File size: 19,843 Bytes
f3ebaf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import os
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
COLS,
AutoEvalColumn,
fields,
)
from src.about import Tasks
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
# Import simple leaderboard functionality
import glob
import json
from functools import lru_cache
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation (prefer local JSONs, fall back to Hub)
def _has_local_json(path: str) -> bool:
try:
return os.path.isdir(path) and any(str(f).endswith(".json") for f in os.listdir(path))
except Exception:
return False
if not _has_local_json(EVAL_REQUESTS_PATH):
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
pass
if not _has_local_json(EVAL_RESULTS_PATH):
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
pass
# Build benchmark and evaluation queue column metadata
BENCHMARK_COLS = [f"{task.value.col_name} ({task.name})" for task in Tasks]
EVAL_COLS = [
"Model",
"Model sha",
"status",
"precision",
"weight_type",
"model_type",
"likes",
"params",
"license",
"submitted_time",
]
EVAL_TYPES = [
"markdown", # Model
"str", # Model sha
"str", # status
"str", # precision
"str", # weight_type
"str", # model_type
"number", # likes
"number", # params
"str", # license
"str", # submitted_time
]
# Hide all models from the leaderboard view
LEADERBOARD_DF = pd.DataFrame(columns=COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
@lru_cache(maxsize=1)
def _get_simple_dataset_keys(results_dir: str) -> tuple:
"""Cache dataset keys to avoid repeated file scanning."""
all_dataset_keys = set()
if not os.path.isdir(results_dir):
return tuple()
for path in glob.glob(os.path.join(results_dir, "*.json")):
try:
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
res = data.get("results", {})
all_dataset_keys.update(res.keys())
except Exception:
continue
return tuple(sorted(all_dataset_keys))
def load_simple_results(results_dir: str) -> pd.DataFrame:
"""Load and process evaluation results from JSON files for simple leaderboard with caching."""
rows = []
all_dataset_keys = set(_get_simple_dataset_keys(results_dir))
if not all_dataset_keys:
return pd.DataFrame(columns=["Model", "Avg PER", "Avg Duration (s)"])
# Use dataset keys directly as display names
dataset_display_names = {key: key for key in all_dataset_keys}
# Single pass: extract data with optimized processing
for path in glob.glob(os.path.join(results_dir, "*.json")):
try:
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
cfg = data.get("config", {})
res = data.get("results", {})
model_name = cfg.get("model_name", "unknown")
# Extract PER for each dataset dynamically
per_values = {}
dur_values = []
for dataset_key in all_dataset_keys:
dataset_data = res.get(dataset_key, {})
per_value = dataset_data.get("per") if dataset_data else None
dur_value = dataset_data.get("avg_duration") if dataset_data else None
display_name = dataset_display_names[dataset_key]
per_values[f"PER {display_name}"] = per_value
if dur_value is not None:
dur_values.append(dur_value)
# Calculate average PER across all datasets
per_vals = [v for v in per_values.values() if v is not None]
avg_per = sum(per_vals) / len(per_vals) if per_vals else None
# Calculate average duration
avg_dur = sum(dur_values) / len(dur_values) if dur_values else None
row = {
"Model": model_name,
"Avg PER": avg_per,
"Avg Duration (s)": avg_dur,
"_file": os.path.basename(path),
}
row.update(per_values)
rows.append(row)
except Exception:
continue
df = pd.DataFrame(rows)
if df.empty:
# Create default columns based on discovered datasets
default_cols = ["Model", "Avg PER", "Avg Duration (s)"]
for key in sorted(all_dataset_keys):
display_name = dataset_display_names[key]
default_cols.insert(-2, f"PER {display_name}")
return pd.DataFrame(columns=default_cols)
df = df.sort_values(by=["Avg PER"], ascending=True, na_position="last")
return df.reset_index(drop=True)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
dataframe = pd.DataFrame(columns=[c.name for c in fields(AutoEvalColumn)])
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Phoneme Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("π Simple Results", elem_id="simple-results-tab", id=1):
gr.Markdown("## π― Phoneme Detection Results")
gr.Markdown("Compare phoneme recognition models across different datasets")
# Stats section for simple results
with gr.Row():
simple_total_models = gr.HTML(
'<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 1rem; border-radius: 10px; text-align: center; min-width: 150px;"><div style="font-size: 1.5rem; font-weight: bold;">-</div><div style="font-size: 0.9rem; opacity: 0.9;">Total Models</div></div>'
)
simple_best_per = gr.HTML(
'<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 1rem; border-radius: 10px; text-align: center; min-width: 150px;"><div style="font-size: 1.5rem; font-weight: bold;">-</div><div style="font-size: 0.9rem; opacity: 0.9;">Best PER</div></div>'
)
simple_avg_duration = gr.HTML(
'<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 1rem; border-radius: 10px; text-align: center; min-width: 150px;"><div style="font-size: 1.5rem; font-weight: bold;">-</div><div style="font-size: 0.9rem; opacity: 0.9;">Avg Duration</div></div>'
)
# Get initial data to determine columns dynamically
initial_df = load_simple_results(EVAL_RESULTS_PATH)
if not initial_df.empty:
headers = list(initial_df.columns)
# Remove internal columns
headers = [h for h in headers if not h.startswith('_')]
else:
headers = ["Model", "Avg PER", "Avg Duration (s)"]
with gr.Row():
with gr.Column(scale=4):
simple_table = gr.Dataframe(
headers=headers,
row_count=10,
label="π Model Performance Leaderboard",
interactive=False
)
with gr.Column(scale=1):
refresh_btn = gr.Button("π Refresh Data", variant="primary")
# Export options
with gr.Accordion("π₯ Export Data", open=False):
export_csv = gr.Button("π Export CSV", variant="secondary")
export_json = gr.Button("π Export JSON", variant="secondary")
def refresh_simple():
"""Refresh the simple leaderboard data with enhanced stats."""
