/maze_environment.py
CHANGED
|
@@ -42,7 +42,7 @@ class MazeEnvironment(Environment):
|
|
| 42 |
self,
|
| 43 |
maze_array: np.ndarray,
|
| 44 |
start_cell: Tuple[int, int] = (0, 0),
|
| 45 |
-
exit_cell: Optional[Tuple[int, int]] = (7,7),
|
| 46 |
):
|
| 47 |
# Create underlying Maze instance (matches your working code)
|
| 48 |
self.env = Maze(maze=maze_array, start_cell=start_cell, exit_cell=exit_cell)
|
|
@@ -54,16 +54,26 @@ class MazeEnvironment(Environment):
|
|
| 54 |
|
| 55 |
def reset(self) -> MazeObservation:
|
| 56 |
"""Reset environment and return initial observation (MazeObservation)."""
|
| 57 |
-
observation =
|
|
|
|
|
|
|
| 58 |
# initialize episode state
|
| 59 |
self.state = MazeState(episode_id="episode_1", step_count=0, done=False)
|
| 60 |
|
| 61 |
# build MazeObservation; convert numpy to list for JSON-serializable dataclass fields
|
| 62 |
-
pos_list =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
self.total_reward = 0
|
| 64 |
legal_actions = self._compute_legal_actions(pos_list[0])
|
| 65 |
|
| 66 |
-
return MazeObservation(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
def step(self, action: MazeAction) -> MazeObservation:
|
| 69 |
"""
|
|
@@ -91,9 +101,9 @@ class MazeEnvironment(Environment):
|
|
| 91 |
}
|
| 92 |
|
| 93 |
# --- Reward settings ---
|
| 94 |
-
reward_exit = 10.0
|
| 95 |
-
reward_move = 0.05
|
| 96 |
-
penalty_visited = -0.25
|
| 97 |
penalty_impossible = -0.75 # penalty for invalid move (wall/outside)
|
| 98 |
|
| 99 |
dr, dc = move_map.get(action.action, (0, 0))
|
|
@@ -153,10 +163,9 @@ class MazeEnvironment(Environment):
|
|
| 153 |
position=pos_list,
|
| 154 |
total_reward=self.total_reward,
|
| 155 |
legal_actions=legal_actions,
|
| 156 |
-
done=done
|
| 157 |
)
|
| 158 |
|
| 159 |
-
|
| 160 |
def state(self) -> Optional[MazeState]:
|
| 161 |
"""Return the current MazeState object."""
|
| 162 |
return self.state
|
|
@@ -186,4 +195,4 @@ class MazeEnvironment(Environment):
|
|
| 186 |
if col < ncols - 1 and self.env.maze[row, col + 1] == 0:
|
| 187 |
actions.append(3)
|
| 188 |
|
| 189 |
-
return actions
|
|
|
|
| 42 |
self,
|
| 43 |
maze_array: np.ndarray,
|
| 44 |
start_cell: Tuple[int, int] = (0, 0),
|
| 45 |
+
exit_cell: Optional[Tuple[int, int]] = (7, 7),
|
| 46 |
):
|
| 47 |
# Create underlying Maze instance (matches your working code)
|
| 48 |
self.env = Maze(maze=maze_array, start_cell=start_cell, exit_cell=exit_cell)
|
|
|
|
| 54 |
|
| 55 |
def reset(self) -> MazeObservation:
|
| 56 |
"""Reset environment and return initial observation (MazeObservation)."""
|
| 57 |
+
observation = (
|
| 58 |
+
self.env.reset()
|
| 59 |
+
) # typically returns np.array([row, col]) or similar
|
| 60 |
# initialize episode state
|
| 61 |
self.state = MazeState(episode_id="episode_1", step_count=0, done=False)
|
| 62 |
|
| 63 |
# build MazeObservation; convert numpy to list for JSON-serializable dataclass fields
|
| 64 |
+
pos_list = (
|
| 65 |
+
observation.tolist()
|
| 66 |
+
if hasattr(observation, "tolist")
|
| 67 |
+
else list(observation)
|
| 68 |
+
)
|
| 69 |
self.total_reward = 0
|
| 70 |
legal_actions = self._compute_legal_actions(pos_list[0])
|
| 71 |
|
| 72 |
+
return MazeObservation(
|
| 73 |
+
position=pos_list,
|
| 74 |
+
total_reward=self.total_reward,
|
| 75 |
+
legal_actions=legal_actions,
|
| 76 |
+
)
|
| 77 |
|
| 78 |
def step(self, action: MazeAction) -> MazeObservation:
|
| 79 |
"""
|
|
|
|
| 101 |
}
|
| 102 |
|
| 103 |
# --- Reward settings ---
|
| 104 |
+
reward_exit = 10.0 # reward for reaching the exit cell
|
| 105 |
+
reward_move = 0.05 # reward for a move that didn't find the exit but is valid
|
| 106 |
+
penalty_visited = -0.25 # penalty for revisiting a cell
|
| 107 |
penalty_impossible = -0.75 # penalty for invalid move (wall/outside)
|
| 108 |
|
| 109 |
dr, dc = move_map.get(action.action, (0, 0))
|
|
|
|
| 163 |
position=pos_list,
|
| 164 |
total_reward=self.total_reward,
|
| 165 |
legal_actions=legal_actions,
|
| 166 |
+
done=done,
|
| 167 |
)
|
| 168 |
|
|
|
|
| 169 |
def state(self) -> Optional[MazeState]:
|
| 170 |
"""Return the current MazeState object."""
|
| 171 |
return self.state
|
|
|
|
| 195 |
if col < ncols - 1 and self.env.maze[row, col + 1] == 0:
|
| 196 |
actions.append(3)
|
| 197 |
|
| 198 |
+
return actions
|
src/envs/maze_env/server/mazearray.py
CHANGED
|
@@ -1,13 +1,15 @@
|
|
| 1 |
import numpy as np
|
| 2 |
|
| 3 |
# Maze
|
| 4 |
-
maze = np.array(
|
| 5 |
-
[
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
]
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
|
| 3 |
# Maze
|
| 4 |
+
maze = np.array(
|
| 5 |
+
[
|
| 6 |
+
[0, 1, 0, 0, 0, 0, 0, 0],
|
| 7 |
+
[0, 1, 0, 1, 0, 1, 0, 0],
|
| 8 |
+
[0, 0, 0, 1, 1, 0, 1, 0],
|
| 9 |
+
[0, 1, 0, 1, 0, 0, 0, 0],
|
| 10 |
+
[1, 0, 0, 1, 0, 1, 0, 0],
|
| 11 |
+
[0, 0, 0, 1, 0, 1, 1, 1],
|
| 12 |
+
[0, 1, 1, 0, 0, 0, 0, 0],
|
| 13 |
+
[0, 0, 0, 0, 0, 1, 0, 0],
|
| 14 |
+
]
|
| 15 |
+
)
|