from flask import Flask, render_template, request, jsonify from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch app = Flask(__name__) # Load model and tokenizer MODEL_NAME = "viccon23/STU-Injection-aegis" print("Loading model...") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) print("Model loaded successfully!") def classify_prompt(text): """Classify if a prompt is safe or unsafe""" inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) predicted_class = torch.argmax(predictions, dim=-1).item() confidence = predictions[0][predicted_class].item() # Assuming class 0 is safe and class 1 is unsafe label = "Safe" if predicted_class == 0 else "Unsafe" return { "label": label, "confidence": round(confidence * 100, 2), "predicted_class": predicted_class } @app.route('/') def index(): return render_template('index.html') @app.route('/classify', methods=['POST']) def classify(): data = request.get_json() prompt = data.get('prompt', '') if not prompt: return jsonify({"error": "No prompt provided"}), 400 result = classify_prompt(prompt) return jsonify(result) if __name__ == '__main__': import os port = int(os.environ.get('PORT', 7860)) app.run(debug=False, host='0.0.0.0', port=port)