Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
|
@@ -4,49 +4,47 @@ import torch
|
|
| 4 |
from RealESRGAN import RealESRGAN
|
| 5 |
from io import BytesIO
|
| 6 |
|
| 7 |
-
# Define the target size for the image (used for initial resizing before enhancement)
|
| 8 |
-
TARGET_SIZE = (240, 240)
|
| 9 |
-
|
| 10 |
# Function to load the model based on scale and anime toggle
|
| 11 |
def load_model(scale, anime=False):
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
def enhance_image(image, scale, anime):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
try:
|
| 25 |
-
model = load_model(scale, anime=anime)
|
| 26 |
-
|
| 27 |
# Convert image to RGB if it has an alpha channel
|
| 28 |
if image.mode != 'RGB':
|
| 29 |
image = image.convert('RGB')
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
original_size = image.size
|
| 33 |
-
|
| 34 |
-
# Resize image to target dimensions for processing
|
| 35 |
-
image = image.resize(TARGET_SIZE)
|
| 36 |
-
|
| 37 |
-
# Perform image enhancement
|
| 38 |
sr_image = model.predict(image)
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
sr_image = sr_image.resize(
|
| 42 |
|
|
|
|
| 43 |
buffer = BytesIO()
|
| 44 |
sr_image.save(buffer, format="PNG")
|
| 45 |
buffer.seek(0)
|
| 46 |
-
|
| 47 |
-
return sr_image, buffer, None
|
| 48 |
except Exception as e:
|
| 49 |
-
|
|
|
|
| 50 |
|
| 51 |
def main():
|
| 52 |
st.title("Generative AI Image Restoration")
|
|
@@ -70,11 +68,9 @@ def main():
|
|
| 70 |
|
| 71 |
# Enhance button
|
| 72 |
if st.button("Restore Image"):
|
| 73 |
-
enhanced_image, buffer
|
| 74 |
|
| 75 |
-
if
|
| 76 |
-
st.error(f"An error occurred: {error_message}")
|
| 77 |
-
else:
|
| 78 |
# Show images side by side
|
| 79 |
col1, col2 = st.columns(2)
|
| 80 |
with col1:
|
|
|
|
| 4 |
from RealESRGAN import RealESRGAN
|
| 5 |
from io import BytesIO
|
| 6 |
|
|
|
|
|
|
|
|
|
|
| 7 |
# Function to load the model based on scale and anime toggle
|
| 8 |
def load_model(scale, anime=False):
|
| 9 |
+
try:
|
| 10 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 11 |
+
model = RealESRGAN(device, scale=scale, anime=anime)
|
| 12 |
+
model_path = {
|
| 13 |
+
(2, False): 'model/RealESRGAN_x2.pth',
|
| 14 |
+
(4, False): 'model/RealESRGAN_x4plus.pth',
|
| 15 |
+
(8, False): 'model/RealESRGAN_x8.pth',
|
| 16 |
+
(4, True): 'model/RealESRGAN_x4plus_anime_6B.pth'
|
| 17 |
+
}[(scale, anime)]
|
| 18 |
+
model.load_weights(model_path)
|
| 19 |
+
return model
|
| 20 |
+
except Exception as e:
|
| 21 |
+
st.error(f"Error loading the model: {e}")
|
| 22 |
+
return None
|
| 23 |
|
| 24 |
def enhance_image(image, scale, anime):
|
| 25 |
+
model = load_model(scale, anime=anime)
|
| 26 |
+
if model is None:
|
| 27 |
+
return None, None
|
| 28 |
+
|
| 29 |
try:
|
|
|
|
|
|
|
| 30 |
# Convert image to RGB if it has an alpha channel
|
| 31 |
if image.mode != 'RGB':
|
| 32 |
image = image.convert('RGB')
|
| 33 |
|
| 34 |
+
# Process the image with the model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
sr_image = model.predict(image)
|
| 36 |
|
| 37 |
+
# Ensure the enhanced image has the same size as the original
|
| 38 |
+
sr_image = sr_image.resize(image.size)
|
| 39 |
|
| 40 |
+
# Save enhanced image to buffer
|
| 41 |
buffer = BytesIO()
|
| 42 |
sr_image.save(buffer, format="PNG")
|
| 43 |
buffer.seek(0)
|
| 44 |
+
return sr_image, buffer
|
|
|
|
| 45 |
except Exception as e:
|
| 46 |
+
st.error(f"Error enhancing the image: {e}")
|
| 47 |
+
return None, None
|
| 48 |
|
| 49 |
def main():
|
| 50 |
st.title("Generative AI Image Restoration")
|
|
|
|
| 68 |
|
| 69 |
# Enhance button
|
| 70 |
if st.button("Restore Image"):
|
| 71 |
+
enhanced_image, buffer = enhance_image(image, scale_value, anime)
|
| 72 |
|
| 73 |
+
if enhanced_image:
|
|
|
|
|
|
|
| 74 |
# Show images side by side
|
| 75 |
col1, col2 = st.columns(2)
|
| 76 |
with col1:
|