df = load_simple_results(EVAL_RESULTS_PATH)
if df.empty:
return df, "No data", "No data", "No data"
# Get the column order from the dataframe
cols = [c for c in df.columns if not c.startswith('_')]
# Ensure all columns exist for the dataframe component
for c in cols:
if c not in df.columns:
df[c] = None
# Calculate enhanced stats
total_models = len(df)
best_per_val = df['Avg PER'].min() if 'Avg PER' in df.columns and not df['Avg PER'].isna().all() else "N/A"
avg_duration_val = df['Avg Duration (s)'].mean() if 'Avg Duration (s)' in df.columns and not df['Avg Duration (s)'].isna().all() else "N/A"
# Format stats
best_per_str = f"{best_per_val:.2f}" if isinstance(best_per_val, (int, float)) else str(best_per_val)
avg_duration_str = f"{avg_duration_val:.2f}s" if isinstance(avg_duration_val, (int, float)) else str(avg_duration_val)
return (
df[cols].round(3),
f'<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 1rem; border-radius: 10px; text-align: center; min-width: 150px;"><div style="font-size: 1.5rem; font-weight: bold;">{total_models}</div><div style="font-size: 0.9rem; opacity: 0.9;">Total Models</div></div>',
f'<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 1rem; border-radius: 10px; text-align: center; min-width: 150px;"><div style="font-size: 1.5rem; font-weight: bold;">{best_per_str}</div><div style="font-size: 0.9rem; opacity: 0.9;">Best PER</div></div>',
f'<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 1rem; border-radius: 10px; text-align: center; min-width: 150px;"><div style="font-size: 1.5rem; font-weight: bold;">{avg_duration_str}</div><div style="font-size: 0.9rem; opacity: 0.9;">Avg Duration</div></div>'
)
def export_simple_csv():
"""Export simple results as CSV."""
df = load_simple_results(EVAL_RESULTS_PATH)
if df.empty:
return None
cols = [c for c in df.columns if not c.startswith('_')]
return df[cols].round(3)
def export_simple_json():
"""Export simple results as JSON."""
df = load_simple_results(EVAL_RESULTS_PATH)
if df.empty:
return None
cols = [c for c in df.columns if not c.startswith('_')]
return df[cols].round(3).to_json(orient='records', indent=2)
# Connect events
refresh_btn.click(
fn=refresh_simple,
outputs=[simple_table, simple_total_models, simple_best_per, simple_avg_duration]
)
export_csv.click(
fn=export_simple_csv,
outputs=gr.File(label="Download CSV")
)
export_json.click(
fn=export_simple_json,
outputs=gr.File(label="Download JSON")
)
# Auto-load on start
simple_table.value, simple_total_models.value, simple_best_per.value, simple_avg_duration.value = refresh_simple()
# Enhanced help section
with gr.Accordion("βΉοΈ About this Leaderboard", open=False):
gr.Markdown("""
## π Understanding the Results
**Performance Metrics:**
- **PER (Phoneme Error Rate)**: Lower values indicate better performance
- **Avg Duration**: Processing time per sample (lower is faster)
- **Models are ranked by average PER across all datasets**
**Datasets Evaluated:**
- `phoneme_asr`: General phoneme recognition dataset
- `kids_phoneme_md`: Kids' phoneme recognition dataset
**How to Interpret:**
- **PER**: Percentage of phonemes incorrectly recognized (0% = perfect)
- **Duration**: Time efficiency (important for real-time applications)
- **Average PER**: Overall model performance across all datasets
**Tips for Model Selection:**
- Choose models with low PER for accuracy-critical applications
- Consider duration for real-time or resource-constrained environments
- Balance between accuracy (PER) and speed (Duration) based on your needs
""")
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=["Pretrained", "Fine-tuned", "Merge", "Other"],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=["float16", "bfloat16", "float32", "int8", "int4"],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=["Original", "Delta", "Adapter"],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |