""" Vector RAG Query """ import os from my_config import MY_CONFIG # If connection to https://huggingface.co/ failed, uncomment the following path os.environ['HF_ENDPOINT'] = MY_CONFIG.HF_ENDPOINT from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.milvus import MilvusVectorStore from dotenv import load_dotenv from llama_index.llms.litellm import LiteLLM import query_utils import time import logging import json # Create logs directory if it doesn't exist os.makedirs('logs/query', exist_ok=True) logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler('logs/query/query_log.txt', mode='a'), # Save to file logging.StreamHandler() # Also show in console ], force=True ) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) def run_query(query: str): global query_engine logger.info("-----------------------------------") start_time = time.time() query = query_utils.tweak_query(query, MY_CONFIG.LLM_MODEL) logger.info (f"\nProcessing Query:\n{query}") # Get initial vector response vector_response = query_engine.query(query) vector_text = str(vector_response).strip() # Structured prompt structured_prompt = f"""Please provide a comprehensive, well-structured answer using the provided document information. Question: {query} Document Information: {vector_text} Instructions: 1. Provide accurate, factual information based on the documents 2. Structure your response clearly with proper formatting 3. Be comprehensive yet concise 4. Highlight key relationships and important details when relevant 5. Use bullet points or sections when appropriate for clarity Please provide your answer:""" # Use structured prompt for final synthesis res = query_engine.query(structured_prompt) end_time = time.time() total_time = end_time - start_time logger.info ( "-------" + f"\nResponse:\n{res}" + f"\n\n⏱️ Total time: {total_time:.1f} seconds" + f"\n\nResponse Metadata:\n{json.dumps(res.metadata, indent=2)}" + f"\nSource Nodes: {[node.node_id for node in res.source_nodes]}" ) logger.info("-----------------------------------") # Save response and metadata to files _save_query_files(query, res, total_time) return res def _save_query_files(query: str, response, total_time: float): """Save query response and metadata to files.""" import time timestamp = time.strftime('%Y-%m-%d %H:%M:%S') try: # Save response to file with open('logs/query/query_responses.txt', 'a', encoding='utf-8') as f: f.write(f"\n{'='*80}\n") f.write(f"QUERY [{timestamp}]: {query}\n") f.write(f"{'='*80}\n") f.write(f"RESPONSE: {response}\n") f.write(f"TIME: {total_time:.1f} seconds\n") f.write(f"{'='*80}\n\n") # Save metadata to file with open('logs/query/query_metadata.txt', 'a', encoding='utf-8') as f: f.write(f"\n{'='*80}\n") f.write(f"METADATA [{timestamp}]: {query}\n") f.write(f"{'='*80}\n") f.write(f"TIME: {total_time:.1f} seconds\n") f.write(json.dumps(response.metadata, indent=2, default=str)) f.write(f"\n{'='*80}\n\n") logger.info(f"Saved response and metadata for query: {query[:50]}...") except Exception as e: logger.error(f"Failed to save query files: {e}") ## ======= end : run_query ======= ## load env config load_dotenv() # Setup embeddings Settings.embed_model = HuggingFaceEmbedding( model_name = MY_CONFIG.EMBEDDING_MODEL ) logger.info (f"✅ Using embedding model: {MY_CONFIG.EMBEDDING_MODEL}") # Connect to vector database based on configuration if MY_CONFIG.VECTOR_DB_TYPE == "cloud_zilliz": # Use Zilliz Cloud if not MY_CONFIG.ZILLIZ_CLUSTER_ENDPOINT or not MY_CONFIG.ZILLIZ_TOKEN: raise ValueError("Cloud database configuration missing. Set ZILLIZ_CLUSTER_ENDPOINT and ZILLIZ_TOKEN in .env") vector_store = MilvusVectorStore( uri=MY_CONFIG.ZILLIZ_CLUSTER_ENDPOINT, token=MY_CONFIG.ZILLIZ_TOKEN, dim=MY_CONFIG.EMBEDDING_LENGTH, collection_name=MY_CONFIG.COLLECTION_NAME, overwrite=False ) storage_context = StorageContext.from_defaults(vector_store=vector_store) logger.info("Connected to cloud vector database") else: # Use local Milvus (default) vector_store = MilvusVectorStore( uri=MY_CONFIG.MILVUS_URI_VECTOR, dim=MY_CONFIG.EMBEDDING_LENGTH, collection_name=MY_CONFIG.COLLECTION_NAME, overwrite=False ) storage_context = StorageContext.from_defaults(vector_store=vector_store) logger.info("Connected to local vector database") # Load Document Index from database index = VectorStoreIndex.from_vector_store( vector_store=vector_store, storage_context=storage_context) logger.info("Vector index loaded successfully") # Setup LLM logger.info (f"✅ Using LLM model : {MY_CONFIG.LLM_MODEL}") Settings.llm = LiteLLM ( model=MY_CONFIG.LLM_MODEL, ) query_engine = index.as_query_engine() # Sample queries queries = [ # "What is AI Alliance?", # "What are the main focus areas of AI Alliance?", # "What are some ai alliance projects?", # "What are the upcoming events?", # "How do I join the AI Alliance?", # "When was the moon landing?", ] for query in queries: run_query(query) logger.info("-----------------------------------") while True: # Get user input user_query = input("\nEnter your question (or 'q' to exit): ") # Check if user wants to quit if user_query.lower() in ['quit', 'exit', 'q']: logger.info ("Goodbye!") break # Process the query if user_query.strip() == "": continue try: run_query(user_query) except Exception as e: logger.error(f"Error processing query: {e}") print(f"Error processing query: {e}")