Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- .gitignore +1 -0
- Dockerfile +31 -0
- app.py +80 -0
- requirements.txt +7 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
venv/
|
Dockerfile
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.8-slim
|
| 2 |
+
|
| 3 |
+
# Set the working directory
|
| 4 |
+
WORKDIR /app
|
| 5 |
+
|
| 6 |
+
RUN apt-get update && \
|
| 7 |
+
apt-get install -y \
|
| 8 |
+
libgl1-mesa-glx \
|
| 9 |
+
libglib2.0-0 \
|
| 10 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
+
|
| 12 |
+
# Copy the requirements file
|
| 13 |
+
COPY requirements.txt .
|
| 14 |
+
|
| 15 |
+
# Install dependencies
|
| 16 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 17 |
+
|
| 18 |
+
# Copy the rest of the application
|
| 19 |
+
COPY . .
|
| 20 |
+
|
| 21 |
+
# Expose the port the app runs on
|
| 22 |
+
EXPOSE 5000
|
| 23 |
+
|
| 24 |
+
# Create the uploads, flagged, and matplotlib_cache directories with proper permissions
|
| 25 |
+
RUN mkdir -p /app/flagged /app/matplotlib_cache && chmod -R 777 /app/uploads /app/flagged /app/matplotlib_cache
|
| 26 |
+
|
| 27 |
+
# Set the MPLCONFIGDIR environment variable
|
| 28 |
+
ENV MPLCONFIGDIR=/app/matplotlib_cache
|
| 29 |
+
|
| 30 |
+
# Run the application
|
| 31 |
+
CMD ["streamlit", "run", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
from RealESRGAN import RealESRGAN
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
|
| 7 |
+
# Define the target size for the image
|
| 8 |
+
TARGET_SIZE = (240, 240)
|
| 9 |
+
|
| 10 |
+
# Function to load the model based on scale and anime toggle
|
| 11 |
+
def load_model(scale, anime=False):
|
| 12 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 13 |
+
model = RealESRGAN(device, scale=scale, anime=anime)
|
| 14 |
+
model_path = {
|
| 15 |
+
(2, False): 'model/RealESRGAN_x2.pth',
|
| 16 |
+
(4, False): 'model/RealESRGAN_x4plus.pth',
|
| 17 |
+
(8, False): 'model/RealESRGAN_x8.pth',
|
| 18 |
+
(4, True): 'model/RealESRGAN_x4plus_anime_6B.pth'
|
| 19 |
+
}[(scale, anime)]
|
| 20 |
+
model.load_weights(model_path)
|
| 21 |
+
return model
|
| 22 |
+
|
| 23 |
+
def enhance_image(image, scale, anime):
|
| 24 |
+
model = load_model(scale, anime=anime)
|
| 25 |
+
|
| 26 |
+
# Convert image to RGB if it has an alpha channel
|
| 27 |
+
if image.mode != 'RGB':
|
| 28 |
+
image = image.convert('RGB')
|
| 29 |
+
|
| 30 |
+
# Resize image to target dimensions
|
| 31 |
+
image = image.resize(TARGET_SIZE)
|
| 32 |
+
|
| 33 |
+
sr_image = model.predict(image)
|
| 34 |
+
|
| 35 |
+
buffer = BytesIO()
|
| 36 |
+
sr_image.save(buffer, format="PNG")
|
| 37 |
+
buffer.seek(0)
|
| 38 |
+
return sr_image, buffer
|
| 39 |
+
|
| 40 |
+
def main():
|
| 41 |
+
st.title("Generative AI Image Restoration")
|
| 42 |
+
|
| 43 |
+
# Image upload
|
| 44 |
+
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
|
| 45 |
+
|
| 46 |
+
if uploaded_image is not None:
|
| 47 |
+
image = Image.open(uploaded_image)
|
| 48 |
+
|
| 49 |
+
# Anime toggle
|
| 50 |
+
anime = st.checkbox("Anime Image", value=False)
|
| 51 |
+
|
| 52 |
+
# Conditional scale options
|
| 53 |
+
if anime:
|
| 54 |
+
scale = "4x" # Set to 4x automatically when anime is selected
|
| 55 |
+
else:
|
| 56 |
+
scale = st.radio("Upscaling Factor", ["2x", "4x", "8x"], index=0)
|
| 57 |
+
|
| 58 |
+
scale_value = int(scale.replace('x', ''))
|
| 59 |
+
|
| 60 |
+
# Enhance button
|
| 61 |
+
if st.button("Restore Image"):
|
| 62 |
+
enhanced_image, buffer = enhance_image(image, scale_value, anime)
|
| 63 |
+
|
| 64 |
+
# Show images side by side
|
| 65 |
+
col1, col2 = st.columns(2)
|
| 66 |
+
with col1:
|
| 67 |
+
st.image(image, caption="Original Image", use_column_width=True)
|
| 68 |
+
with col2:
|
| 69 |
+
st.image(enhanced_image, caption="Enhanced Image", use_column_width=True)
|
| 70 |
+
|
| 71 |
+
# Download button
|
| 72 |
+
st.download_button(
|
| 73 |
+
label="Download Enhanced Image",
|
| 74 |
+
data=buffer,
|
| 75 |
+
file_name="enhanced_image.png",
|
| 76 |
+
mime="image/png"
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
if __name__ == "__main__":
|
| 80 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Pillow==10.4.0
|
| 2 |
+
torch==2.4.0
|
| 3 |
+
matplotlib
|
| 4 |
+
facexlib
|
| 5 |
+
streamlit
|
| 6 |
+
huggingface_hub
|
| 7 |
+
opencv-python-headless
|