File size: 4,750 Bytes
c6f9ba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import sys

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))

import torch
from transformers import MBart50Tokenizer, MBartForConditionalGeneration  # type: ignore
from datasets import load_dataset
from peft import LoraConfig, get_peft_model, TaskType
from dotenv import load_dotenv
import wandb
import json
from utils.helper import TextPreprocessor
from utils.trainer import train_model

load_dotenv()


class MBart50Finetuner:
    """Class to handle fine-tuning of mBART50 model for translation tasks."""

    def __init__(self, config_path="config.json"):
        """Initialize with configuration file."""
        with open(config_path, "r") as json_file:
            cfg = json.load(json_file)

        self.args = cfg["mbart50"]["args"]
        self.lora_config = cfg["mbart50"]["lora_config"]

        # Constants
        self.max_len = self.args["max_len"]
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.id = self.args["id"]
        self.initial_learning_rate = self.args["initial_learning_rate"]
        self.model_name = self.args["model_name"]
        self.src_lang = self.args["src_lang"]
        self.tgt_lang = self.args["tgt_lang"]
        self.wandb_project = self.args["wandb_project"]
        self.output_dir = self.args["output_dir"]
        self.name = "mbart50"

        self.model = None
        self.tokenizer = None
        self.train_dataset = None
        self.val_dataset = None
        self.test_dataset = None

    def setup_wandb(self):
        """Initialize Weights & Biases for experiment tracking."""
        wandb.login(key=os.environ.get("WANDB_API"), relogin=True)
        wandb.init(project=self.wandb_project, name="mbart50-finetune-lora")

    def load_model_and_tokenizer(self):
        """Load the mBART model and tokenizer."""
        self.tokenizer = MBart50Tokenizer.from_pretrained(self.model_name)
        self.model = MBartForConditionalGeneration.from_pretrained(self.model_name)
        self.tokenizer.src_lang = self.src_lang
        self.tokenizer.tgt_lang = self.tgt_lang

    def load_datasets(self):
        """Load training, validation, and test datasets."""
        data_files = {
            "train": "data/train_cleaned_dataset.csv",
            "test": "data/test_cleaned_dataset.csv",
            "val": "data/val_cleaned_dataset.csv",
        }

        if self.id is not None:
            training_parts = [
                f"[{(i * 200000) + 1 if i > 0 else ''}:{(i + 1) * 200000 if i < 10 else ''}]"
                for i in range(11)
            ]
            self.train_dataset = load_dataset(
                "csv", data_files=data_files, split=f"train{training_parts[self.id]}"
            )
            self.test_dataset = load_dataset("csv", data_files=data_files, split="test")
            self.val_dataset = load_dataset(
                "csv", data_files=data_files, split="val[:20000]"
            )
        else:
            self.train_dataset = load_dataset(
                "csv", data_files=data_files, split="train[:1000000]"
            )
            self.test_dataset = load_dataset("csv", data_files=data_files, split="test[:100000]")
            self.val_dataset = load_dataset("csv", data_files=data_files, split="val[:100000]")

    def configure_lora(self):
        """Apply LoRA configuration to the model."""
        lora_config = LoraConfig(
            task_type=TaskType.SEQ_2_SEQ_LM,
            r=self.lora_config["r"],
            lora_alpha=self.lora_config["lora_alpha"],
            target_modules=self.lora_config["target_modules"],
            lora_dropout=self.lora_config["lora_dropout"],
        )
        self.model = get_peft_model(self.model, lora_config)  # type: ignore

    def finetune(self):
        """Orchestrate the fine-tuning process."""
        self.setup_wandb()
        self.load_model_and_tokenizer()
        self.load_datasets()

        preprocessor = TextPreprocessor(self.tokenizer, self.max_len, name="mbart50")
        tokenized_train_dataset = preprocessor.preprocess_dataset(self.train_dataset)
        tokenized_eval_dataset = preprocessor.preprocess_dataset(self.val_dataset)

        self.configure_lora()
        self.model.print_trainable_parameters()  # type: ignore

        train_model(
            model=self.model,
            tokenizer=self.tokenizer,
            train_dataset=tokenized_train_dataset,
            eval_dataset=tokenized_eval_dataset,
            output_dir=self.output_dir,
            initial_learning_rate=self.initial_learning_rate,
            name=self.name,
            val_dataset=self.val_dataset,
        )


if __name__ == "__main__":
    finetuner = MBart50Finetuner()
    finetuner.finetune()