diff --git "a/analyse/analyse_latency_data.ipynb" "b/analyse/analyse_latency_data.ipynb" new file mode 100644--- /dev/null +++ "b/analyse/analyse_latency_data.ipynb" @@ -0,0 +1,158 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "aec713d7", + "metadata": {}, + "source": [ + "# Analysation of latency data\n", + "In this notebook we want to analyse all the latency data" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "48002406", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 8 stats CSV files:\n", + "✅ fabian/stats_experiment_Llama-3-2-1B-Instruct-ONNX_always_device_once-per-sec_2025-12-03T20-58-00.csv -> shape (3, 7)\n", + "✅ fabian/stats_experiment_gemma-3-270m-it-ONNX_always_device_once-per-sec_2025-12-03T20-41-45.csv -> shape (3, 7)\n", + "✅ fabian/stats_experiment_granite-4-0-micro-ONNX-web_always_device_once-per-sec_2025-12-03T22-46-10.csv -> shape (3, 7)\n", + "✅ nicolas/lenovo_büro_stats_experiment_gemma-3-270m-it-ONNX_always_device_once-per-sec_2025-12-04T10-26-03.csv -> shape (3, 7)\n", + "✅ philip/stats_experiment_Llama-3-2-1B-Instruct-ONNX_always_device_once-per-sec_2025-12-04T08-10-53.csv -> shape (3, 7)\n", + "✅ philip/stats_experiment_Qwen3-4B-ONNX_always_device_once-per-sec_2025-12-04T10-12-42.csv -> shape (3, 7)\n", + "✅ philip/stats_experiment_gemma-3-270m-it-ONNX_always_device_once-per-sec_2025-12-04T08-01-13.csv -> shape (3, 7)\n", + "✅ philip/stats_experiment_granite-4-0-micro-ONNX-web_always_device_once-per-sec_2025-12-04T09-03-29.csv -> shape (3, 7)\n", + "\n", + "Loaded 8 dataframes\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "from pathlib import Path\n", + "\n", + "# Define root results directory\n", + "results_dir = Path('../results')\n", + "\n", + "# Find all files containing \"stats\" and ending with .csv in all subdirectories\n", + "stats_files = sorted(results_dir.glob('**/*stats*.csv'))\n", + "\n", + "print(f\"Found {len(stats_files)} stats CSV files:\")\n", + "\n", + "# Load all stats files into a dictionary of dataframes\n", + "stats_dfs = {}\n", + "for file_path in stats_files:\n", + " try:\n", + " df = pd.read_csv(file_path)\n", + " # Strip whitespace from column names\n", + " df.columns = df.columns.str.strip()\n", + " # Create key: subfolder_name/filename_stem\n", + " relative_path = file_path.relative_to(results_dir)\n", + " key = str(relative_path.parent / relative_path.stem)\n", + " stats_dfs[key] = df\n", + " print(f\"✅ {relative_path} -> shape {df.shape}\")\n", + " except Exception as e:\n", + " print(f\"❌ Error loading {file_path.name}: {e}\")\n", + "\n", + "print(f\"\\nLoaded {len(stats_dfs)} dataframes\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "20017446", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAMWCAYAAACKoqSLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd0VNX6//HPpJBAIBhKQGrokE6H0EkABS5KaCK9XOSiYgMBpYoKiIpUsXBBBcSKCl4LoQlSBCF0kF5ECFISEkggyf79wS/nm0mZBA0wyPu1VtbKnL3PPs8588wkebJnH5sxxggAAAAAAAAA4BRc7nQAAAAAAAAAAID/Q9EWAAAAAAAAAJwIRVsAAAAAAAAAcCIUbQEAAAAAAADAiVC0BQAAAAAAAAAnQtEWAAAAAAAAAJwIRVsAAAAAAAAAcCIUbQEAAAAAAADAiVC0BQAAAAAAAAAnQtEWAAD8Y1y/fl3jxo1T1apVlS9fPtlsNtlsNo0fP/5Oh3ZPW7NmjfVc2Gw2HTt27E6HBOAu5+fnl+V7PO83N2fBggV21wsA4Dwo2gIAgNsu4x/VCxYsyJNxx48fr5deekkHDx7U9evX82RM3HDs2DG75yy3X8gbiYmJ8vHxsbu2TZo0udNhIYPHHnss02vg0KFDdzqsu8LHH3+c6drNmzfvth2/efPmuXpPowh8d8j4M2vNmjV3OiQAuGludzoAAACAvLJo0SLr+6CgID366KNyc3NTWFjYHYwKlSpV0tSpU63HRYoUuYPR3J2WLl2qS5cu2W1bv369Dh06pMqVK9+ZoGAnMTFRn376aabtH3zwgSZOnHgHIrq7ZPXPuwULFmjAgAG3P5h7SN26de3enwEAzoOiLQAA+Mc4ceKE9f1TTz11y//YT0xMlKurq9zd3W/pcZxBkSJFMv1hv3XrVn3yySfW48GDB6tSpUqZ9i1btqyGDRt2y2P8J8tuNvo/pSD4T3gtZVVYl6QPP/xQL7300i2deZ6cnKzr168rf/78t+wYt9Lvv/+uqKioTNvv1D8mfHx89MILL2TZ9k/5p9Ply5dVqFAhBQQEKCAg4E6HAwDIigEAALjNVq9ebSRZX/Pnz8+27dChQ2b69OkmICDA5MuXz9x///3mqaeeMlevXrX2adasmd0+Gb9Wr15t9T19+rQZMWKECQoKMgULFjQeHh6mSpUq5plnnjF//PFHpljTj92nTx+zbds28+CDD5r77rvPSDJHjx61+h48eNAMGTLEVKtWzeTPn9/kz5/fBAYGmrFjx5pLly5lGrt8+fLW2OPGjTObN282DzzwgClUqJDx8vIyERERZseOHVlew+PHj5vnnnvOBAcHm0KFChkPDw9Tvnx506lTJ7Nu3Tq7vsnJyWbBggUmPDzcFCtWzLi5uZnixYubDh06mFWrVuXyWcts/vz52V7n9DI+p+mvWZ8+faztzZo1MwcOHDAPP/yw8fb2Nj4+PqZ79+7mzJkzxhhjVq1aZRo3bmzy589vihUrZvr3728uXLiQ7TG7dOliypQpY/Lly2e8vb1N48aNzfvvv29SUlJydX4vvviiFVvlypUztW/bts3uvH799VdjjDHnzp0zzz33nPH39zcFChQw7u7upkSJEqZu3brm8ccfNxs3bszV8dOcOnXKuLi4WMepWrWq9X25cuVMampqtvt+//33plOnTqZs2bLGw8PDFC5c2AQFBZknn3zSxMXF2fU9d+6cGTdunKlbt64pXLiwyZcvnylTpoxp27at+frrr61+GZ+z9DLmRHq5fS298sorpkOHDqZy5crGx8fHuLm5mfvuu8/Uq1fPvPLKKyY+Pj7Lc81N/P369bNiaNq0aaYxvvrqK6vd3d3dnDt3Lttrm1Hr1q2zfI4kmaioqGz3y+1rOeN1P3z4sOnataspWrSosdlsdq+/U6dOmeeee84EBAQYLy8v4+HhYSpWrGj69+9vdu7cmSmG+Ph4M2HCBFOzZk1TsGBB6z0iJCTEDBw40Hz33Xd2/X/66Sfz8MMPm1KlShl3d3fj5eVlypcvbx544AEzbty4LN/vHHn11Vetc/P29jYlSpSwHo8ePTrLfTK+f6Zx9H7jSPr8LF++fI7958yZY5cr0dHRVtvevXuNh4eH1f76668bY4w5evRopvfMDz/80NSqVct4enqa4sWLmwEDBpizZ89mecxt27aZvn37mgoVKhgPDw9TsGBBU6dOHfPGG2/Y/UxMk/Hn7JIlS0zdunVNgQIFrHO8mdfs5s2bTXh4uPHy8jK+vr5myJAh5vLly8YYYz777DPrPEqVKmWeffZZk5iYmOV5LF261LRv396ULFnSuLu7Gx8fHxMREWG++OKLTH3/yu8E6XMjq6/071t5ncsAkJco2gIAgNvuZoq2jRo1yvKPrkcffdTaJ7dF2/Xr15siRYpk28/X19ds377dLtb0Y9esWdMUKFAgy4LAF198YfLnz5/t2JUqVTLHjx+3Gzv9H5b16tUzbm5umfYrUqSIVbRM880335iCBQtme6z0BYyEhATTokULh9fnlVde+UvPY14XbStUqGB8fHwyxVetWjWzcOFCu8Klo8LbiBEjHJ5vu3btzLVr13I8v0OHDhmbzWbt98svv9i1P//881ZbcHCwMcaYq1evmmrVqjk8/ogRI3J/kY19QatAgQJm7dq1duNlVRBMSUmxK1Bm9ZX+edi0aZPx9fXNtm+fPn2svnlRtHX0WvLy8nIYd1BQkFUoutn4MxbaDxw4YDfOo48+arVFRkbm+jnKWFj/73//awIDA63HPXv2zHK/m3ktp7/uVapUyXS+aa+/tWvXWoXwrL7c3d3NggUL7OJo3ry5w2verVs3q29UVJRxdXV12H/fvn25vnbGGLvXTO/evc0TTzxhPc7uHxN3umhrjDEPPfSQtU9oaKi5du2aSU5ONvXq1bO2t2rVyoo/Y9G2ZcuWWV6/ypUrmz///NPuWDNnznR43evWrZupwJi+PePP0pst2gYEBNgVotO+mjdvbt54440sY+rVq5fdeCkpKXavsay+Bg0aZLfPX/mdILdF21uRywCQl1geAQAAOLWff/5Zbdq0Ud26dbV48WIdOXJE0o2b1rz22msqXbq0/vOf/6h9+/YaPny4tV+3bt1Up04dSTfWVI2NjVXHjh114cIFSVLFihXVtWtXubu769NPP9WBAwcUExOjyMhI7du3Tx4eHpli2b59u9zd3dW3b19VqlRJe/bskbu7u44cOaIePXooMTFRkhQcHKyHH35Y165d00cffaTff/9dhw8fVvfu3fXzzz9neZ6//PKLypcvr+7du2vPnj1atmyZJOnChQv673//q1GjRkm6cXOVbt266erVq5Ikm82mhx9+WCEhITpz5ox+/PFHu3GffvpprV69WpLk4eGhRx99VBUrVtT27dv15ZdfSpJefPFF1alTR61bt/4Lz1DeOXr0qIoWLarhw4fryJEj+uKLLyRJBw4cUM+ePeXn56dHH31UP//8s9auXStJ+umnn7Rp0yY1aNBAkrR48WJNmTLFGrNdu3Zq0KCBfv/9d33wwQe6evWqvv32W40bN06vvvqqw3gqVaqkJk2a6KeffrLGrlu3riTJGGO3NES/fv0kSatXr9aBAwckSZ6enhowYIBKly6tM2fO6NChQ1bcN+ODDz6wvm/fvr2aNm2qypUrWze4WrBggcLDw+32mTp1qubPn289LlasmLp27arixYtr3759+uabb6y2uLg4dejQQTExMda2Vq1aqUGDBrp06dItuYFPdq8lSSpXrpwCAwNVrlw5+fj4yBijo0eP6pNPPlFCQoJ27dqlOXPm6Pnnn7/p+GvWrKmwsDBt2LBBkvT+++/rtddekyQlJSVZrzvp/57T3Pjwww+VmpoqScqXL586duyo06dPa/To0ZKkL7/8UnPmzFGhQoWsfW72tZzewYMHZbPZ1KVLFwUFBenYsWPy8vLSpUuX1LFjR2uZBi8vL/Xv31/58+fXRx99pD/++EPXr1/XwIEDVatWLQUFBWnfvn3WNXJxcVHv3r1VtWpV/fnnnzp69Gim5//dd99VSkqKJKl69erq0qWL3NzcdOLECUVHR2vbtm25vm6StHHjRus1I0mPPPKIvL29NWvWLEk3lr1ZtWpVphy/leLi4vT6669n2l62bFl169bNejxv3jxt2bJFp0+fVnR0tF555RV5eHjol19+kXTjdffBBx9kuzTGqlWr1KJFCzVp0kQ///yzVq5cKUk6dOiQRowYoffff1/SjZ+DQ4cOlTFGktS4cWNFRETo0qVL+uCDD3Tx4kVt2bJF//nPf7R48eIsj/Xzzz+rRIkS6tatm4oUKaKjR4/e1DXZs2ePypcvrx49emjz5s1WrGvWrNGaNWsUFBSkhx9+WMuWLVN0dLSkG+vMT548WaVKlZIkTZ482YrPxcVFXbp0UWBgoA4ePKhFixYpJSVF7777rmrXrq1BgwZlex45/U7w4osv6tixY3bv8emX7ylbtqykvM9lAMhzd7hoDAAA7kE3M9O2c+fOVlt0dLRd2zfffGM3bnZjGmPM9OnTrTZfX1+7GUkXL140np6eVvuiRYustoyzeP/3v/9lOp9nnnnGag8KCjJJSUlW2/79++32//nnn6229LOBChYsaLc8Q82aNa229DP+0h9LklmyZIldLMnJydaM3vPnz9vNIlq8eLFd30ceecRuNtjNyuuZtpLM+vXrjTHGpKammvvvv9/a7u7ubk6cOGGMMebSpUvG3d3dapsxY0aW1y3jjK25c+faXe/0z1NuzvH++++3llZYv369XWxpH6P/8ssvre1t2rTJNF5iYqI5depUjsdNs2HDBrvrs3TpUmOM/dINBQoUsFvqICUlxRQrVsxqL1u2bKaP+Z85c8YkJCQYY+xfG5LM5MmTM8Vx5MgR6/u8mGmb3WspzaVLl8z//vc/M3fuXPPGG2+YqVOnmqZNm1r7tmzZ0up7s/EvXrzY7r0gbdb10qVLre0lS5Y0169fzza+jNLPFH3ooYeMMTeWS0kf1/vvv2+3z828lo3J/FqZM2dOpjimTZtm1+eHH36w2g4fPmz3uhk4cKAxxn72cY0aNTLNak1OTjbHjh2zHnfo0MHq//HHH2eK4Y8//rByKzcGDRpkjVesWDFz/fp1k5qaasqWLWttz2qm8q2caZvdV8Z8N+bGbM20Gfnu7u4mX7582f6MyjjTtnXr1tb1Tk1NtVtiw8PDw7qOHTt2tHtfSf8cff/991abzWYzJ0+etNrSH+u+++4zv//+e6b4c/uadXNzs65lfHy83c+W4sWLW+9Be/bssRsv7RqkpKSYokWLWttfffVVu2ONHDnSaqtSpYq1/a/+TpDVUhQZ5XUuA0BecxEAAIATe+yxx6zvq1WrZtd28eLFXI+TfoZrTEyM7rvvPtlsNtlsNvn4+FizZCVZs/AyCgkJ0YMPPuhw7F27dsnDw8Mau3r16nZ9sxv7oYceUsmSJa3HVatWtb5Pf57pj+Xv728360uSXF1dVa5cOUnS5s2brVlEkvToo49acdlsNi1ZsiTHuG6n8uXLq1GjRpJuzDosX7681daoUSNrdlThwoXl6+trtaVdnytXrlgzvKQbs6jSn+/gwYOttvj4eO3cuTPHmLp06aKCBQtKkv744w9rpuzHH39s9fnXv/6lYsWKSbpxJ/a0Wdo//PCDAgIC1L17d40bN05fffWVrl27ptKlS+f6mqS/AVnhwoWt/HvkkUes7VeuXNGnn35qPT5w4ID+/PNP6/GTTz5pxZemRIkSKlCggCT7nCpUqFCWN42rUKFCrmPOjexeS6mpqXr++efl6+urtm3bavDgwXruuec0fPhwa8azJJ06dcr6/mbj79y5s+6//35JN94L0mYdf/bZZ1afXr16yc0tdx9KzGqmqCRVrlxZtWvXtrZnvJnczbyWMypSpEiWMxHTv459fX3tZs9XrFhRjRs3ztS3Ro0aKlq0qCRp3759qly5sjp37qwXXnhBS5Ys0cWLF+1ei02aNLG+79u3r1q0aKHHHntMb775pjZv3myXWzlJTEy0y91OnTrJzc1NNptNXbt2tbZ/+eWXunz5cq7GvN3Cw8OtnLt+/bquXbsmSRoyZIj+9a9/Ody3Z8+e1ixcm82mHj16WG1JSUnavXu3JPtc+eGHH+Ti4mK9rz3wwANWmzFGmzZtyvJYffr0sWa8/hWNGjWSn5+fpBszuIsXL261tWvXzppFnv5nl/R/788HDhzQ+fPnre0vvPCC3fvz5MmTrbaDBw/avYell1e/E0h5m8sAcCtQtAUAAE4tfbEg45IFaR9Hzo20ZRFy49y5c1luz/jHaF6Onf48JftzTX+e6Y+V9gd0dm4mroSEBOtj2ndKxmJm+muQsS19QS3t+ly8eNH6+HBuZPdcpOfl5aUuXbpYjxcvXqyUlBS7Al///v2t78uUKaMFCxZYRdK9e/dqyZIleumll9SxY0eVKlXKblkFRzIWtB5++GHrmgQGBtrd8T19QTDj834zeVK2bFm5urrmKj5Jma53UlJSrvbL7rU0Y8YMTZ061Sp8ZSf9cW42fnd3d7uC5/vvv6/ExES7pRH69u3rcIz00l/7AgUK2BXq0hfX169fby1pkTHunJ6jjCpVqpTleaYvWqX/x0aaEiVKZOrr6empTz/91CoQpy1NMmnSJHXv3l2lS5fWtGnTrP2efvpp9erVS66urkpKStKaNWv07rvv6rnnnlODBg0UHBysM2fO5Oo8li5dai3lINlfL0f/mLjVypcvL3Pj/i92X9ktFfL444/LxcX+T+snnngix+NkfI7SPz/S/z1Ht/LnV27l9v054z870t6fb+YcpNz9rPw7vxNIeZvLAHArsKYtAABwamnrXErKdl3A3PDx8bG+L1eunJ588sls+2acvZMmuxk36ccOCQlRz549sx07bU3UjNKfp5T9uRYpUsT6/tixY9keJ2NckjR8+PAsCzlpcjuz8FbJeA3Sy01s9913n93jyMhINWzYMNv+2T3PGfXr189aH/aLL77QQw89ZK2fev/999vNdJNuFJs6deqkX375Rbt27dLBgwe1evVqbd++XfHx8RowYIDat28vLy8vh8fNWND64IMP7Na3TS+tIFi5cmW7HJFyzpP0/U+ePKmUlBSHhc/0xamMhf6DBw86PFaa7F5L6QvagYGBWrx4sapXry53d3c9//zzmjp16t+OX7oxW+/VV1/V9evX9eOPP+rdd9+1ZnLWr19f/v7+uTqPjIX1K1euWDOzs/LBBx9o4sSJmeLO6TnKKDfvRenX+E1z9uzZLPu2bNlSR48e1bZt2xQdHa1Dhw5pw4YNWrduna5du6Zhw4apQ4cOqlSpktzc3PThhx/qjTfe0IYNG3TgwAEdOHBAS5cu1cWLF7V7926NHDky08zirGTs06JFC4d9BwwYkOOYt5sxRgMHDsxUMPz3v/+ttWvXOszFjM9R+udH+r/3NB8fH6uI2aJFC7Vt2zbbMbN7z/u7M0b/7vtzxp9HAwcOdPgenN3Pqrz6nUBSnuYyANwKFG0BAMA9ISwszJodefbsWbVr1041atSw65OcnKzly5fbfYQ4t2Nv2bJF0o2P0Pfs2dNuqQPpRnHns88+U7Nmzf7GWdz4iGraTW727t2rzz77zG4maGpqqn7//XeVLVtW9evXl6urq7VEQv78+bP86PjevXt14cIFh3+U3w28vLwUEhKiHTt2SLoxS+2ZZ57JVDQ5d+6cfv75Z1WsWDFX4zZp0sS68dfFixc1dOhQq613795241+4cEGXL1+2lnpIW+7h4sWLVpEuISFB+/fvt/vofFZutlCQVhCsVq2aihUrZn28eNasWerfv7/1EXjpxjXw8vJSgQIF1KhRI6vwePnyZU2bNi1Tnhw/ftya4Za+OH7gwAHFxsaqcOHCOnPmjD788MObijmj9B+fbtGihYKCgiTdKA6nv3laejcbv3Sj2N6pUyctWbJEqampGjFihNV2Mzcgy1hYz8mHH36ol156STab7aZey7mV/n0uJiZGP/74o7VEwpEjR7R+/Xq7vtKN96ajR4+qRo0aqlOnjnUDR2OMfHx8FBsbq9TUVEVHR6tSpUo6cOCAypYtq+LFi+uhhx6yxgsMDNSzzz4rSfr1119zjPX3339XVFRUrs8t/T8mnMkbb7xhnUeRIkXk5uammJgY/fzzz3r55Zc1bty4bPdduHChtUSCMUaLFi2y2vLly2flf1hYmL7++mtJ0pkzZ/Sf//wn0z994uLi9N133yk0NDSPzzBvVK9eXUWLFrVe40lJSVn+PDpx4oT27dtn9371V2T8eXblypVMffIqlwHgVqFoCwAA7gl9+/bVyy+/rPPnzyspKUkNGjRQ165dVaFCBV29elV79+7VmjVrdOHCBR09ejTTrCBHnnzySc2dO1dJSUmKiYlRSEiIunbtqlKlSikuLk67du3S2rVrFR8fr169ev2t83jyySf19ttvW2vwduvWTUuWLFFwcLDOnz+vqKgode3aVePHj1fRokXVt29fzZs3T5L00ksvadOmTWrQoIHc3d114sQJ/fzzz9q7d6/GjRt308VqZzRs2DDrGq9evVohISFq3769ChcurJiYGG3dulUbN25U48aN9fDDD+d63L59+2r06NGSZHfX9Ywfo//tt9/UsGFD1a1bVyEhISpVqpTc3Nz0/fff2/XLOCs4o4wFraCgoCxnf27YsEEnT56U9H8FQRcXFz333HMaNWqUpBtFkBo1aqhbt24qXry4Dh06pKVLl2rXrl3y8/NT37599corr1iz/oYPH64VK1aoQYMGio+P17p16+Tv728VkdOKetKNQlHt2rVVt25drVmzJldLTjhSrVo1a7bue++9J5vNJm9vb3322Wd268amd7Pxp3nyySetdZ3TXk/58+e3+1h+TtKPWbBgQbVr1y5Tnz/++MNaj/fEiRNatWqVwsPDb+q1nFt9+vTRxIkTrY+iR0ZGqn///sqfP78++ugjXb9+XdKNGYZpnza4dOmS/P39FRAQoHr16qlUqVLKnz+/1q9fr9jYWGvstJydNm2aPvroI4WHh6tChQoqUaKELly4YFewzym/pRv5mn52aocOHZQ/f367PsnJyfriiy+sx+lnKt9KcXFxev3117Nse/jhh63C8fbt2/Xiiy9abXPmzJGnp6f13jJx4kS1atXKKpBn9OOPPyo8PFxNmzbV+vXrtXLlSqutR48e1uzY5557Tt98842MMdq3b58CAwMVGRmpYsWK6cKFC4qOjta6detUsmTJTGsjOwsXFxc9/fTTGjNmjCTpo48+0sGDB9WyZUt5eXnp9OnT2rRpk7Zt26bevXurTZs2f+t4xYsXl7u7u5XzL774oqKjo5UvXz41b95cderUybNcBoBb5s7c/wwAANzLMt4Nev78+dm2Zbzzd3b75dRmjDHr1q0zRYoUyfEO4emPmf7u2X369Mn2nD7//HOTP3/+HMdOL7u7nxtjf6f4jHcs/+abb0zBggWzPUb6seLj402LFi1yjCvj8XMj413Hs7o7tzGOn1NH5+no2ju6dsOHD8/xfLO6C7wjJ0+eNC4uLnZjhIWFZeq3cePGHI8dGRmZ4/FeffVVu302bdqUZb/Zs2fb9YuKijLG3LhTe9++fXOd55s2bTK+vr7Z9k1//a9cuWIqVaqUqY/NZjMRERHZ5ntuXkvr1q0zbm5umcYuWLCgiYyMtB6XL1/ebr+biT+9WrVq2fV79NFHHT4v6Z06dcouJwYPHpxlvwsXLhgPDw+rX8+ePa22m3ktO3qtpLdq1SpTuHDhbMd0c3Mz8+bNs/r/8ccfOeZsvXr1zPXr140xxjz22GMO+7q4uJilS5fmeP2qVatm7VO9evVs+9WtW9fqV65cOZOammqMyf49IKefIdlJn5+OvtLOLSEhwVSvXt3a3rVrV2us9M9VhQoVTGxsrDHGmKNHj9qN1a5duyyPUbFiRXPu3Dm7+GbMmGFcXV0dxpbxdZG+LauficZkfh/P7prczHtwdsdNTk423bt3z/Eapz/W3/mdoGPHjlmOP3XqVGNM3uUyANwq3IgMAADcMxo3bqw9e/Zo1KhRqlmzpgoVKqR8+fKpXLlyatSokcaMGaNff/31pm8KJN246/muXbs0dOhQ+fv7y8vLS56enqpYsaJatGihSZMmaf/+/XlyHv/617+0e/duPfvsswoMDJSXl5fy5cun0qVL66GHHlJ4eLjV18vLS1FRUfrwww/VunVra/ZRsWLFFBISor59+2rp0qV2Hw+/27322mtau3atHnnkEZUrV04eHh7y9vZW9erV9dBDD+m999676ZsalSlTRhEREXbbsvoYfbVq1fTGG28oMjJSVatWVeHCheXq6iofHx81atRI06dPt2Z3OpJ+7Vp/f3/Vr18/y37du3eXp6en9Tht5qeLi4vmz5+v7777Tp06dVLp0qWVL18+FSpUSDVq1NCQIUPsPn5cv3597d69W2PHjlXt2rXl7e0td3d3lSxZUm3atFHHjh2tvvnz59fKlSsVGRkpb29vFShQQE2bNlVUVJR69OiR47k50rhxY/3www8KCwuTh4eHChcurLZt22rDhg3WR8WzcjPxp5fxZlHpbyqXk48++shupmh2+/r4+Nh99PrLL79UXFycpJt7LedWixYttGvXLj399NOqUaOG8ufPLw8PD2tW9datW+1i9fHx0axZs9S9e3f5+/urSJEicnV1lbe3t+rUqaOJEydq5cqV1rqlAwYM0IgRI9S0aVOVLVtWnp6eypcvn8qWLasuXbpo7dq1Oc5i37Rpk93MaUfXPf3rLG2msjN45plnrPf0kiVLas6cOVbbjBkzrBu7HT16VEOGDMlyjGHDhunjjz9W7dq15enpqWLFiql///7asGGDdTPDNE8++aS2bt2qAQMGqHLlyvL09JSXl5eqVKmiBx54QNOnT7dmdDsrV1dXLV68WF9//bUeeughlSpVSu7u7vLx8VFgYKC6deumRYsWafr06XlyvPfee099+vRRiRIlMt0oTsqbXAaAW8lmzE3cYhcAAAAA/iE2btxofXS9XLlyOnbs2N++uRGQnWPHjqlChQrW49WrV6t58+Z3LiAAgFNjTVsAAAAA94zExERt2rRJFy9etFsfdciQIRRsAQCA06BoCwAAAOCecebMGbVo0cJuW+XKlTMtlQAAAHAnsaYtAAAAgHtS8eLF1b17d61atUpeXl53OhwAAAALa9oCAAAAAAAAgBNhpi0AAAAAAAAAOBGKtgAAAAAAAADgRLgRGYC/JTU1VadPn1ahQoW44zIAAAAAALgnGWN0+fJllSpVSi4uf3+eLEVbAH/L6dOnVbZs2TsdBgAAAAAAwB138uRJlSlT5m+PQ9EWwN9SqFAhSTfelLy9ve9wNHAGqampOnfunIoXL54n/13EPw85AkfIDzhCfiAn5AgcIT/gCPmBnOSUI3FxcSpbtqxVJ/m7KNoCd4Hk5GSNHz9eixYt0pkzZ3T//ferb9++Gj16tPVGYYzRhAkT9O677+rixYuqX7++Zs+erYCAAIdjf/HFFxozZowOHz6sSpUq6ZVXXlHHjh1zHVvakgje3t4UbSHpxg+yxMREeXt788sOskSOwBHyA46QH8gJOQJHyA84Qn4gJ7nNkbxaOpIsBO4CU6ZM0dy5czVr1izt27dPr732mqZOnaqZM2dafV577TW9+eabmjVrlrZs2aKSJUuqVatWunz5crbjbty4Ud26dVOvXr20Y8cO9erVS127dtXmzZtvx2kBAAAAAAAgCxRtgbvAxo0b9dBDD6ldu3by8/NT586d1bp1a23dulXSjVm2b731ll588UVFRkYqMDBQH3zwga5cuaLFixdnO+5bb72lVq1aadSoUapevbpGjRql8PBwvfXWW7fpzAAAAAAAAJARyyMAd4HGjRtr7ty5+u2331S1alXt2LFD69evt4qrR48e1ZkzZ9S6dWtrHw8PDzVr1kwbNmzQY489luW4Gzdu1DPPPGO3rU2bNg6LtklJSUpKSrIex8XFSbrxMYHU1NS/eIb4J0lNTZUxhnxAtsgROEJ+wBHyAzkhR+AI+QFHyA/kJKccyevcoWgL3AVGjBih2NhYVa9eXa6urkpJSdErr7yi7t27S5LOnDkjSSpRooTdfiVKlNDx48ezHffMmTNZ7pM2XlYmTZqkCRMmZNp+7tw5JSYm5vqc8M+Vmpqq2NhYGWNYCwpZIkfgCPkBR8gP5IQcgSPkBxwhP5CTnHLE0fKUfwVFW+Au8Mknn2jhwoVavHixAgICFB0draefflqlSpVSnz59rH4ZF7s2xuS4APbN7jNq1Cg9++yz1uO0uyMWL16cG5FB0o0fZDabjbuuIlvkCBwhP+AI+YGc/NUccXV1VWxsrAoWLJiprV27dpoxY4YqVaqkli1b6tlnn1X79u01btw4+fv7q1u3bnl5CriFeA+BI+QHcpJTjnh6eubp8SjaAneB4cOHa+TIkXrkkUckSUFBQTp+/LgmTZqkPn36qGTJkpJuzJy9//77rf1iYmIyzaRNr2TJkplm1ea0j4eHhzw8PDJtd3Fx4QcbLDabjZyAQ+QIHCE/4Aj5gZz81RzJbp/vvvsuy34TJ078W3HizuA9BI6QH8iJoxzJ67whC4G7wJUrVzK9+F1dXa31UipUqKCSJUtqxYoVVvu1a9e0du1ahYWFZTtuw4YN7faRpB9//NHhPgAAAMDdyGazafz48WrUqJGqVq2qjz/+2K599uzZql+/vipUqKD58+db2/38/LR79+5M4/Xt21ezZs2SJI0fP15du3ZV27ZtFRgYqA4dOujixYu39oQAAP9ozLQF7gL/+te/9Morr6hcuXIKCAjQ9u3b9eabb6p///6SbvwC+vTTT+vVV19VlSpVVKVKFb366qsqUKCAHn30UWuc3r17q3Tp0po0aZIk6amnnlLTpk01ZcoUPfTQQ/r6668VFRWl9evX35HzBAAAAG4lm82mn3/+WUeOHFG9evXUuHFjlS1bVtKNj7Vu3rxZ+/btU7169dSrVy+5ueX+T+Z169YpOjpaJUqU0JAhQ/Tiiy9qzpw5t+pUAAD/cBRtgbvAzJkzNWbMGA0ZMkQxMTEqVaqUHnvsMY0dO9bq8/zzz+vq1asaMmSILl68qPr16+vHH39UoUKFrD4nTpywm7EbFhamJUuWaPTo0RozZowqVaqkTz75RPXr17+t5wcAAADcDgMHDpQkVaxYUY0bN9a6deusSQ49evSQJNWoUUNubm46c+aMypQpk+ux27dvby0zNmjQIHXt2jWPowcA3Eso2gJ3gUKFCumtt97SW2+9lW2ftI97jR8/Pts+a9asybStc+fO6ty5898PEgAAALjLpL8Bb/obyLi6uio5OTnPxgYA4Gaxpi0AAAAA4J7w3//+V5J07NgxrV+/Xo0bN86zsb/99lvFxMRIkubNm6eIiIg8GxsAcO9hpi0AAAAA4J7g4eGhRo0a6dy5c5o5c6a1nm1eCA8P14ABA3T06FFVrFhRH3zwQZ6NDQC491C0BQAAAADcE4YMGaLnn38+03ZjjN3jP//80/r+2LFj1vfplxtbsGCB3T4lSpTQRx99lCdxAgDA8ggAAAAAAAAA4ESYaQsAAAAA+MfLOJs2Lzm6GTAAAH8FM20BAAAAAAAAwIlQtAUAAAAAAAAAJ0LRFgAAAPe8uXPnatq0aZKk6Ohoffrpp397zP79+8tmsyk+Pj7bPgcPHlRYWJiqVq2qevXqae/evX/7uKdPn1aLFi3+9jg5+f333/XII4+oYsWKqlKlipo1a6YNGzZY7QsWLJDNZtPChQutbcuXL1fz5s2txzabTREREXbjFitWzLrxU7t27fTaa69Zbdu3b1fNmjUVExOT5+fTt29fzZo1K0/GWrBggTp37pwnY90q48eP17Bhw/7WGKGhobp69WoeRQQAANKjaAsAAIB/hOTk5L+87+DBg/XMM89Iypui7bJly2Sz2XLs99hjj2nQoEH67bff9Pzzz2vAgAF/67iSVKpUKa1evfqm9rnZa5eQkKDmzZurZs2aOnLkiA4ePKixY8eqQ4cO2rlzp9XPz89PY8aMUVJSUrZjHT58WD/88EOWbe+9956mTZumPXv2KCkpSX379tXEiRPl6+t7U/Hi1oiOjlb+/PnvdBhO5e+8DwEAkB5FWwAAADi9L774QtWrV1fNmjX18ssvWzNYbTab3njjDTVv3lyjRo3Srl271KRJE9WqVUv+/v6aNGmSNUbfvn01ZMgQRUREqGrVqoqMjNS1a9ck/d+sw5iYGI0dO1ZRUVEKDQ3V4MGDJUlbtmxRy5YtVadOHdWqVUtffPFFtrGeP39eEyZM0JtvvunwnGJiYrRt2zb17NlTktSpUycdPXrUmmWakZ+fn8aOHauwsDCVK1dOCxcu1PTp01WvXj1VqlRJa9askSQdO3ZMxYoVs/bbuHGjmjRpopCQEAUHB+vrr7+2xnvllVfUokUL9enTR/Hx8erfv78CAwMVGBioCRMmZBv7xx9/LB8fH40YMcLaFh4erv79+2vq1KnWttq1ayskJERz5szJdqyJEydq5MiRWd4kqlSpUnrttdfUu3dvjRo1SkFBQWrfvn2mfvHx8SpSpIiuX78uSapVq5Z69OghSTpy5IgqVaokSbp+/bpGjhypevXqKTQ0VI888oguXbpkjbNjxw6Fh4erevXq6tu3r8Nic3Jystq0aaM6deooICBAPXr00JUrVzL16969uz7++GNJ0owZM+Th4aGEhARJUpMmTbRu3TqHYwUFBWnjxo3WeO+88466desmSXr55ZdVo0YNhYaGKjQ0VMePH8823tjYWHXu3Fn+/v5q06aNDh06ZLVld11OnDghX19f63UiSX369NGMGTMkyW4m+b59+9SmTRsFBwcrODhYc+fOlSSdOXNGXbt2Vb169RQcHKyxY8dmG6MkpaSkaNiwYVYePvnkk9bxHb2Gr127puHDhyskJETh4eF68MEHrTFff/111atXT7Vq1VLbtm118uTJLI89fvx4de3aVW3btlVgYKA6dOigixcvOrxGaXENHTpUDzzwgEJCQhyeHwAAuUXRFgAAAE4tJiZGgwYN0rJly7R9+3YVLFjQrj0pKUlr1qzR1KlT5efnp6ioKG3btk2//vqrPv30U23dutXqGx0drWXLlmnfvn06e/ZspuKrr6+vXnrpJUVERCg6Olpz587VpUuX9Nhjj2nRokXaunWrfvzxRz377LM6c+ZMlvE+/vjjGj9+vAoXLuzwvE6ePKlSpUrJzc1N0o0CWLly5XTixIls97l69ao2bNigL774QoMGDZK7u7t++eUXTZo0SS+88EKm/hcuXFDHjh01ZcoU7dixQ9HR0WrSpInVfuLECa1atUqLFi3SxIkTde3aNe3cuVObN2/WV199pc8++yzLOLZt26aGDRtm2t6wYUNt27bNbtukSZM0ZcoUxcXFZTnWww8/rAIFCmjx4sVZtvfq1Us+Pj5auHChZs6cmWWfggULKiAgQBs3btT58+eVkpKiLVu2SJJWrFhhLcEwdepUFSxYUL/88ouio6MVEBCgcePGWeNs3rxZX3/9tfbs2aMLFy5o+vTpWR5PklxdXbV48WJt3bpVu3fvlre3d5bF6YiICK1YsUKStHLlStWuXVvr1q1TfHy89uzZowYNGjgca+jQoZo9e7Y13uzZs/XEE0/o4sWLev3117Vt2zZFR0drw4YNKlGiRLbxvvTSS/L29tbevXu1aNEi/fTTT1ZbdtelXLlyCg0N1TfffCPpRnF82bJlVkE8TXJysh566CENGDBAO3fu1M6dO63lIfr06aMnnnhCv/zyi7Zt26ZffvlFS5cuzTbOd999V7/++qt+/fVXRUdH6/Dhw3bPQ3av4UmTJunw4cP65ZdftHLlSn344YeSpMWLF+u3337Txo0btW3bNnXv3l1PPPFEtsdft26d5s+fr927d6tMmTJ68cUXHV6jNOvXr9fnn3+uPXv2ZDs2AAA3w+1OBwAAAAA4smnTJtWqVUtVqlSRJPXr189aykC6sXZsmqtXr2rIkCGKjo6Wi4uLTp48qejoaNWpU0eSFBkZaX2cu169ejp8+HCOx9+wYYOOHDliN3PPGKMDBw6oZMmSdn0/++wz5cuXL8vZoFnJuIRCVrNN00ubYVmrVi1dvXpVXbt2lXRjRuuRI0cy9d+4caP8/f0VFhYmSXJxcVGRIkWs9n79+lkxREVFafr06XJxcZGXl5d69+6tqKgodenSJVexZxd/jRo11L59e02ZMiXLQq8kTZkyRb17987yWKdOndKePXvk6uqqY8eOqXTp0lmOERERoaioKJ09e1Zt2rTRvn37tHv3bkVFRVnX6auvvlJcXJw+//xzSTdmZ6bNwpVuXN+0fwr0799fc+bM0fPPP5/l8YwxmjZtmr799lslJycrNjZWTZs2zdSvVatWmjBhglJSUrRv3z69+uqrioqKUkpKiho2bCh3d3elpqZmO1bPnj01btw4xcTEaN++fbLZbGrSpIlSUlJUpUoV9ezZU61bt1a7du1UpkyZLGOVpNWrV1tF72LFiikyMtJqc3Rd+vXrZ63R++mnn6ply5YqWrSo3dgHDhxQcnKydZ3TjpGQkKBVq1bp7Nmz1vb4+Hjt378/2zijoqI0YMAAeXh4SJL+/e9/a+7cuRo+fLik7F/Dy5cv1xtvvGHtV7x4cevctm7dqtq1a0u6MZPX1dU12+O3b9/eKn4PGjQox9yJj49XUlKSHnroIXl5eWU7LgAAN4uiLQAAAJyaMcbh+rDpZ96+8MILKlGihLZv3y43NzdFRkYqMTHRavf09LS+d3V1zdX6k8YYBQcH281MTDN58mQtWbJE0o3C4+rVq7Vq1Sr5+flZfQICArR8+XJt377dWjLhqaeeUrt27XTq1CklJyfLzc1NxhidPHlS5cqVU1RUlHWTqC5duliz/dLiTys6pX/8V9bSTH/tsrrOaY/DwsJ05coVeXh4aPPmzapVq5befffdTOOlFdgzmjBhgkJCQlS+fPks42jcuLECAwP19ttvZ2obMGCAhg0bpnLlyql///5avny5Ll26pJYtW0qSKlSooKVLlyoiIkLDhw9XTEyMIiMjVbp0aa1YsUJr1661PqpvjNGcOXOsfXPiKO8WL16stWvX6qefflKhQoU0Y8aMLHOkXLly8vDw0MKFC1WnTh2Fh4dr8uTJSklJsWYAOxorf/786tOnj95//31t377dmiXq6uqqTZs2acOGDVqzZo0aNGigjz/+2G4mdXqO/iHg6Lp07NhRQ4cO1ZkzZzR//nyNGjUq+wuWQWpqqmw2m7Zs2SJ3d/dc7eMoD6Wbfw0bYzR69Gi7f+6kyZjXWUk7dvprdOXKFW3cuFE/RK1S70FPaOumLdp78IgSEq+pepVKeuutt+Ti4qJGjRrZzZIGAOBmsDwCAAAAnFqDBg3066+/WmtwfvDBB9n2vXjxosqUKSM3NzcdOHDA+lj6zfD29lZsbKz1OCwsTAcPHtSqVausbdHR0bp27ZpGjhyp6OhoRUdHq02bNpozZ45OnTqlY8eOWWvT7tmzR0FBQerdu7fVt1+/fvL19VXNmjW1cOFCSTfW7fXz85Ofn5+1PEN0dLRVsP0rwsLCtG/fPm3YsEHSjSLahQsXsuzbqlUrvffeezLGKCEhQQsXLrSKihs2bFB0dLRV2OrevbvOnz+vKVOmWPuvWrVK8+bNs4rN6ZUuXVoDBw60W2M4o8mTJ2vSpEl268jOnTtXCQkJeuaZZ9SlSxdVq1ZN06ZN03333Wddn7SP2tevX1/79+9XVFSUmjRpooiICE2fPl1ly5a1ZoZ26NBBb775prVe7JUrV+w+zv7ZZ58pISFBKSkpmj9/vnX+Wbl48aKKFi2qQoUK6fLly1qwYEG2fSMiIjRu3DhFRETIx8dHrq6u+vLLL63xcxrr8ccf19tvv621a9daSxNcvnxZZ8+eVZMmTTRmzBg1btxY27dvzzaG8PBwzZ8/X9KNZTPSL1Hg6Lp4enqqS5cuGjdunI4cOaI2bdpkGrtatWrKly+f3XIaf/75pwoVKqQmTZpo8uTJ1vbTp0/r1KlT2cbZqlUrLViwQNeuXVNycrLmzZvn8HlIfw5vvfWWlT/nzp2zts+ZM8fK++vXr1vXKWNeS9K3336rmJgYSbI7dto12rp1q558ZpgmTn9PG49eUOGaD8rTt5zyl/HX7lg3LVq+SnUbNtaiRYso2AIA/haKtgAAAHBqJUqU0Ny5c9WuXTuFhYUpISFB7u7uKlCgQKa+o0eP1vvvv6+6detq9OjRuZ5RmV54eLgSEhIUEhKiwYMHy8fHR8uWLdPEiRMVEhIif39/jRw5UqmpqX/73N555x298847qlq1qiZPnqx58+b97THT8/Hx0dKlSzV8+HAFBwerZs2aWr9+fZZ9x4wZI5vNpqCgINWvX18dOnSw1iXNyMvLS2vWrNGvv/6qChUqqEqVKho3bpy+/vrrbG/ENHLkyGzXtZUkf39/tWvXzrqx1dGjRzVu3DgtWLBALi43/myZNWuWlixZkmndXElyc3NT48aNVa5cOeXPn18BAQG6fv26XcFv5MiRCg0NVf369RUcHKwGDRooOjraam/atKkefvhhBQQEyMfHR08++WS28fbu3Vvx8fHy9/dXZGRktjNcpRuFyOPHj1uxhIeHKzExUUFBQbkaq0yZMgoNDVWvXr2svI+NjVVkZKSCgoIUHBys69evq0+fPtnGMGbMGF28eFH+/v7q0aOHWrVqlevr0q9fP7377rvq1atXlksLuLm56euvv9a7775rxZO21uyiRYu0b98+BQUFKSgoSJ06ddL58+ezjXPQoEEKCQlRrVq1FBoaKj8/Pw0dOjTb/mlGjBihSpUqqXbt2oqIiFDfvn0l3VgTuWfPnmrevLlCQkIUGhqq1atXZztOeHi4BgwYoMDAQB0/flwvv/yydY1Kly6tiFat9ennn2tP9Fb5lCyvkpX85VGgkLyL3a+QiM4KiXxcv5v79NKUN1nfFsA/wtdff23d9HLXrl1Z9lmzZo21FFVGW7duzbQWOnLHZnJaOAsAHIiLi1PhwoUVGxsrb2/vOx0OnEBqaqpiYmLk6+tr/ZENpEeOwJHs8uPy5csqVKiQJGn+/PmaN29etsVH/HPdq+8f8fHxql69utatW6cKFSrc6XCc2t/JkfHjxys+Pl6vv/56prYrV67oyWeG6Xdzn0Jbd5PNwdgmNVXRP36i0rZLmjnt9Sz/wYQ74159D0HukB9Ze/DBB9W/f/9s17iXbhRthw0bZnfz13+inHIkr+sjZCEAAACc3owZMxQaGqrAwEDNnz9f77333p0OCbgt5s6dq+rVq2vIkCEUbO+gjRs36ti5OPk3/ZfDgq0k2VxcVKNJex07F6dNmzbdpggBIO8NHTpU69at04gRIxQWFqaePXuqTp06Cg4OVvv27a3lZKQby8/069dPtWvXVp06dbRjxw5J9rNwk5OT1aZNG9WpU0cBAQHq0aOHtTTPggUL1KZNG3Xv3l1BQUGqU6dOljdZvZdwIzIAAAA4vRdffPFvre0K/FWDBw/OsvC2ceNG5c+f/7Ycf/DgwbnqGxMTo9atW2fa3qpVK02dOjWvQ/tb6tSpk+kmYgEBAVq0aNEdiujGTNusGGP0Q9QqeZSsJI8CBbPsk5GnVyF5lKyk71esVIsWLRze1A4AnNWMGTO0c+dODRs2TO3bt9eff/6pYsWKSbqxFv1LL72kWbNmSZJ27typ6dOnq3nz5vr000/16KOPZlomxtXVVYsXL1bRokVljNGQIUM0Z84caz38zZs3a8eOHSpfvrxGjhypKVOm6J133rm9J+1EKNoCAAAAQDbmzp17p0PINV9fX7u1aJ3Z3fQR2oSEBB06/rtK1Hzwpvbz9auhQ9Hf68qVK/Ly8rpF0QHA7bNo0SJ99NFHSkpK0tWrV1WyZEmrrXLlymrevLkkqWvXrho0aJBOnz5tt78xRtOmTdO3336r5ORkxcbGqmnTplZ748aNVb58eUlSw4YNNXPmzFt/Uk6M5REAAAAAAMhGUlKSUlON3Dw8b2o/d8/8SjVGiYmJtygyALh91q9fr1mzZum7777Trl279Oabb+b4/pbxUwaLFy/W2rVr9dNPP2nXrl0aNmyY3Rienv/3Puvq6prpExn3Goq2AAAAAABkw8PDQy4uNiUn3Vzx9XriVbnYbHZFCAC4W128eFHe3t4qUqSIrl27lmnZgkOHDumnn36SJH3++ecqXbq07r///kxjFC1aVIUKFdLly5e1YMGC2xX+XYmiLQAAAAAA2fDy8lLl8qV19ujem9ov5tg+VS5fWgUKFLhFkQHA7fPggw+qcuXKql69utq0aaPQ0FC79tDQUC1ZskR16tTRpEmTtHjx4kxj9O7dW/Hx8fL391dkZKSaNGlym6K/O9mMMeZOBwHg7hUXF6fChQsrNjZW3t7edzocOIHU1FTFxMTI19dXLjncXRn3JnIEjpAfcIT8QE5uVY6sXLlSr86er5DIx3N1M7LEhMvauXSOXnyiv1q2bJlnceDv4T0EjpAfyElOOZLX9RGyEAAAAAAABxo2bCi/4t7a+9MymdRUh31Naqr2r1suv+LeatCgwW2KEADwT0PRFgAAAAAABwoUKKBnhz6uwolnFf3jJ0pMuJxlv8SEy4r+8RN5J57Vc089wdIIAIC/zO1OBwAAAAAAgLMLCAjQ2BHP6s0Zs7Vz6Rx5lKwkX78acvfMr+uJVxVzbJ+SzhyWX3FvPTfyOfn7+9/pkAEAdzFm2gIAAAAAkAsBAQGaOe11vfhEfwUWTlZc9Pc6t/FLxUV/r8DCyXrxif6a9dYb92zBdu7cuZo2bZokKTo6Wp9++unfHrN///6y2WyKj4/Pts/BgwcVFhamqlWrql69etq79+ZuGpeV06dPq0WLFn97nJz8/vvveuSRR1SxYkVVqVJFzZo104YNG6z2BQsWyGazaeHChda25cuXq3nz5tZjm82miIgIu3GLFSumY8eOSZLatWun1157zWrbvn27SpcurZiYmDw/n759+2rWrFl5MtaCBQvUuXPnPBnrVhk/fryGDRv2t8YIDQ3V1atX8ygi/JMw0xYAAAAAgFwqUKCAWrZsqRYtWujKlStKTEyUp6enChQoIJvNdqfD+9uSk5Pl5vbXSgWDBw+2vo+Ojtby5cvVtWvXvxzLsmXLcnVNH3vsMQ0aNEh9+/bV559/rgEDBmjjxo1/+biSVKpUKa1evfqm9rnZa5eQkKDmzZtr4MCBWrJkiaQbN73r0KGDVq1apeDgYEmSn5+fxowZoy5dusjDwyPLsQ4fPqwffvhBbdq0ydT23nvvqXbt2mrXrp0qV66s3r17a8aMGfL19b2p88OtER0dfadDcDp/533on4SZtgAAAAAA3CSbzSYvLy8VLVpUXl5ed0XB9osvvlD16tVVs2ZNvfzyy9YMVpvNpjfeeEPNmzfXqFGjtGvXLjVp0kS1atWSv7+/Jk2aZI3Rt29fDRkyRBEREapataoiIyN17do1Sf836zAmJkZjx45VVFSUQkNDrWLuli1b1LJlS9WpU0e1atXSF198kW2s58+f14QJE/Tmm286PKeYmBht27ZNPXv2lCR16tRJR48etWaZZlS3bl2NGzdOYWFhKleunBYuXKjp06erXr16qlSpktasWSNJOnbsmIoVK2btt3HjRjVp0kQhISEKDg7W119/LelGQfWVV15RixYt1KdPH8XHx6t///4KDAxUYGCgJkyYkG3sH3/8sXx8fDRixAhrW3h4uPr376+pU6da22rXrq2QkBDNmTMn27EmTpyokSNHyhiTqa1UqVJ67bXX1Lt3b40aNUrBwcHq1KlTpn7x8fEqUqSIrl+/LkmqVauWevToIUk6cuSIKlWqJEm6fv26Ro4cqXr16ik0NFSPPPKILl26ZI2zY8cOhYeHq3r16urbt6+SkpKyjTs5OVlt2rRRnTp1FBAQoB49eujKlSuZ+nXv3l0ff/yxJGnGjBny8PBQQkKCJKlJkyZat26dw7GCgoLsCvnvvPOOunXrJkl6+eWXVaNGDdWqVUsRERE6fvx4tvHGxsaqc+fO8vf3V5s2bXTo0CGrLbvrcuLECfn6+lqvE0nq06ePZsyYIUl2M8n37dunNm3aKDg4WMHBwZo7d64k6cyZM+ratavq1aun4OBgjR07NtsYJSklJUXDhg2z8vDJJ5+0ju/oNXzt2jUNHz5cQUFBCgkJ0QMPPGCN+frrr6tevXqqVauW2rZtq5MnT2Z57PHjx6tr165q27atAgMD1aFDB128eNHhNUqLa+jQoXrggQcUEhLi8PzuFRRtAQAAAAD4h4uJidGgQYO0bNkybd++XQULFrRrT0pK0po1azR16lT5+fkpKipK27Zt06+//qpPP/1UW7dutfpGR0dr2bJl2rdvn86ePZup+Orr66uXXnpJERERio6O1ty5c3Xp0iU99thjWrRokbZu3aoff/xRzz77rM6cOZNlvI8//rjGjx+vwoULOzyvkydPqlSpUtasPJvNpnLlyunEiRPZ7nP16lVt2LBBX3zxhQYNGiR3d3f98ssvmjRpkl544YVM/S9cuKCOHTtqypQp2rFjh6Kjo9WkSROr/cSJE1q1apUWLVqkiRMn6tq1a9q5c6c2b96sr776Sp999lmWcWzbtk0NGzbMtL1hw4batm2b3bZJkyZpypQpiouLy3Kshx9+WAUKFNDixYuzbO/Vq5d8fHy0cOHCbJcvKFiwoAICArRx40adP39eKSkp2rJliyRpxYoV1hIMU6dOVcGCBfXLL78oOjpaAQEBGjdunDXO5s2b9fXXX2vPnj26cOGCpk+fnuXxJMnV1VWLFy/W1q1btXv3bnl7e2dZnI6IiNCKFSsk3ZiNXLt2ba1bt07x8fHas2ePGjRo4HCsoUOHavbs2dZ4s2fP1hNPPKGLFy/q9ddf17Zt27Rt2zZ98803KlGiRLbxvvTSS/L29tbevXu1aNEi/fTTT1ZbdtelXLlyCg0N1TfffCPpRnF82bJlVkE8TXJysh566CENGDBAO3fu1M6dO63lIfr06aMnnnhCv/zyi7Zt26ZffvlFS5cuzTbOd999V7/++qt+/fVXRUdH6/Dhw3bPQ3av4UmTJunw4cPaunWrduzYoY8++kiStHjxYv3222/auHGjtm3bpu7du+uJJ57I9vjr1q3T/PnztXv3bpUpU0Yvvviiw2uUZv369fr888+1Z8+ebMe+lzDXGAAAAACAf7hNmzapVq1aqlKliiSpX79+euaZZ6z2/v37W99fvXpVQ4YMUXR0tFxcXHTy5ElFR0erTp06kqTIyEjlz59fklSvXj0dPnw4x+Nv2LBBR44c0YMPPmhtM8bowIEDKlmypF3fzz77TPny5VP79u1zdW4ZZzlnNds0vbQlG2rVqqWrV69aj2vXrq0jR45k6r9x40b5+/srLCxMkuTi4qIiRYpY7f369bNiiIqK0vTp0+Xi4iIvLy/17t1bUVFR6tKlS65izy7+GjVqqH379poyZUqWhV5JmjJlinr37p3lsU6dOqU9e/bI1dVVx44dk4+PT5ZjREREKCoqSmfPnlWbNm20b98+7d69W1FRUdZ1+uqrrxQXF6fPP/9c0o3ZmWmzcCWpW7du1j8F+vfvrzlz5uj555/P8njGGE2bNk3ffvutkpOTFRsbq6ZNm2bq16pVK02YMEEpKSnat2+fXn31VUVFRSklJUUNGzaUu7u7UlNTsx2rZ8+eGjdunGJiYrRv3z7ZbDY1adJEKSkpqlKlinr27KmIiAjVr19ffn5+WcYqSatXr9bMmTMl3Vg3ODIy0mpzdF369etnrdH76aefqmXLlipatKjd2AcOHFBycrLdkiLFihVTQkKCVq1apbNnz1rb4+PjtX///mzjjIqK0oABA6zlNP79739r7ty5Gj58uKTsX8PLly/XG2+8Ye1XvHhx69y2bt2q2rVrS7oxk9fV1TXb47dv394qfg8aNCjXudO1a9dM/1C6l1G0BQAAAADgH84Y43AJh/SFkhdeeEElSpTQ9u3b5ebmpsjISCUmJlrtnp6e1veurq5KTk7O1fGDg4PtZiammTx5srWm65QpU7R69WqtWrXKrngWEBCg5cuXa/v27daSCU899ZTatWunU6dOWWtgGmN08uRJlStXTlFRUdZNorp06aJRo0bZxZ9WdEr/ODfnklH6a5fVdU57HBYWpitXrsjDw0ObN29WrVq19O6772YaL63AntGECRMUEhKi8uXLZxlH48aNFRgYqLfffjtT24ABAzRs2DCVK1dOffv21datW601dSWpQoUKWrp0qSIiIjR8+HDFxMQoMjJSpUuX1ooVK7R27Vrro/rGGM2ZM0ctW7bM1fVxlHeLFy/W2rVr9dNPP6lQoUKaMWNGljlSrlw5eXh4aOHChapTp47Cw8M1efJkpaSkWDOAHY2VP39+9enTR++//762b99uzRJ1dXXVpk2btGHDBq1evVrt27fXxx9/rGbNmmUZr6N/CDi6Lh07dtTQoUN15swZzZ8/38rF3EhNTZXNZtOWLVvk7u6eq30c5aF0869hY4xGjx5t98+dNBnzOitpx87qGhljFB8fr6SkJLm7u8sYo3379unRRx+VJDVq1MhulvS9hOURAAAAAAD4h2vQoIF+/fVXaw3ODz74INu+Fy9eVJkyZeTm5qYDBw5YH0u/Gd7e3oqNjbUeh4WF6eDBg1q1apW1LTo6WteuXdPIkSMVHR2t6OhotWnTRnPmzNGpU6d07Ngxa23aPXv2KCgoSL1797b69uvXT76+vqpZs6YWLlwo6ca6vX5+fvLz87OWZ4iOjrY+nv1XhIWFad++fdqwYYOkG0W0CxcuZNm3VatWeu+992SMUUJCghYuXGgVFTds2KDo6GirsNW9e3edP39eU6ZMsfZftWqV5s2bZxWb0ytdurQGDhxot8ZwRpMnT9akSZPs1pGdO3euEhIS9Mwzz6hLly6qXr26Jk6cqPvuu8+6Pmkfta9fv77279+vqKgoNWnSRBEREZo+fbrKli1rzQzt0KGD3nzzTWu92CtXrth9nP2zzz5TQkKCUlJSNH/+fOv8s3Lx4kUVLVpUhQoV0uXLl7VgwYJs+0ZERGjcuHGKiIiQj4+PXF1d9eWXX1rj5zTW448/rrfffltr1661lia4fPmyzp49qyZNmmj06NGqV6+ewxuDhYeHa/78+ZJuLJuRfokCR9fF09NTXbp00bhx43TkyJEsbxhXrVo15cuXz245jT///FOFChVSkyZNNHnyZGv76dOnderUqWzjbNWqlRYsWKBr164pOTlZ8+bNc/g8pD+Ht956y8qfc+fOWdvnzJlj5f3169e1fft2SZnzWpK+/fZbxcTESJLdsdNfoytXrujbb7/VgH8/pt6DntDPm7bow48/1YgXRuuPP/6wxr1XC7YSRVsAAAAAAP7xSpQooblz56pdu3YKCwtTQkKC3N3dVaBAgUx9R48erffff19169bV6NGjcz2jMr3w8HAlJCQoJCREgwcPlo+Pj5YtW6aJEycqJCRE/v7+GjlypFJTU//2ub3zzjt65513VLVqVU2ePFnz5s3722Om5+Pjo6VLl2r48OEKDg5WzZo1tX79+iz7jhkzRjabTUFBQapfv746dOhgrUuakZeXl9asWaNff/1VFSpUUJUqVTRu3Dh9/fXX2d6IaeTIkdmuaytJ/v7+ateunXVjq6NHj2rcuHFasGCBXFxulIBmz56t//73v5nWzZUkNzc3NW7cWOXKlVP+/PkVEBCg69ev2xX8Ro4cqdDQUNWvX1/BwcFq0KCBXaGzadOmevjhhxUQECAfHx89+eST2cbbu3dvxcfHy9/fX5GRkXZrBWfUqlUrHT9+3IolPDxciYmJCgoKytVYZcqUUWhoqHr16mXlfWxsrCIjIxUUFKTQ0FBdv35dvXv3zjaGMWPG6OLFi/L391ePHj3UqlWrXF+Xfv366d1331WvXr2yXFrAzc1NX3/9td59910FBQUpODjYWmt20aJF2rdvn4KCghQUFKROnTrp/Pnz2cY5aNAghYSEqFatWgoNDZWfn5+GDh2abf80I0aMUKVKlVSzZk2FhoaqT58+km6sidyzZ081b95cISEhCg0N1erVq7MdJzw8XAMGDFBgYKCOHz+ul19+2e4ahYaGqkzZsur2aE/9euxPFa75oDx9yyl/GX/tjnXTq7Pn68lnht3za9vaTE6LvQCAA3FxcSpcuLBiY2Pl7e19p8OBE0hNTVVMTIx8fX2tXwyB9MgROEJ+wBHyAzkhRxy7fPmyChUqJEmaP3++5s2bl23x8Z+I/Li3xcfHq3r16lq3bp0qVKiQqZ38yBvjx49XfHy8Xn/99Szb9+zZo5emvKlYzxLyb/oveRTIvIZt0pV47f1pmQonntXYEc8qICDgVoedKznlSF7XR8hCAAAAAADuATNmzFBoaKgCAwM1f/58vffee3c6JOC2mDt3rqpXr64hQ4ZkWbDF7XHlyhW9OWO2Yj1LKLR1tywLtpLkUaCgQlt3U6xnCb05Y7a15MS9hpm2AP4WZtoiI/5DjZyQI3CE/IAj5AdyQo7AEfLjzhk8eLA2bdqUafvGjRuVP3/+OxBRZmn5IUkPPPBApvZWrVpp6tSptzssh+rUqZPpJmIBAQFatGjRHYrIsZUrV+rV2fMVEvl4tgXb9BITLmvn0jl68Yn+f2mZlrx2u2fauv3tEQAAAAAAAIBszJ07906HkGu+vr4Ob0bmTLZu3XqnQ8g1Y4x+iFolj5KVclWwlSRPr0LyKFlJ369YqRYtWshms93iKJ0L/1oCAAAAAAAAcMskJCTo0PHfVaKC/03t5+tXQ4eO/35PLpFA0RYAAAAAAADALZOUlKTUVCM3D8+b2s/dM79SjVFiYuItisx5UbQFAAAAAAAAcMt4eHjIxcWm5KSbK75eT7wqF5tNnp43V+z9J6BoCwAAAAAAAOCW8fLyUuXypXX26N6b2i/m2D5VLl9aBQoUuEWROS+KtgAAAAAAAABuGZvNpjYRLZV05rCSrsTnap/EhMtKOnNYD7QKv+duQiZRtAUAAAAAAABwizVs2FB+xb2196dlMqmpDvua1FTtX7dcfsW91aBBg9sUoXOhaAsAAAAAAADglipQoICeHfq4CieeVfSPnygx4XKW/RITLiv6x0/knXhWzz31xD25NIIkud3pAAAAAAAAAAD88wUEBGjsiGf15ozZ2rl0jjxKVpKvXw25e+bX9cSrijm2T0lnDsuvuLeeG/mc/P3973TIdwxFWwAAAAAAAAC3RUBAgGZOe12bNm3S9ytW6lD090o1Ri42mwLLl9YDnfurYcOGyp8//50O9Y6iaAsAAAAAAADgtilQoIBatmypFi1a6MqVK0pMTJSnp6cKFChwT950LCsUbQEAAAAAAADcdjabTV5eXvLy8rrToTgdbkQGAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi1wF/Dz85PNZsv09fjjj0tSlm02m01Tp07NdswFCxZkuU9iYuLtOi0AAAAAAABkwe1OBwAgZ1u2bFFKSor1ePfu3WrVqpW6dOkiSfrjjz/s+n/33XcaMGCAOnXq5HBcb29vHThwwG6bp6dnHkUNAAAAAACAv4KiLXAXKF68uN3jyZMnq1KlSmrWrJkkqWTJknbtX3/9tVq0aKGKFSs6HNdms2XaFwAAAAAAAHcWRVvgLnPt2jUtXLhQzz77rGw2W6b2s2fP6ttvv9UHH3yQ41jx8fEqX768UlJSFBoaqokTJ6pmzZoO90lKSlJSUpL1OC4uTpKUmpqq1NTUmzwb/BOlpqbKGEM+IFvkCBwhP+AI+YGckCNwhPyAI+QHcpJTjuR17lC0Be4yX331lS5duqS+fftm2f7BBx+oUKFCioyMdDhO9erVtWDBAgUFBSkuLk7Tp09Xo0aNtGPHDlWpUiXb/SZNmqQJEyZk2n7u3DnWw4WkGz+oYmNjZYyRiwtLpyMzcgSOkB9whPxATsgROEJ+wBHyAznJKUcuX76cp8ezGWNMno4I4JZq06aN8uXLp2XLlmXZXr16dbVq1UozZ868qXFTU1NVq1YtNW3aVDNmzMi2X1YzbcuWLauLFy/K29v7po6Jf6bU1FSdO3dOxYsX55cdZIkcgSPkBxwhP5ATcgSOkB9whPxATnLKkbi4OPn4+Cg2NjZP6iPMtAXuIsePH1dUVJS+/PLLLNvXrVunAwcO6JNPPrnpsV1cXFS3bl0dPHjQYT8PDw95eHhkuT8/2JDGZrORE3CIHIEj5AccIT+QE3IEjpAfcIT8QE4c5Uhe5w1ZCNxF5s+fL19fX7Vr1y7L9nnz5ql27doKCQm56bGNMYqOjtb999//d8MEAAAAAADA30DRFrhLpKamav78+erTp4/c3DJPko+Li9Nnn32mgQMHZrl/7969NWrUKOvxhAkT9MMPP+jIkSOKjo7WgAEDFB0drcGDB9+ycwAAAAAAAEDOWB4BuEtERUXpxIkT6t+/f5btS5YskTFG3bt3z7L9xIkTdlP1L126pEGDBunMmTMqXLiwatasqZ9++kn16tW7JfEDAAAAAAAgd7gRGYC/JS4uToULF86zhbZx90tNTVVMTIx8fX1ZCwpZIkfgCPkBR8gP5IQcgSPkBxwhP5CTnHIkr+sjZCEAAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAAAOBGKtgAAAAAAAADgRCjaAgAAAAAAAIAToWgLAAAAAAAAAE6Eoi0AAAAAAAD+8Ww2m+Lj47Nsa9eunY4dOyZJat68uZYvXy5JGjt2rD755JPbFSJgoWgL3AX8/Pxks9kyfT3++OOSpL59+2Zqa9CgQY7jfvHFF/L395eHh4f8/f21dOnSW30qAAAAAAA4nW+//VZ+fn6Ztr/00kvq1q3b7Q8I9zyKtsBdYMuWLfrjjz+srxUrVkiSunTpYvV54IEH7Pr873//czjmxo0b1a1bN/Xq1Us7duxQr1691LVrV23evPmWngsAAAAAALeKzWbT+PHj1ahRI1WtWlUff/yxXfvs2bNVv359VahQQfPnz7e2V6xYUfv37880Xt++fTVr1ixJ0vjx49W1a1e1bdtWgYGB6tChgy5evHhrTwj3LIq2wF2gePHiKlmypPW1fPlyVapUSc2aNbP6eHh42PUpUqSIwzHfeusttWrVSqNGjVL16tU1atQohYeH66233rrFZwMAAAAAwK1js9n0888/6/vvv9eTTz6pkydPWm2enp7avHmz/ve//2no0KFKTk6+qbHXrVun+fPna/fu3SpTpoxefPHFvA4fkETRFrjrXLt2TQsXLlT//v1ls9ms7WvWrJGvr6+qVq2qf//734qJiXE4zsaNG9W6dWu7bW3atNGGDRtuSdwAAAAAANwOAwcOlHRj9mzjxo21bt06q61Hjx6SpBo1asjNzU1nzpy5qbHbt2+vEiVKSJIGDRqkqKioPIoasOd2pwMAcHO++uorXbp0SX379rW2Pfjgg+rSpYvKly+vo0ePasyYMWrZsqV+/fVXeXh4ZDnOmTNnrB80aUqUKJHjD6ykpCQlJSVZj+Pi4iRJqampSk1N/YtnhX+S1NRUGWPIB2SLHIEj5AccIT+QE3IEjpAf9470f58aY+ye93z58lnfu7q66tq1a3Z9075PGyP9/hnHSk1Nlc1mI6fuETm9h+R1HlC0Be4y8+bN04MPPqhSpUpZ29Ivih4YGKg6deqofPny+vbbbxUZGZntWOln6ko3fkBl3JbRpEmTNGHChEzbz507p8TExNyeBv7BUlNTFRsbK2OMXFz4QAcyI0fgCPkBR8gP5IQcgSPkx71j5syZevbZZ3Xy5EmtW7dOY8eOtT6Neu7cOV25ckXSjZw4f/68ChQooJSUFF2+fFkxMTG6du2aYmNjFRMTo8TERGt7QkKCli9frr1796pYsWKaPXu2wsLCcvykK/4ZcnoPuXz5cp4ej6ItcBc5fvy4oqKi9OWXXzrsd//996t8+fI6ePBgtn1KliyZaVZtTExMptm3GY0aNUrPPvus9TguLk5ly5ZV8eLF5e3tnYuzwD9d2n+bixcvzi/DyBI5AkfIDzhCfiAn5AgcIT/uHUWLFlWnTp107tw5zZw5UzVr1rTaihcvroIFC0qSXFxcVLRoUfn6+srV1VWFChWSr6+v8uXLp8KFC8vX11eenp7Wdi8vL0VERGjkyJE6duyYKlSooAULFsjHx+dOnSpuo5zeQzw9PfP0eBRtgbvI/Pnz5evrq3bt2jnsd/78eZ08eVL3339/tn0aNmyoFStW6JlnnrG2/fjjjwoLC3M4toeHR5ZLLri4uPCLDyw2m42cgEPkCBwhP+AI+YGckCNwhPy4Nzz++OMaMWJEpu3GGLvHf/75p/X9kSNHFBMTIxcXF61Zs8ba/sEHH1jf22w2lSxZUgsXLsz7oHFXcPQektfvK7xLAXeJ1NRUzZ8/X3369JGb2//9vyU+Pl7Dhg3Txo0bdezYMa1Zs0b/+te/VKxYMXXs2NHq17t3b40aNcp6/NRTT+nHH3/UlClTtH//fk2ZMkVRUVF6+umnb+dpAQAAAAAAIANm2gJ3iaioKJ04cUL9+/e32+7q6qpdu3bpww8/1KVLl3T//ferRYsW+uSTT1SoUCGr34kTJ+z+6xMWFqYlS5Zo9OjRGjNmjCpVqqRPPvlE9evXv23nBAAAAABAXso4mzYvjR8//paNDWRE0Ra4S7Ru3TrLHz758+fXDz/8kOP+6T/ekaZz587q3LlzXoQHAAAAAACAPMLyCAAAAAAAAADgRCjaAgAAAADyxLVr1zRixAhVrlxZNWrUUEBAgN59991bftyEhATVr19fNWvWVHh4uB588EEdO3Ysx/0mTJggm82m3bt3W9uaN2+uihUrKjQ0VIGBgWrbtq3Onj2b7RgZzzkwMFDz58+32o8dOyabzaaBAwda2+Lj42Wz2eyOWaxYMcXGxlrbOnfurAULFkiSXnvtNbubEV++fFmVKlXSqlWrcjzHrPTt21ezZs36S/veLs2bN9fy5cv/8v5bt25Vjx498jAi/FUvvPCCatSooZCQENWrV88ub1NTU/Xkk0+qUqVKqly5subMmWO1ffLJJ6pZs6YCAwMVFBSkmTNnWm1r1qxRgQIFFBoaan1dvXo1y+PHx8erTZs2KlasmIoVK2bXdvr0abVp00bVqlVTaGioBg0apAsXLmR7LgcPHlRYWJiqVq2qevXqae/evX/1sgA5omgLAAAAAMgTffv21aFDh7Rjxw7t27dP3377raZNm3bLC4T58+dXVFSUtm/frpUrV+qBBx7Qs88+63Cfbdu2adOmTSpXrlymthkzZig6Olq7d++Wn5+fXn/99WzHyXjOy5cv12uvvWZXrC5YsKCWL1/usMBTqFAhTZ48Ocu2YcOG6eLFi3r//fclSc8++6zatm2rli1bOjzHe1mdOnW0aNGiOx2G00lOTr7tx2zSpIm2bdumHTt26L333lOnTp2UmJgoSVq4cKH27t2r3377Tb/88otee+017d+/X5JUpkwZfffdd9q9e7fWr1+v6dOn6+eff7bG9ff3V3R0tPWVP3/+LI/v7u6u559/XlFRUZnaXF1dNWbMGB04cEDR0dEqU6aM3Q28M3rsscc0aNAg/fbbb3r++ec1YMCAv3NpAIco2gIAAAAA/rZDhw7pq6++0rvvvisvLy9Jkp+fn9544w298sor6t69uz7++GNJN4qiHh4eSkhIkHSjqLNu3TpJ0g8//KDGjRurdu3aql+/vn766SdJN2bWhYaGasiQIQoJCVFAQIC2bt0qSXJxcbFuwmuMUVxcnN1NeDNKSkrS448/rjlz5tjNeM0oOTlZly9flo+Pz02f88SJE61+Hh4eGjlypMNi0KhRo/Tee+/p9OnTmdpcXFy0YMECjR49Wm+//bbWrl2rKVOmZDuWJO3atUtNmjRRrVq15O/vr0mTJmXZr3Tp0tYxIyMj1ahRI0nS1atXVaRIESUlJWU71unTp1WiRAlduXLFGq979+56++23dfXqVXXr1k3+/v4KCQlR69atHca7d+9e1a9fX7Vq1VKPHj2sop4knTlzRl27dlW9evUUHByssWPHSrpR8PvXv/5l9TPGqEKFCtq5c6fWrFmjOnXqWG3ffvut6tevr/DwcNWqVUubN2+WJG3ZskUtW7ZUnTp1VKtWLX3xxRcO4zx79qw6duyooKAgBQYG2hXn/fz8NGHCBIWFhalChQp6+eWXrbbff/9dnTt3VnBwsIKDgzVmzBhJN2ZN//vf/7bObfDgwbp+/XqWx27evLmefvppNW/eXFWqVNHw4cOt+55kd43S4nrllVfUokUL9enTx25MR8/TRx99ZD0nzZo1s5uRPmXKFAUFBSkkJEQNGjSwy4GMHnzwQaugGhQUpJSUFP3555+SbsymHTx4sFxdXVWkSBF17dpVS5YskSQ1atRIJUuWlCQVLlxY1atX19GjR7M9TnY8PDwUHh6u++67L1NbiRIl1LhxY+txrVq1sj1GTEyMtm3bpp49e0qSOnXqpKNHj+ZqVj/wlxgA+BtiY2ONJBMbG3unQ4GTSElJMX/88YdJSUm506HASZEjcIT8gCPkh3P75JNPTHBwcKbtFy5cMJLM5MmTTb9+/YwxxnTo0ME0bNjQfPfdd+by5cvGx8fHXLt2zRw+fNg0bNjQ+t3y4MGDplSpUubatWtm9erVxs3NzWzZssUYY8zbb79tWrdubXes8PBwU6xYMRMQEGB+//33bGN9/vnnzaxZs4wxxpQvX97s2rXLamvWrJmpUKGCCQkJMcWKFTNBQUHm0qVLf+mcY2JizNGjR03RokVNUlKSqVChglm/fr25fPmySf/neLNmzcyyZcvMqFGjzMCBA40xxnTq1MnMnz/fbtyJEycaSWb9+vXZnluauLg4k5iYaIwx5sqVKyY0NNS6dn369DEzZ840xhjTs2dP88EHH5iUlBRTuXJlExAQYOLi4sz3339vXV9HYz366KPmvffeM8YY88cff5hixYqZy5cvmy+//NK0atXKiuf8+fMO461Vq5ZZsGCBMcaYjRs3GhcXF7Ns2TJjjDGtW7c2a9euNcYYc/36ddOmTRvz5ZdfmitXrpiiRYuaP/74wxhjzKpVq0ytWrWMMcasXr3a1K5d2xhjzIEDB0yJEiXMvn37zB9//GESExPNpUuXzMWLF03NmjXN6dOnjTHGnDt3zpQrV84aLytdu3Y1I0eONMYYc/bsWVOmTBmzefNmY8yNXHr66aeNMcbExMQYb29vc+rUKWOMMc2bNzevvfaaNU5MTIwxxph///vf5sMPPzTGGJOammoGDBhg3nzzzSyP3axZM9OqVStz7do1k5CQYGrXrm0++eQTh9coLa5BgwaZ1NTUTGNm9zytX7/etG3b1nref/rpJyvXFyxYYBo0aGC9Ti9cuGCSk5OzvWbpvf/++yY0NNR6HBgYaF0/Y4yZPXu29T6R3p49e0yRIkWs1/Xq1atNwYIFTc2aNU2dOnXM7Nmzczx22msxO9euXTNhYWFm2rRpWbZv3brV1KhRw25b3bp1reuOf76cfg/J6/qI250sGAMAAAAA/jkczVrt3r27GjdurJSUFO3bt0+vvvqqoqKilJKSooYNG8rd3V3ff/+9Dh06pKZNm9rte/LkSUlStWrVrNmTDRs2zLRswY8//qgzZ87o/fff18svv2y3PmaajRs3asuWLdkuRSDdmAncvn17GWM0fvx49e/fP9sZmI7OOb18+fLppZde0vPPP68ffvghyz4jRoxQtWrVrI+Hp5eSkqJly5apTJky2r59uzUjNjtXr17VkCFDFB0dLRcXF508eVLR0dF2s08lKSIiQlFRUapRo4Zq1qypEiVKaO3atVq7dq0iIiJyHOupp57SY489poEDB+qdd97Ro48+qoIFCyokJET79+/XkCFD1KxZM7Vt2zbbWOPi4rR792716tVLktSgQQMFBQVJurFe8apVq+zWFY6Pj9f+/fvVsWNHderUSQsXLtSwYcM0f/589evXL9P4K1asUNu2bVW1alXFxMTI3d1dHh4e+t///qcjR47owQcftPoaY3TgwAFrhmdGUVFR2rFjhyTJ19dXkZGRWrlyperVqydJ1jq6xYsXV8WKFXX06FEVLlxYGzZs0IoVK6xxihcvLkn66quvtGnTJr3xxhvWtc6XL1+216pPnz5yd3eXu7u7evbsqaioKLVr1y7ba5SmX79+WeZqds/T119/rR07dqh+/fpW33PnzunatWtavny5/vOf/8jb21uSsp2JntHKlSs1YcIEu+sg2b+GzP+fOZzeqVOn9NBDD2nu3LkqVaqUpBszYk+dOqXChQvr1KlTatu2rYoVK6auXbvmKpaMjDF6/PHH5e3trSeeeCJTW0JCgi5duiRjjIwxVsxZxQvkFYq2AAAAAIC/rWbNmvrtt990/vx5FS1a1Nq+ceNGBQQEqFy5cvLw8NDChQtVp04dhYeHa/LkyUpJSbGKg8YYPfDAA/rwww8zjX/ixAl5enpaj11dXbNcn9PFxUUDBw5UtWrVNGfOHH344Yd68803JUlPPfWUzp49q/3796tChQqSbhSE2rRpo/fff9+ueCfdKCZ169bNKg4PHTrUWq7ho48+cnjOZcqUUfHixa0lIKQbBb033nhDX3/9dZbXsHDhwnr++ec1atQoubq62rVNnjxZvr6+WrJkiRo2bKi2bduqYsWKWY4j3bj5U4kSJbR9+3a5ubkpMjLSbsmBNK1atbJuFBUREaESJUpo5cqVWrNmjf773//mOFa9evXk6emptWvX6r333rNuMlWxYkXt3btXq1atUlRUlJ5//nlFR0dnW+DLrvidmpoqm82mLVu2yN3dPVN7v379NHDgQA0aNEjLly/XW2+9le01ycgYo+DgYOs5za2MsaZ/nJsczRjDV199lem53Lt3rx599FFJN5YJmD17drax5HSNpBvrKkvK9Hro169fls+TMUb9+/fXSy+95DD+3Fq7dq369eunZcuWqVq1atb2cuXK6dixY6pbt64k6fjx43brTJ8+fVoREREaPXq0unTpYm1PKxhLN9a+7d69u9atW6euXbtmep2m/QPAkaFDh+rkyZN65513rKVV3nvvPU2ZMkVxly+rbIXK8i1ZWocOH9bwkS/owdYRatCggU6ePJnluthAnsiT+boA7lksj4CM+OgqckKOwBHyA46QH86va9euJjIy0iQkJBhjbnwcOTAw0Hz//ffGGGMGDx5sypcvb+bNm2eMMaZevXqmXLlyZufOncYYY3777TdTvHhxu+UK0j46nf7j7sYYs2vXLlO+fHljjDFnzpwx58+ft3LkzTffNGFhYbmKOavlEdI+lm+MMTNmzDA1a9a8qXOuXr26efvtt63H6T+S/d133xk/P78sl0cwxpjExERTvnx54+fnZy2PsGPHDlOyZEnrY/xz5swxzZo1y/Lj7mkiIyOtj3nv37/fFCxY0FoSIf3yCMYYU716dVO+fHlz+PBhExsbaypWrGiKFy9uje9oLGOM+fjjj02ZMmXslqs4efKkiY+PN8YYk5SUZMqWLWt27NiRbby1a9e2lgnYvHmz3fIILVu2NC+99JLV9/fffzcnT560HteoUcM89thjpmvXrta29Ply8OBBU7JkyUzLI1y4cMGULFnSrFy50tpv+/btJikpKds4u3btasaOHWuMubHEQdmyZe2WR0ifS7Vr1zarV6+2ziGr5RH69+9v/v3vf5vr168bY24sNXDw4MEsj92sWTPTpk0bc/36dXPlyhVTt25d8+mnn+Z4jTLGlV52z9PatWtN+fLlzYkTJ4wxN95/05bE+PDDD+2WR7h48aLD5RHWrl1rypYta7Zt25apbf78+SY8PNwkJyeb8+fPm3Llypm9e/caY4w5ffq0qV69uvnvf/+bab/Tp09bPwvi4uJMWFiY9b6SneyWR3jyySfNAw88YK5cuWL9jNm9e7fpP+g/pmXHHubB/4w1fV9bYgZO/8qUqFjDBLXoYFp27GFaRLTOcnkU/HPd7uURuBEZAAAAACBPfPjhh6pUqZKCgoJUpUoVVa5cWVOnTlWbNm0k3ZjVefz4cWtmbXh4uBITE62ZcFWqVNHChQs1cOBAhYSEqEaNGpo+fXqOxz116pQiIiIUGhqqFi1aaM2aNVq4cOFfPo+hQ4cqNDRUwcHB+vzzz/XBBx84POeKFSsqKChINWrUUPv27fXcc89p8ODBWfZ/4IEHHM6Q9fDw0MSJE62bG12/fl19+vTRG2+8ofvvv1+SNHjwYLm5uWnmzJnZjjN69Gi9//77qlu3rkaPHq2WLVtm27dVq1ZycXFRxYoV5e3trRIlSqhFixbWDNKcxurcubPi4+PtPla+a9cuhYWFKTg4WLVq1VKvXr0UHBycbQwffvihZs2apVq1aundd9+1+1j+okWLtG/fPgUFBSkoKEidOnXS+fPnrfZ+/frpnXfeyXJpBEmqXLmy5s2bpx49eqhly5Zq0KCBDhw4IB8fHy1btkwTJ05USEiI/P39NXLkSKWmpmYb54wZM7Rz504FBwerRYsWevHFF62lERz56KOPtGnTJgUEBCgkJESzZs2SJL311ltyc3Oz8i0iIsLhja1q1aqliIgIBQcHq1mzZurcuXOurlF2snuemjZtqldffVUPPfSQQkJCFBgYqE8++USS1KtXLz388MNq2LChQkND1bZtWyUlJWV7jAEDBigpKUn9+vVTaGioQkNDtWvXLmusatWqqWrVqqpbt66GDx+uGjVqSJLGjh2rEydOaPr06dZ+8+fPlyR98cUXdjdCa9WqVbbPf9p1a9iwoS5evKgyZcpYS3H8/PPPmjlzpo4dO6aGDRsqIiJCrVq10ktT3tTv5j6FRD6ukIjOKlnJX8XKVFSHpyfr/O/HtG3jT/o1eqfuL19Je/bsyfE6A3+FzRgW4ADw18XFxalw4cKKjY21+4gK7l2pqamKiYmRr6+vw7s2495FjsAR8gOOkB93l9TUVI0cOVIrVqzQypUrVaRIkdtyTHLk9vvll1/Us2dP7d+/36mv+92eH82bN9ewYcPUvn37Ox3KP1JqaqpOnjypiZNe06nUwgpt3U02B3liUlMV/eMnKm27pJnTXleBAgVuY7S4E3J6D8nr+sjd9y4FAAAAAHB6Li4ueu2117R9+/bbUrDFnTFw4EB17txZs2bNuisLoUB6+/fv17FzcfJv+i+HBVtJsrm4qEaT9jp2Lk6bNm26TRHiXsKNyAAAAAAAuEvVqVMn082uAgICtGjRotty/Pfffz/Xff/3v//phRdeyLR91KhR6tatW16G9bdER0erb9++mbb36dNHzzzzzO0P6P9bs2bNHTt2Tu6W59YRY4y2Re+UR8mK8ihQMFf7eHoVkkfJSvp+xUq7JUWAvEDRFgAAAACAu9TWrVvvdAi51rZtW7Vt2/ZOh5Gj0NBQRUdH3+kw7ip3y3PrSEJCgv44d14l/Gre1H6+fjV0KPp7XblyRV5eXrcoOtyL+OwCAAAAAAAA7mnXrl2TSTVy8/C8qf3cPfMr1RglJibeoshwr6JoCwAAAAAAgHtavnz5ZHOxKTnp5oqv1xOvysVmk6fnzRV7gZxQtAUAAAAAAMA9zcvLS/cXL6qzx/be1H4xx/apcvnSKlCgwC2KDPcqirYAAAAAAAC4p9lsNtUKDVbSmSNKuhKfq30SEy4r6cxhPdAqnJuQIc9RtAUAAAAAAMA9r3r16vIr7q29Py2TSU112Nekpmr/uuXyK+6tBg0a3KYIcS+haAsAAAAAAIB7noeHh55+4j8qnHhW0T9+osSEy1n2S0y4rOgfP5F34lk999QTLI2AW8LtTgcAAAAAAAAAOAN/f3+NHfGs3pwxWzuXzpFHyUry9ashd8/8up54VTHH9inpzGH5FffWcyOfk7+//50OGf9QFG0BAAAAAACA/y8gIEAzp72uTZs26fsVK3Uo+nulGiMXm02B5Uvrgc791bBhQ+XPn/9Oh4p/MIq2AAAAAAAAQDoFChRQy5Yt1aJFC125ckWJiYny9PRUgQIFuOkYbguKtgAAAAAAAEAWbDabvLy85OXldadDwT2GG5EBAAAAAAAAgBOhaAsAAAAAAAAAToSiLQAAAAAAAAA4EYq2AAAAAAAAAOBEKNoCAAAAAAAAgBOhaAsAAAAAAAAAToSiLQAAAAAAAAA4EYq2AAAAAAAAAOBEKNoCAAAAAAAAgBOhaAsAAAAAAAAAToSiLQAAAAAAAAA4EYq2AAAAAAAAAOBEKNoCAAAAAAAAgBOhaAsAAAAAAAAAToSiLQAAAAAAAAA4EYq2AAAAAAAAAOBEKNoCAAAAAAAAgBOhaAsAAAAAAAAAToSiLQAAAAAAAAA4EYq2AAAAAAAAAOBEKNoCAAAAAAAAgBOhaAsAAAAAAAAAToSiLQAAAAAAAAA4EYq2AAAAAAAAAOBEKNoCAAAAAAAAgBOhaAsAAAAAAAAAToSiLQAAAAAAAAA4EYq2AAAAAAAAAOBEKNoCAAAAAAAAgBOhaAsAAAAAAAAAToSiLQAAAAAAAAA4EYq2AAAAAAAAAOBEKNoCAAAAAAAAgBOhaAsAAAAAAAAAToSiLQAAAAAAAAA4EYq2AAAAAAAAAOBEKNoCAAAAAAAAgBOhaAsAAAAAAAAAToSiLQAAAAAAAAA4EYq2AAAAAAAAAOBEKNoCAAAAAAAAgBOhaAsAAAAAAAAAToSiLQAAAAAAAAA4EYq2AAAAAAAAAOBEKNoCAAAAAAAAgBOhaAsAAAAAAAAAToSiLQAAAAAAAAA4EYq2wF3Az89PNpst09fjjz+u69eva8SIEQoKCpKXl5dKlSql3r176/Tp0w7HXLBgQZZjJiYm3qazAgAAAAAAQFbc7nQAAHK2ZcsWpaSkWI93796tVq1aqUuXLrpy5Yq2bdumMWPGKCQkRBcvXtTTTz+tDh06aOvWrQ7H9fb21oEDB+y2eXp63pJzAAAAAAAAQO5QtAXuAsWLF7d7PHnyZFWqVEnNmjWTzWbTihUr7NpnzpypevXq6cSJEypXrly249psNpUsWfKWxAwAAAAAAIC/hqItcJe5du2aFi5cqGeffVY2my3LPrGxsbLZbLrvvvscjhUfH6/y5csrJSVFoaGhmjhxomrWrOlwn6SkJCUlJVmP4+LiJEmpqalKTU29uZPBP1JqaqqMMeQDskWOwBHyA46QH8gJOQJHyA84Qn4gJznlSF7nDkVb4C7z1Vdf6dKlS+rbt2+W7YmJiRo5cqQeffRReXt7ZztO9erVtWDBAgUFBSkuLk7Tp09Xo0aNtGPHDlWpUiXb/SZNmqQJEyZk2n7u3DnWw4WkGz+oYmNjZYyRiwtLpyMzcgSOkB9whPxATsgROEJ+wBHyAznJKUcuX76cp8ezGWNMno4I4JZq06aN8uXLp2XLlmVqu379urp06aITJ05ozZo1Dou2GaWmpqpWrVpq2rSpZsyYkW2/rGbali1bVhcvXryp4+GfKzU1VefOnVPx4sX5ZQdZIkfgCPkBR8gP5IQcgSPkBxwhP5CTnHIkLi5OPj4+io2NzZP6CDNtgbvI8ePHFRUVpS+//DJT2/Xr19W1a1cdPXpUq1atuuk3CBcXF9WtW1cHDx502M/Dw0MeHh5Z7s8PNqSx2WzkBBwiR+AI+QFHyA/khByBI+QHHCE/kBNHOZLXeUMWAneR+fPny9fXV+3atbPbnlawPXjwoKKiolS0aNGbHtsYo+joaN1///15FS4AAAAAAAD+AmbaAneJ1NRUzZ8/X3369JGb2/+9dJOTk9W5c2dt27ZNy5cvV0pKis6cOSNJKlKkiPLlyydJ6t27t0qXLq1JkyZJkiZMmKAGDRqoSpUqiouL04wZMxQdHa3Zs2ff/pMDAAAAAACAhaItcJeIiorSiRMn1L9/f7vtp06d0jfffCNJCg0NtWtbvXq1mjdvLkk6ceKE3VT9S5cuadCgQTpz5owKFy6smjVr6qefflK9evVu6XkAAAAAAADAMYq2wF2idevWyuq+gX5+flluz2jNmjV2j6dNm6Zp06blVXgAAAAAAADII6xpCwAAAAAAAABOhKItAAAAAAAAADgRirYAAAAAAAAA4EQo2gIAAAAAAACAE6FoCwAAAAAAAABOhKItAAAAAAAAADgRirYAAAAAAAAA4EQo2gIAAAAAAACAE6FoCwAAAAAAAABOhKItAAAAAAAAADgRirYAAAAAAAAA4EQo2gIAAAAAAACAE6FoCwAAAAAAAABOhKItAAAAAAAAADgRirYAAAAAAAAA4EQo2gIAAAAAAACAE6FoCwAAAAAAAABOhKItAAAAAAAAADgRirYAAAAAAAAA4EQo2gIAAAAAAACAE6FoCwAAAAAAAABOhKItAAAAAAAAADgRirYAAAAAAAAA4EQo2gIAAAAAAACAE6FoCwAAAAAAAABOhKItAAAAAAAAADgRirYAAAAAAAAA4EQo2gIAAAAAAACAE6FoCwAAAAAAAABOhKItAAAAAAAAADgRirYAAAAAAAAA4EQo2gIAAAAAAACAE6FoCwAAAAAAAABOhKItAAAAAAAAADgRirYAAAAAAAAA4EQo2gIAAAAAAACAE6FoCwAAAAAAAABOhKItAAAAAAAAADgRirYAAAAAAAAA4EQo2gIAAAAAAACAE6FoCwAAAAAAAABOhKItAAAAAAAAADgRirYAAAAAAAAA4ETc7nQAwD9ZXFycNm3apN9//11Xr15VsWLF5O/vr8DAwDsdGgAAAAAAAJwURVsgjyUnJ+vzzz/X3Llz9fPPPys1NVXGGKvdZrOpaNGi6tGjh4YMGaIqVarcwWgBAAAAAADgbFgeAchD33zzjfz9/dW7d295eXnp1Vdf1Y8//qgdO3bowIED2rhxoxYuXKhHHnlEX331lfz9/TV48GD9+eefdzp0AAAAAAAAOAlm2gJ5qE+fPnrmmWc0ePBg+fr6Ztmnfv366t69u2bMmKGVK1fqlVde0Zw5czR27NjbHC0AAAAAAACcEUVbIA8dPXpU9913X677h4eHKzw8XJcuXbplMQEAAAAAAODuwvIIQB66mYJtXuwHAAAAAACAfx5m2gK3yaFDh7RixQoZYxQeHq5q1ard6ZAAAAAAAADghJhpC9wGX331lYKCgvT+++9r+vTpCg4O1meffXanwwIAAAAAAIATomgL3AajR4/Wl19+qV9//VUHDhzQ8OHDNXr06DsdFgAAAAAAAJwQRVsgD/Xt21cXLlzItP2PP/5QixYtrMfNmjXTmTNnbmdoAAAAAAAAuEtQtAXy0J9//qnq1avro48+stseFhamJ598Unv37tUvv/yil19+WQ0bNrxDUQIAAAAAAMCZUbQF8tDy5cs1a9YsjRgxQhERETpy5Igkafbs2dq/f78CAwPVoEEDJScna+7cuXc4WgAAAAAAADgjirZAHuvatav27dunSpUqKTg4WJMmTVLp0qW1bt06Xb58WXFxcfr555/l5+d3p0MFAAAAAACAE6JoC9wChQsX1jvvvKMffvhBixYtUmhoqDZt2iQvLy8VLFjwTocHAAAAAAAAJ0bRFrgFkpKSFBcXp0aNGmn79u3q2rWrwsPD9fjjj+vy5ct3OjwAAAAAAAA4MYq2QB46ffq0WrduLS8vL/n4+CgwMFDR0dEaM2aMoqOjtX//flWvXl1ffvnlnQ4VAAAAAAAAToqiLZCHHnvsMV2+fFnr1q3T9u3bVbNmTXXs2FGpqamqUqWKVq5cqZdfflmPPfaYHnrooTsdLgAAAAAAAJwQRVsgD/3000+aOHGiGjZsqODgYE2fPl2nT5/W4cOHrT79+vXT3r17Vbhw4TsYKQAAAADg/7F352FVVe3/xz8HSRANnGcTtRwYD4oozgPOZmWllqk4PlZmZZZTllo5NFhp2ZxDpjllmZUVhTlrVjjngENmKmSKDILAWb8//Lm/IXDQAjnU+3VdXhd7r7XXvvc+96bnuVlnbQBwVRRtgXxUpUoVrV+/3treuHGjbDabKlWqlKVfhQoVtGDBgusdHgAAAAAAAIoA98IOAPg3mTp1qu655x4tXbpUJUuW1I4dOzRhwgR5e3sXdmgAAAAAAAAoIijaAvmoZ8+e2rdvn77++mulpqZqzpw5CgsLK+ywAAAAAAAAUIRQtAXyWe3atTV8+PDCDgMAAAAAAABFFGvaAvno+PHjf+u4EydO5HMkAAAAAAAAKKoo2gL56JZbbtHDDz+sgwcP5tk3PT1dy5Ytk91u1/vvv38dogMAAAAAAEBRwPIIQD765ptv9Oijj+q1115T48aN1bZtWzVs2FAVK1aUp6en/vzzT8XGxmrLli1as2aNkpOT9fDDD+vRRx8t7NABAAAAAADgIijaAvmoZcuW2r59u7788ku9+eabmjVrli5cuCCbzSZJMsZIurTu7YMPPqjhw4erSpUqhRkyAAAAAAAAXAzLIwAFoEuXLvr000917tw5bd26VR9//LE+/PBDff311zp+/LgOHTqkyZMnX3XB1tfXVzabLdu/Bx98UNKlYvCkSZNUtWpVlShRQm3atNGePXvyHHfFihXy8/OTh4eH/Pz8tHLlyn903QAAAAAAAPjnmGkLFKAbbrhBjRs3/sfj/PDDD8rMzLS2d+/erQ4dOujuu++WJD3//POaOXOm5s2bp7p16+rZZ59Vhw4dtH//ft144405jrl582b17t1bzzzzjO644w6tXLlSvXr10oYNG9SkSZN/HDMAAAAAAAD+HmbaAkVAhQoVVLlyZevf6tWrVadOHbVu3VrGGL3yyiuaMGGCevbsqYCAAM2fP18pKSlatGhRrmO+8sor6tChg8aNG6f69etr3Lhxat++vV555ZXrd2EAAAAAAADIhqItUMRcvHhRCxcu1KBBg2Sz2XTkyBGdOnVKHTt2tPp4eHiodevW2rRpU67jbN68OcsxktSpUyenxwAAAAAAAKDgsTwCUMR88sknOnfunCIjIyVJp06dkiRVqlQpS79KlSrp2LFjuY5z6tSpHI+5PF5u0tLSlJaWZm2fP39ekuRwOORwOK76OvDv5XA4ZIwhH5ArcgTOkB9whvxAXsgROEN+wBnyA3nJK0fyO3co2gJFzHvvvacuXbqoatWqWfbbbLYs28aYbPuu9HeOmTZtmiZPnpxtf3x8vFJTU50ei/8Gh8OhhIQEGWPk5sYXOpAdOQJnyA84Q34gL+QInCE/4Az5gbzklSOJiYn5ej6KtkARcuzYMUVFRenjjz+29lWuXFnSpZmzVapUsfbHxcVlm0n7V5UrV842qzavYyRp3LhxGjVqlLV9/vx51ahRQxUqVJC3t/c1XQ/+nRwOh2w2mypUqMD/2EGOyBE4Q37AGfIDeSFH4Az5AWfID+Qlrxzx9PTM1/NRtAUKyIoVK3THHXfk6y/7uXPnqmLFiurWrZu1r1atWqpcubK++eYbhYSESLq07u3333+vGTNm5DpWeHi4vvnmGz366KPWvq+//lrNmjVzGoOHh4c8PDyy7Xdzc+M/bLDYbDZyAk6RI3CG/IAz5AfyQo7AGfIDzpAfyIuzHMnvvCELgQJy9913q2bNmnruuecUFxf3j8dzOByaO3euBgwYIHf3//t7i81m0yOPPKKpU6dq5cqV2r17tyIjI+Xl5aV7773X6te/f3+NGzfO2n744Yf19ddfa8aMGfrll180Y8YMRUVF6ZFHHvnHsQIAAAAAAODvo2gLFJC1a9cqPDxckydP1k033aR+/fppy5Ytf3u8qKgo/frrrxo0aFC2tieeeEKPPPKIHnjgAYWGhurEiRP6+uuvdeONN1p9fv31V508edLabtasmT766CPNnTtXQUFBmjdvnpYsWaImTZr87RgBAAAAAADwz9mMMaawgwD+zU6ePKk33nhD7777rk6fPi273a6HHnpI99xzT47LDBQ158+fl4+PjxISEljTFpIuzQqPi4tTxYoV+VoRckSOwBnyA86QH8gLOQJnyA84Q34gL3nlSH7XR8hCoIBVqVJFU6ZM0a+//qqFCxfKzc1NgwcPVvXq1TVu3Lgss18BAAAAAAAAirbAdXLkyBFt3bpVBw8eVLFixRQYGKhXX31VdevW1WeffVbY4QEAAAAAAMBFULQFCpAxRqtWrVKnTp3UoEEDLVq0SCNGjNDRo0f13Xff6ejRo2rTpo0effTRwg4VAAAAAAAALsI97y4A/o4ZM2bozTff1LFjxxQcHKx33nlH9957b5Z1bCtWrKjHH39cbdu2LcRIAQAAAAAA4Eoo2gIF5Mknn1SPHj00b948tW7dOtd+derU0VNPPXUdIwMAAAAAAIAro2gLFJBDhw6pZs2aefarVq2ann766esQEQAAAAAAAIoC1rQFCkjVqlWVnJycY1tycrLS09Ovc0QAAAAAAAAoCijaAgVk6NChGjJkSI5tw4YN0/3333+dIwIAAAAAAEBRQNEWKCDR0dHq0aNHjm233nqrvv322+scEQAAAAAAAIoCirZAATl9+rSqVKmSY1vlypV16tSp6xwRAAAAAAAAigKKtkABKV26tA4dOpRj26FDh3TjjTde54gAAAAAAABQFFC0BQpI27ZtNW3aNP35559Z9v/555+aPn262rVrV0iRAQAAAAAAwJW5F3YAwL/VpEmT1LhxY91yyy3q3bu3qlWrpt9++03Lli1Tenq6Jk+eXNghAgAAAAAAwAVRtAUKSL169bR+/XqNGjVK77zzjjIzM1WsWDG1bt1aM2fOVL169Qo7RAAAAAAAALggirZAAQoODta3336rCxcu6OzZsypbtqw8PT0LOywAAAAAAAC4MIq2wHVQokQJlShRorDDAAAAAAAAQBFA0RYoQJmZmfryyy+1b98+XbhwIUubzWbTxIkTCykyAAAAAAAAuCqKtkABOXPmjFq2bKlffvlFNptNxhhJl4q1l1G0BQAAAAAAwJXcCjsA4N9qwoQJ8vT01LFjx2SM0datW3Xw4EGNGjVKdevW1a+//lrYIQIAAAAAAMAFUbQFCsi3336rUaNGqWrVqpIkNzc31alTRy+88IIiIiI0evToQo4QAAAAAAAAroiiLVBAfvvtN/n6+qpYsWJyc3NTcnKy1Xbrrbfqm2++KcToAAAAAAAA4Koo2gIFpHz58kpISJAkVa1aVbt377ba/vzzT2VkZBRWaAAAAAAAAHBhvIgMKCCNGjXSnj171K1bN3Xt2lVTpkyRt7e3ihcvrvHjx6tp06aFHSIAAAAAAABcEEVboICMGDFCsbGxkqRnnnlGW7ZsUf/+/SVJderU0auvvlqY4QEAAAAAAMBFUbQFCkhERIQiIiIkSRUqVNDPP/+s3bt3y2azqX79+nJ35/EDAAAAAABAdqxpCxSACxcuqHnz5oqKirL22Ww2BQYGKiAggIItAAAAAAAAckXRFigAJUqU0K5duyjOAgAAAAAA4JpRtAUKSHh4uLZt21bYYQAAAAAAAKCIYRogUEBeeukl3XbbbapcubJ69uypUqVKFXZIAAAAAAAAKAKYaQsUkPDwcP32228aOHCgfHx8dOONN8rb29v65+PjU9ghAgAAAAAAwAUx0xYoIHfeeadsNlthhwEAAAAAAIAihqItUEDmzZtX2CEAAAAAAACgCGJ5BAAAAAAAAABwIcy0BQrIggUL8uzTv3//6xAJAAAAAAAAihKKtkABiYyMzHH/X9e5pWgLAAAAAACAK1G0BQrIkSNHsu37448/9Omnn2rJkiX66KOPCiEqAAAAAAAAuDqKtkABqVmzZo77GjVqpPT0dL366qu8rAwAAAAAAADZ8CIyoBC0b99eq1atKuwwAAAAAAAA4IIo2gKF4NixYypWrFhhhwEAAAAAAAAXxPIIQAFZt25dtn1paWnauXOnpk2bpvbt2xdCVAAAAAAAAHB1FG2BAtKmTRvZbLYs+4wxkqSIiAjNnj27MMICAAAAAACAi6NoCxSQ6OjobPs8PT3l6+urSpUqFUJEAAAAAAAAKAoo2gIFpHXr1oUdAgAAAAAAAIogXkQGFJADBw7o+++/z7Ht+++/18GDB69zRAAAAAAAACgKKNoCBWTUqFH69NNPc2z77LPP9Nhjj13niAAAAAAAAFAUULQFCsgPP/ygVq1a5djWunVr/fDDD9c5IgAAAAAAABQFFG2BApKQkKBSpUrl2FaiRAmdPXv2OkcEAAAAAACAooCiLVBAqlWrpm3btuXYtm3bNlWpUuU6RwQAAAAAAICigKItUEBuv/12TZ8+XdHR0Vn2r127VjNmzNAdd9xRSJEBAAAAAADAlbkXdgDAv9VTTz2lr776ShEREapbt66qV6+u3377TQcOHJCfn58mTZpU2CECAAAAAADABTHTFiggPj4+2rJliyZNmqSyZcvq2LFjKlu2rCZPnqzNmzfL29u7sEMEAAAAAACAC2KmLVCASpUqpYkTJ2rixImFHQoAAAAAAACKCGbaAgUkPj5eBw4cyLHtwIED+uOPP65zRAAAAAAAACgKmGkLFJAHH3xQPj4+euedd7K1vfTSSzp//rwWL15cCJEBAAAAAADAlTHTFiggGzduVKdOnXJs69SpkzZs2HCdIwIAAAAAAEBRQNEWKCB//PGHypUrl2NbmTJlFB8ff50jAgAAAAAAQFFA0RYoIJUqVdKuXbtybNu1a1euBV0AAAAAAAD8t1G0BQpI586d9dxzz2V7GdnBgwc1bdo0de3atZAiAwAAAAAAgCvjRWRAAZk0aZJWr16toKAgtW3bVtWrV9dvv/2m6OholS9fXpMnTy7sEAEAAAAAAOCCmGkLFJCqVatq+/bt6tu3r3bu3Kn58+dr586duu+++7Rt2zZVrVq1sEMEAAAAAACAC2KmLVCAqlatqvfeey/Htvj4eFWoUOE6RwQAAAAAAABXx0xb4DoyxuiLL77QnXfeqerVqxd2OAAAAAAAAHBBzLQFroPY2Fi9//77mj9/vk6ePKnixYvrzjvvLOywAAAAAAAA4IIo2gIFJDU1VcuWLdN7772n9evXyxgjm82mUaNGaezYsSpXrlxhhwgAAAAAAAAXxPIIQD774YcfNHz4cFWuXFmRkZH66aefFBkZqdWrV8sYo1tvvZWCLQAAAAAAAHLFTFsgHwUFBWnPnj2SpPDwcA0aNEi9e/dWyZIllZCQUMjRAQAAAAAAoCigaAvko927d8tms6lbt26aPn26/Pz8CjskAAAAAAAAFDEsjwDko1deeUVBQUFavXq1AgMDFR4ernfffVeJiYmFHRoAAAAAAACKCIq2QD4aOXKkfv75Z23btk3Dhg3TL7/8omHDhqlKlSoaNmyYbDabbDZbYYcJAAAAAAAAF0bRFigAoaGheuONN3Ty5EnNnz9foaGhWr58uYwxGjx4sF566SWdOXOmsMMEAAAAAACAC6JoCxQgT09P9evXT2vXrtWBAwc0duxYpaSk6PHHH1eNGjWuaawTJ07ovvvuU7ly5eTl5SW73a4ff/zRar88i/fKfy+88EKuY86bNy/HY1JTU//2NQMAAAAAAOCfoWgLXCd16tTR1KlT9euvv2rVqlXq3LnzVR979uxZNW/eXDfccIO+/PJL7d27Vy+99JJKly5t9Tl58mSWf++//75sNpvuvPNOp2N7e3tnO9bT0/PvXiYAAAAAAAD+IffCDgD4r3Fzc1P37t3VvXv3qz5mxowZqlGjhubOnWvt8/X1zdKncuXKWbY//fRTtW3bVrVr13Y6ts1my3YsAAAAAAAACg8zbYEiYNWqVQoNDdXdd9+tihUrKiQkRO+8806u/U+fPq3PP/9cgwcPznPspKQk1axZU9WrV1f37t31888/52foAAAAAAAAuEbMtAWKgMOHD+uNN97QqFGjNH78eG3btk0jR46Uh4eH+vfvn63//PnzdeONN6pnz55Ox61fv77mzZunwMBAnT9/Xq+++qqaN2+uHTt26JZbbsnxmLS0NKWlpVnb58+flyQ5HA45HI5/cJX4t3A4HDLGkA/IFTkCZ8gPOEN+IC/kCJwhP+AM+YG85JUj+Z07NmOMydcRAeS74sWLKzQ0VJs2bbL2jRw5Uj/88IM2b96crX/9+vXVoUMHzZ49+5rO43A41LBhQ7Vq1UqzZs3Ksc+kSZM0efLkbPsPHDigG2+88ZrOh38nh8OhhIQE+fj4yM2NL3QgO3IEzpAfcIb8QF7IEThDfsAZ8gN5yStHEhMTVbduXSUkJMjb2/sfn4+ZtkARUKVKFfn5+WXZ16BBA61YsSJb3/Xr12v//v1asmTJNZ/Hzc1NjRs31sGDB3PtM27cOI0aNcraPn/+vGrUqKEKFSrkyy8lFH0Oh0M2m00VKlTgf+wgR+QInCE/4Az5gbyQI3CG/IAz5AfykleO5PdL3SnaAkVA8+bNtX///iz7Dhw4oJo1a2br+95776lRo0YKDg6+5vMYYxQTE6PAwMBc+3h4eMjDwyPbfjc3N/7DBovNZiMn4BQ5AmfIDzhDfiAv5AicIT/gDPmBvDjLkfzOG7IQKAIeffRRbdmyRVOnTtWhQ4e0aNEivf3223rwwQez9Dt//ryWLVumIUOG5DhO//79NW7cOGt78uTJ+uqrr3T48GHFxMRo8ODBiomJ0fDhwwv0egAAAAAAAJA7ZtoCRUDjxo21cuVKjRs3TlOmTFGtWrX0yiuvqG/fvln6ffTRRzLG6J577slxnF9//TXLX37OnTunYcOG6dSpU/Lx8VFISIjWrVunsLCwAr0eAAAAAAAA5I4XkQH4R86fPy8fH598W2gbRZ/D4VBcXJwqVqzI14qQI3IEzpAfcIb8QF7IEThDfsAZ8gN5yStH8rs+QhYCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsA+Fu6du2q2NjYv328r6+vdu/enY8RAQAAAADw70DRFigiTpw4ofvuu0/lypWTl5eX7Ha7fvzxR6s9MjJSNpsty7+mTZvmOe6KFSvk5+cnDw8P+fn5aeXKlQV5GfgX+eKLL1SnTp3CDgMAAAAAgH8dirZAEXD27Fk1b95cN9xwg7788kvt3btXL730kkqXLp2lX+fOnXXy5Enr3xdffOF03M2bN6t3797q16+fduzYoX79+qlXr17aunVrAV4NihKbzaYZM2aoSZMmqlWrlubOnWu1/XWm7IkTJ3TXXXcpKChIdrtdM2bMkCSdPn1ad9xxhwIDAxUQEKC33347x/PMnDlTjRs3VkhIiMLCwqwcvHDhgnr37i0/Pz8FBwerY8eOBXzFAAAAAAAUPvfCDgBA3mbMmKEaNWpkK5hdycPDQ5UrV77qcV955RV16NBB48aNkySNGzdO33//vV555RUtXrz4H8eNfwdPT09t3bpV+/btU1hYmPr16yd396z/+bjvvvvUtWtXLV++XA6HQ3v37pUkjRw5UvXr19fKlSsVFxenRo0ayW63KywsLMvx/fr106hRoyRJW7Zs0eDBg7V7926tWbNGZ8+etcb7888/r8MVAwAAAABQuCjaAkXAqlWr1KlTJ9199936/vvvVa1aNT3wwAMaOnRoln5r165VxYoVVbp0abVu3VrPPfecKlasmOu4mzdv1qOPPpplX6dOnfTKK6/kekxaWprS0tKs7fPnz0uSHA6HHA7H37g6uLp77rlHDodD9erVk7u7u37//XdVr15d0qXP/fz589q0aZO++uorKw/KlSsnh8OhqKgo/fzzz3I4HCpfvrzuuOMORUVFKTQ01Dre4XDoxx9/1LRp03TmzBm5u7tr7969Sk1NVWBgoH755Rfdf//9atWqlbp27Uqe/Qs4HA4ZY/gskSPyA86QH8gLOQJnyA84Q34gL3nlSH7nDkVboAg4fPiw3njjDY0aNUrjx4/Xtm3bNHLkSHl4eKh///6SpC5duujuu+9WzZo1deTIEU2cOFHt2rXTjz/+KA8PjxzHPXXqlCpVqpRlX6VKlXTq1KlcY5k2bZomT56cbX98fLxSU1P/wVXCVSUmJlr/8bHZbDp9+rSKFy+uzMxM/fnnnypZsqQkKS4uTu7u7nI4HEpISJAxRsYYnTlzRsWLF5ckpaSkKDk5WXFxcdbxv/32m+666y6tWLFCwcHBSkxMVN26dXXixAmVKlVK0dHR2rBhg7799ls9/vjjioqKyrY0CIqWv+aImxsrNSEr8gPOkB/ICzkCZ8gPOEN+IC955UhiYmK+no+iLVAEOBwOhYaGaurUqZKkkJAQ7dmzR2+88YZVtO3du7fVPyAgQKGhoapZs6Y+//xz9ezZM9exbTZblm1jTLZ9fzVu3Djra+zSpZm2NWrUUIUKFeTt7f23rg+urUKFCipVqpQkyc3NTeXKlVPFihVVrFgxlS1bVrVq1VKLFi20aNEijR49Wg6HQ3/++acqVqyoiIgIrVy5UpMmTVJ8fLy+/vprLV26NMvx3t7eysjIUHBwsCpWrKh3333XOu+5c+dUsWJF9evXT71791bdunWVmprqdAY5XJ/D4ZDNZlOFChX4H8TIhvyAM+QH8kKOwBnyA86QH8hLXjni6emZr+ejaAsUAVWqVJGfn1+WfQ0aNNCKFSucHlOzZk0dPHgw1z6VK1fONqs2Li4u2+zbv/Lw8Mhx5q6bmxv/YfuXuvKz/ev25Z8/+OADPfTQQwoMDJS7u7siIiL0wgsvaPbs2Ro+fLjsdrscDocmTJigpk2bZhmrdOnSmjJlipo2baqbbrpJPXr0sNr27NmjsWPHWl9B6devn+x2+3W9fhQMm83G7w3kivyAM+QH8kKOwBnyA86QH8iLsxzJ77yhaAsUAc2bN9f+/fuz7Dtw4IBq1qyZ6zFnzpzR8ePHVaVKlVz7hIeH65tvvsmyru3XX3+tZs2a/fOg8a9gjMmy/ccff1g/Hz161Pq5atWq1h8RHA6H4uLiJF1abmPlypU5jv3X45944gk98cQT1vbo0aMlXVr2o0uXLv/oGgAAAAAAKGr40wFQBDz66KPasmWLpk6dqkOHDmnRokV6++239eCDD0qSkpKSNHr0aG3evFlHjx7V2rVrdeutt1ovfrqsf//+GjdunLX98MMP6+uvv9aMGTP0yy+/aMaMGYqKitIjjzxyvS8RAAAAAAAA/x9FW6AIaNy4sVauXKnFixcrICBAzzzzjF555RX17dtXklSsWDHt2rVLt912m+rWrasBAwaobt262rx5s2688UZrnF9//VUnT560tps1a6aPPvpIc+fOVVBQkObNm6clS5aoSZMm1/0aAQAAAAAAcAnLIwBFRPfu3dW9e/cc20qUKKGvvvoqzzHWrl2bbd9dd92lu+6665+GBwAAAAAAgHzCTNsiyGazKSkpqbDDyNPatWsVGhqaa/v69es1ZMgQxcbGqmvXrtcxMte1efNm2e122e12+fv763//+5/S0tJy7Ltr1y61atVK9evXV2BgoIYNG2b13bt3rzWO3W6Xr6+vypYtax178OBBNWvWTHXr1lVYWJj27t37j2M/efKk2rZta21PmjRJFy9edHrMvn371K1bN9WpU0d16tRRt27dtG/fvixj2Gw2rV+/3tr32muvKTIyUtKlNVFtNpuGDBlitSclJclms0mS0tPTZbfbtXTpUqt99erVatCggVJTU//Wdbr683f06FGVL1/+H43x1FNPacmSJfkUEQAAAAAAuFYUbVFoWrZsqXfffVd16tTRF198kWu/jIyM6xhV4QoODtYPP/ygmJgY7dq1S/Hx8Xrrrbdy7Ovp6anXXntNv/zyi2JiYpSQkKCXXnpJkuTn56eYmBjrX/fu3a2lFCTpf//7n4YNG6YDBw7oiSee0ODBg/9x7FWqVFF0dLS1PXnyZKdF299//12tW7dW3759FRsbq9jYWN13331q3bp1liUcfH19NWbMmFzHKVWqlFavXp1j4fmGG27Q/Pnz9cgjj+j06dM6c+aM7r//fs2fP1+enp5/80r//aZMmaLevXsXdhgAAAAAAPxnUbQt4g4ePKhu3bqpcePGCg4O1pw5c6w2m82mGTNmqEmTJqpVq5bmzp1rtW3fvl3h4eEKCgpSWFiYNm7cKEkaMmSIVfiTpCNHjqhy5cpKT09XUlKSBg0apICAAAUEBGjy5Ml5xpeenq6BAweqUaNGCg0N1Y4dOyRln4W7e/du+fr6Svq/mYJTpkxRy5YtNXv2bB06dEgREREKCgqS3W7XJ5984vS8CQkJuvPOO1W/fn21a9dO/fr1s95Gn56errFjxyosLEx2u119+vTRuXPnJEmRkZEaPny42rdvr5o1a+rhhx9WdHS0WrVqJV9fX82cOdM6h6+vr5566ik1a9ZMN910kxYuXKhXX31VYWFhqlOnjrUUQUZGhjp16qTQ0FD5+/urb9++SklJyTFuLy8v3XDDDZKkixcv6sKFC3Jzy/kxveWWWxQUFCTp0pq2jRs31uHDh7P1S0tL06JFi6zCbFxcnH766Sfdd999kqQ777xTR44c0dGjR6/puq507Ngxa4bn8OHDJV1aM9dutysuLi5b/zlz5qhNmza69957rX333HOP2rRpkyWPe/bsqdTUVK1cuTLH83p4eGjs2LFZXrD2V8HBwbr//vs1bNgw3X///erfv7/CwsJy7HvZzJkz1bhxY4WEhCgsLExbt27N1uerr75Sp06dJEnnzp1TsWLF9M4770iS3nvvPet+5zbWCy+8oP/973/WeOfOnVP58uX1559/asuWLWrUqJHsdrsCAgL0xhtvOI339ddf180332z9IeTKOFu0aKFGjRqpSZMmWrdunSQpIiJCK1assPpFR0erYcOGki49B6+99pqkS3n4+OOPKzAwUMHBwercubN1zIsvvqiwsDA1bNhQXbt21fHjx53GuWbNGjVs2FBBQUFq3bq1VWhfu3at7Ha7HnjgAQUHB8vf31/bt2+3jvv888+t33F2uz3HzwMAAAAAgH8VgyJHkklMTDQZGRkmNDTU7Nu3zxhjTHJysgkMDDQ//vij1e+VV14xxhizd+9eU6pUKZOenm7S0tJMjRo1zJo1a4wxxqxfv95UrlzZJCUlmY0bN5qAgADrXE899ZQZNWqUMcaYJ554wvTt29dkZmaapKQkY7fbzdKlS3ONMzo62kgy0dHRxhhjlixZYvz8/Ky2Ro0aWX137dplatasaYwx5siRI0aS+fDDD632sLAw89ZbbxljjDlw4IApW7as+fXXX3M996hRo8zgwYONMcb8+eefxtfX1zz22GPGGGOee+4588wzz1h9p0yZYkaOHGmMMWbAgAGmefPmJjU11SQnJ5sKFSqYgQMHmszMTPPbb7+ZkiVLmsTERGOMMTVr1jSjR482xhizbds2U6JECfP6669b1xoeHm6MMcbhcJg//vjD+nn48OHmhRdeyDX2I0eOmODgYFOyZEnTq1cvk5aWlmvfy5KSkky9evXMJ598kq1t0aJFpmHDhtb29u3bTYMGDbL0ady4sfn++++v6bouS0hIMJLMzp07Tbly5az9l/M0N126dDEzZ87Mtn/mzJmma9euxhhjnn76afPYY4+Zr776ytSvX99kZGSY2bNnmwEDBhhjLt2rcuXKmbS0NFOrVi2zYcMGk5iYaK781Zaenm7q1atn/Pz8rup+xsXFWT9v3rzZ+Pv7Z7uulJQUU7p0aZOammo+/vhjEx4ebnr37m2MMaZPnz5m0aJFTsc6e/asqVixojl37pwxxpgXX3zRDBo0yBhjTI8ePbLk/59//plrrDt27DBVqlQxp06dMsYYc//991ufQ2xsrAkPDzcJCQnGGGMOHjxoqlatai5evGg+/PBD061bN2uc/v37m1mzZhljLj0Hs2fPNsYYM2nSJHPHHXeY1NTULNfz4YcfmqFDh5qMjAxjjDELFiwwPXr0MMYYk5mZaU6ePGkyMzOt8U+fPm3KlStndu7caYwxZuHChda9iI6ONu7u7uaHH34wxhjzxhtvmI4dOxpjjNm/f7+pVKmS2b9/vzHGmIsXL1r3DEVXTjkCXEZ+wBnyA3khR+AM+QFnyA/kJa8cuVwfufz/wf8pZtoWYfv379eePXvUp08f2e12NWvWTImJiVm+Jn75K/ENGjSQu7u7Tp06pf3796t48eLWLMEWLVqoYsWK2rlzp5o1a6b09HRt375dxhjNnz9fAwcOlCRFRUVp+PDhcnNzU8mSJdW/f39FRUU5jfHmm29WmzZtJEm9evXSiRMn9Pvvv+d5bZ6enrrnnnskSYmJiYqJibFmLt5yyy1q0aKFNmzYkOvx0dHRVtxlypTR7bffbrV98sknWrhwobXe6+LFi7PMUL399tvl4eEhLy8v1atXT127dpWbm5uqVaumMmXK6LfffrP6Xv4KecOGDXXhwgX16tVLktSoUSNrTGOMXn75ZYWEhCgoKEiff/65YmJico3d19dXMTExOnXqlNLS0vTxxx87vVfp6enq3bu3OnbsqNtuuy1b+/vvv59t+YPLa75eZozJsn0115Ufrowjp1gkqWPHjqpWrZref//9HMcpXry4pkyZoieeeCLH9p07d+r8+fP6888/FR8fn2dcP//8s1q3bq2AgAANHz5ce/fuzbbUQ4kSJWS327Vx40ZFRUVp3Lhx+umnn+RwOBQdHa327ds7Hat06dK68847NW/ePBlj9MYbb2jEiBGSpLZt2+rZZ5/VlClTtGHDBpUpUybXWNeuXatu3bqpUqVKkqRhw4ZZbWvWrNGhQ4fUqlUr2e1264Vzx48fV8+ePbVlyxadOnVKiYmJ+uyzz7LMer5s9erVeuSRR+Th4SFJqlChgqRLz1FUVJQ1I/j555/XsWPHco1z69atstvtCgwMlHTpd9Nvv/1mLYVRr149a/Z9eHi4YmNjJUnffPONunbtqrp160q6tOSFj49PrucBAAAAAODfwL2wA8DfZ4xR+fLlnRYA/7puZ7FixZSRkSFjTI7Fssv7IiMjNW/ePCUkJKhixYoKCAiwznflcTmNkxebzSZ3d3dlZmZa+658KVTJkiWtsS8X8a7l3Lld4+W2OXPmqF27djm2X3nPcrqHV/YtVqxYtu3L/RYtWqTvv/9e69at04033qhZs2ZZX1G/6667dOjQIUnSt99+q3LlylljlypVSn369NGHH36oPn36aOTIkdZxH3zwgQIDA5Wenq5evXqpSpUqevXVV7Ndy7Fjx7Rp0yYtW7bM2lejRg399ttvysjIkLu7u4wxOn78uG666aZruq7p06fro48+ksPhyPE+/tW5c+es4n2tWrW0cuVKNWzYUJs2bdIjjzySpe+WLVusr+n/1YwZM3Tbbbdp5MiROZ6jb9++eumll/Tpp59m2Z+WlqYBAwZo9uzZOnz4sIYOHep0DeWLFy/qzjvv1Nq1a9WoUSOdP39ePj4+unjxoooXL56lb0REhKKiorR+/XrNmDFD/v7++uCDD1SpUiVVrFgxz7FGjhyp22+/XXXq1FGlSpUUEhIiSXrkkUfUo0cPffvttxo/frwCAgKyLBnxVzkVuf/a1rlzZy1YsCDH9rvuuksLFy5UmTJlFBERkSX/8mKM0ZNPPqlBgwZddX9nv3f++py5ubkpPT1dZ86cUVpamtNrBAAAAADg34iZtkVYvXr15OXllaUgc+jQIf35559Oj6tfv77S0tL03XffSZI2bdqkuLg4awbcgAEDtGzZMr355pvWbFVJ6tChg9555x0ZY5ScnKyFCxcqIiLC6bkOHTpkFRqXL1+uatWqqUqVKqpVq5aOHDmiM2fOSLpUhMyNt7e37Ha75s+fL0mKjY3Vxo0b1bx581yPadu2rdX/3LlzWQp5PXr00MyZM611ZVNSUrRnzx6n1/FPnD17VuXKldONN96oxMREzZs3z2pbvny59bKwcuXKKTY2Vunp6ZIuFQ8//vhja93aWbNmWX0DAwOVkZGhPn36qGzZsnr77bdzLIjNnTtXd9xxh0qXLm3tq1ixokJCQrRw4UJJ0ooVK+Tr62utKXy1xo4dq5iYmFxnPN94441KSEiQJJUuXdqK/fLatPfff7+io6O1aNEi65jFixcrOjpa999/f7bxGjVqpBYtWuS6vqvNZtO0adP05JNPZtn/9NNPKzAwUHfeeacee+wxnTt3LtcZu9KlPyCkp6erRo0akqTZs2fn2jciIkKLFi1SmTJlVKpUKUVEROjpp5+2nou8xqpfv758fX11//33W7NspUuz6GvXrq2hQ4dq/Pjx2rJlS64xtG3bVl988YW1bvB7771ntXXs2FFr1qzR7t27rX3btm2zfh40aJDmzZunuXPnZnnW/6pHjx565ZVXlJaWJknWTOUePXpozpw51u+b9PR0/fzzz7nGGR4erpiYGO3bt0+S9NFHH6l69eqqXLmy1SclJUXffvutZr46S3+cOaPBD47SmugNWrZsmebPn6+UlBSlp6dbeQUAAAAAwL8VRdsizN3dXZ999pmWLl2qoKAg+fv7a8iQIbpw4YLT44oXL64VK1ZowoQJCgoK0iOPPKJly5apZMmSkqQqVaooNDRUq1evtpYokKSJEyfKZrMpMDBQTZo0UY8ePayvW+fGbrfro48+UmhoqKZNm2YV6KpVq6bRo0crNDRUbdu2zVJUzMmHH36ohQsXKjg4WHfeeafeffddqxCWk6eeekpxcXHy8/PTvffeq+bNm1tfqR47dqzsdruaNGmioKAgNW3a1Ols5X+qf//+SkpKkp+fn3r27KmWLVvm2nft2rUKCQlRcHCwQkJCVKlSJU2cODHHvkuWLNHHH3+s7du3KyQkRHa7XQ8++KDVbozRvHnzsi2NIElvvfWW3nrrLdWtW1fTp0/PUujLL4899pjatWuX64vIqlWrprVr1+qDDz5QnTp1VKdOHS1YsEBr165V1apVcxzzueee04kTJ3I9Z+fOnVW7dm1re8uWLVq4cKH1Ui03NzfNnTtXEyZMyPWlWd7e3poyZYrCwsLUqlUra1mAnISGhiohIcFaCqFDhw46duyYVbS9mrGGDh2qjIyMLM/S7Nmz5e/vr5CQED355JNZXg54paCgII0fP17NmjVTixYtsty7W265RQsXLtSQIUMUHBysBg0aZJmRffmFbEeOHFHHjh1zHH/MmDGqU6eOlWMDBgyQJPXr10/33Xef2rRpY70gLDo6Otc4K1SooA8++EB9+/ZVcHCw3njjDS1dutRqv3Dhgh56dLSmvj5XhxLdZSteQhWa9VS1Vr1Vv3UPPfTIKFWvUUNBQUHav39/rucBAAAAAODfwGb43in+hdLT05WZmSlPT0+dP39eLVq00MyZM/OcGYxrd/kr/wkJCfL29i7scIqcBx54QFWqVMm1OF8UORwOxcXFqWLFinJzy/tvg3v27NGUGTOV4FlJfq1ulYdXqWx90lKStHfdZ/JJPa2nxoySv79/QYSO6+RacwT/LeQHnCE/kBdyBM6QH3CG/EBe8sqR/K6PkIX4Vzp79qyaN28uu92uxo0b66677qJgC5fy+++/q379+oqJicm2ru9/SUpKimbOel0JnpVk79g7x4KtJHl4lZK9Y28leFbSzFmvW8ubAAAAAADwb8SLyPCP9ejRQ7/++muWfWXKlHH6Ven8EBcXl+NXujt06KAXXnhBP/74Y4GeH0XbF198ofHjx2fbP27cOPXu3bvAz1+1alX98ssvV91/+PDhOa5tu3nzZpUoUSI/Q/tHpkyZoo8//th60d1lK1asUJ06dbL137x5s47Gn1dwz36y5fHXbJubmxq07K6dK+doy5Ytub5MEAAAAACAoo7lEQD8IyyPgCtd7deKjDEaM/5J7U5wV3CE8/Wx/2pH1HIF+GRoxtRnc3wBH1wfXz2DM+QHnCE/kBdyBM6QH3CG/EBeWB4BAPCfkJycrEPHTqhSLb9rOq6ibwMdOnaCJRIAAAAAAP9aFG0BoAB9+umnatCggex2u3bt2pVjn7Vr1yo0NDTHtu3bt6tv374FGWKhSUtLk8Nh5O7heU3H3eBZQg5jlJqaWkCRAQAAAABQuFjTFgAK0JtvvqkpU6bo7rvv/lvHh4aG6sMPP8znqFyDh4eH3Nxsyki7tuJreuoFudls8vS8tmIvAAAAAABFBTNtAaCAjBw5UuvXr9eYMWPUrFkz3XfffQoNDVVQUJC6d++uuLg4q296eroGDhyoRo0aKTQ0VDt27JCUdRZuRkaGOnXqpNDQUPn7+6tv377WEgHz5s1Tp06ddM899ygwMFChoaE6fPjw9b/oa1CyZEndXLOaTh/Ze03HxR3dp5trVpOXl1cBRQYAAAAAQOGiaAsABWTWrFkKDQ3VrFmztGnTJr3yyivavn27du7cqRYtWmjKlClW3507d2rAgAH68ccf9cQTT+jee+/NNl6xYsW0aNEibd++Xbt375a3t7fmzJljtW/dulXTp0/Xrl27FBERoRkzZlyX6/y7bDabOkW0U9qpWKWlJF3VManJiUo7FavOHdrzEjIAAAAAwL8WRVsAuE4+/PBDhYaGKjAwUO+++65iYmKstptvvllt2rSRJPXq1UsnTpzQ77//nuV4Y4xefvllhYSEKCgoSJ9//nmWMVq0aKGaNWtKksLDwxUbG1vQl/SPhYeHy7eCt/au+0zG4XDa1zgc+mX9avlW8FbTpk2vU4QAAAAAAFx/FG0B4DrYsGGDXnvtNX355ZfatWuXZs6cmeeLtK6cSbpo0SJ9//33WrdunXbt2qXRo0dnGeOva7wWK1ZMGRkZ+XsRBcDLy0ujRj4on9TTivl6iVKTE3Psl5qcqJivl8g79bQee3gESyMAAAAAAP7VKNoCwHVw9uxZeXt7q2zZsrp48aLeeuutLO2HDh3SunXrJEnLly9XtWrVVKVKlWxjlCtXTjfeeKMSExM1b9686xV+gfL399dTY0apmu2cdq6cox1Ry3Xy0B798dthnTy0RzuilmvnyjmqZjunp8c+Jj8/v8IOGQAAAACAAuVe2AEAwH9Bly5dtHDhQtWvX1/Vq1dXs2bN9NVXX1ntdrtdH330kUaNGiVjjBYtWpRtjP79++vTTz+Vn5+fqlWrppYtW+rEiRPX8zIKjL+/v2a//KK2bNmiNd98q0Mxa+QwRm42mwJqVlPnuwYpPDxcJUqUKOxQAQAAAAAocDZjjCnsIAAUXefPn5ePj48SEhLk7e1d2OHABTgcDsXFxalixYpyc7v2L3QYY5SSkqLU1FR5enrKy8uLl479y/zTHMG/G/kBZ8gP5IUcgTPkB5whP5CXvHIkv+sjzLQFALgUm82mkiVLqmTJkoUdCgAAAAAAhYI/HQAAAAAAAACAC6FoCwAAAAAAAAAuhKItAAAAAAAAALgQirYubuDAgQoKCpLdblfjxo317bff5tp3/PjxatCggYKDgxUWFqbvvvvOahs5cqTsdrv1z9PTU7NmzbLan332WdWpU0d16tTRxIkT8yX2p556SkuWLJEkrV27Vl9//bXT/sYYPf/886pfv74aNGigevXq6fnnn9df35Vns9kUERGR5bjy5cvr6NGjkqTIyEh5eHjo8OHDVvvo0aM1adIkSdLSpUtlt9uVnp4uScrMzFTTpk01b968v3WNkyZN0ujRo//WsddLZGSkXnvttb99/O+//662bdvmY0T4u2bNmqWAgADrd8Ll5+uygniOAQAAAADA9ceLyFzcyy+/rNKlS0uSYmJiFBERofj4+BzfpN6yZUtNnDhRJUqU0I4dO9SmTRudPHkyW4H21KlTqlWrlnr16iVJWrdunRYvXqydO3fK3d1dzZs3V4sWLdSpU6d/FPuUKVOsn9euXaukpCR17Ngx1/4TJkzQunXrtGHDBpUvX15//PGHbr/9dp07d05Tp061+sXGxuqrr77KNb6qVatqwoQJWrx4cba2Xr16afny5Zo8ebKeffZZTZ8+XRUqVFBkZOTfv9B/uapVqyo6Orqww3A5GRkZcne/vr9C/f39tXHjRvn4+Oj48eNq2LChmjZtqpo1axbYcwwAAAAAAK6//9RM2xUrVqh+/foKCQnRs88+K5vNpqSkJP3www9q166dQkND1bBhQ61YsUKSdPToUZUvX15PPvmkQkJCVL9+fW3fvl3Dhg1TUFCQwsLC9Pvvv0uS5s2bp44dO6pPnz6qX7++2rVrpz179qhbt26qW7eu+vTpI4fDIUlatGiRmjRpopCQENntdn3xxRe5xny5YCtJ586dy7FYe1mXLl1UokQJSVJgYKAyMzP1xx9/ZOu3YMECderUSZUrV5YkLVmyRJGRkSpZsqQ8PDw0aNAgq+B5Ldd1pcszPGNiYvTmm29qwYIFstvtWYq5lyUlJWnmzJl6++23Vb58eUmXZtC+/fbbevnll5WcnGz1feaZZzR27NgsM3D/6v7779f69ev1008/5dg+Z84czZ07V++8845ee+01vfPOO7ndUkmXitxt27ZVo0aN5O/vr5EjR+Z47vDwcG3evFmSNGrUKFWvXt1qu+mmm3T8+PFcx0pNTVXlypV1/Phx65hx48ZpzJgxcjgcGjFihOrXr6/g4GA1atRIqampucZ74sQJtW/fXkFBQbrtttuy5EBiYqKGDh2qsLAwBQUFafjw4UpPT9eGDRsUGBiYZZzWrVtr1apV1nNw2ebNm9WyZUsFBwcrKChIn3/+uaRLxfRu3bqpcePGCg4O1pw5c5ze16SkJA0aNEgBAQEKCAjQ5MmTrbY2bdpozJgxatmyperUqaPhw4dbbQkJCRoyZIgCAwMVHBysQYMGSZLS09M1duxYhYWFyW63q0+fPjp37lyO546MjNTQoUPVvn171a9fX5GRkUpLS3N6jy7HNWHCBLVv3z5bMdTZ5/TVV1+pRYsWatSokZo0aaJ169ZZx82dO1d2u13BwcEKDQ21Zo3npH379vLx8ZEk1ahRQ5UqVbJyxtlzDAAAAAAAihjzH3H69GlTtmxZc+DAAWOMMS+//LKRZI4fP25CQkLM77//bowxJj4+3tx0003m5MmT5siRI0aSWb16tTHGmOeff974+PiYn3/+2RhjzP3332/GjRtnjDFm7ty5pnTp0ub48ePGGGO6detmgoKCzLlz50x6eroJDAw0X331lTHGmD/++MM4HA5jjDFHjhwxVapUMRcvXsw19jFjxpjatWubMmXKmOjo6Ku63nfffdfY7fYc2+rVq2dWrVplbXfv3t0sWbLE2v78889N27Ztr/m6rjRgwAAze/ZsY4wxTz/9tHnsscdyjXfr1q3G29s7xzZvb2+zbds2Y4wxkkxiYqJp1qyZWbhwoTHGmHLlypkjR45kOedbb71lIiIijDHGPPbYY+bpp5/OMuYHH3xgJFljOHPhwgWTmJhojDEmIyPDdOvWzSxbtizbdT355JNm8uTJxhhjQkJCTFhYmNm3b5/55ZdfTN26dfMca/z48WbChAnGGGNSU1NNpUqVzJEjR8xPP/1k6tevbzIzM40xxpw7d876OSc9e/Y0kyZNMsYYExsba0qVKmV9DkOHDjULFiwwxhjjcDjM4MGDzcyZM40xxtStW9f88MMP1nGVK1c26enp5siRI6ZcuXLGGGPOnDljKlWqZDZu3GiMMSYzM9N6TkJCQsy+ffuMMcYkJyebwMBA8+OPP+Ya5xNPPGH69u1rMjMzTVJSkrHb7Wbp0qXGGGNat25t7rzzTpORkWFSUlKMr6+v2bRpkzHGmMjISDNixAjrHsTFxRljjHnuuefMM888Y40/ZcoUM3LkyBzPPWDAABMYGGgSExNNRkaGufXWW82MGTPyvEetW7c2Xbt2zfF5ze1zio2NNeHh4SYhIcEYY8zBgwdN1apVzcWLF010dLSpU6eO9fsnOTnZJCcn53rP/uqbb74xVatWNSkpKcYY58/x9ZaZmWlOnjzpNE/x30aOwBnyA86QH8gLOQJnyA84Q34gL3nlSEJCgpFk/f//f+o/M9N2y5YtatiwoW655RZJl9aKlaSffvpJhw8fVpcuXWS32xURESFjjPbv3y9JKlWqlLp16yZJatiwoapXry673S5JatSoUZa1U5s3b27NrgwJCVHLli3l4+Mjd3d3BQcHW32PHDmiLl26KCAgQLfffrv++OMPHTt2LNfYp0+frtjYWC1dulSPP/64Ll686PRav/32W02ePFkfffRRtraNGzfq/Pnz6tq1a5b9f53Ba66YRXq11/VPOZtFfKUZM2Zo4sSJud6LwYMH6/jx4/rmm29ybF+5cqWqV6+un3/+Oc9zORwOjRkzRsHBwQoJCdH27dsVExOTrV9ERISioqIUFxenG264Qb169VJUVJSioqKsdXidjfXAAw9o3rx5unjxoj766CM1adJEvr6+ql27ttLT0zVo0CDNnz9f6enpcnPL/dGNjo7WkCFDJEm1a9dW+/btrbZPPvlEL7zwgux2u0JCQrR+/XodPHhQ0qXZp5fX9p03b5769u2b7ev/mzdvlp+fn5o1ayZJcnNzU9myZSVJv/zyi/r06SO73a5mzZopMTFRe/fuzTXOqKgoDR8+XG5ubipZsqT69++vqKgoq71Pnz4qVqyYSpQoIbvdrtjYWEnS6tWr9fjjj1v3oEKFCta1LVy40Fq3efHixU5zs3fv3ipVqpSKFSumQYMGWed2do8kqV+/frrhhhuyjZfb57RmzRodOnRIrVq1kt1u11133SVJOn78uD7//HP1799fVapUkSR5eXnJy8sr15gv27VrlwYOHKglS5bI09NTSUlJunjxotLS0qzn98rnGAAAAAAAFB3/mTVtjTE5FgWNMQoKCsrydeXLjh49Kg8PD2u7WLFi8vT0zLKdkZFhbV/ZllvfPn366MUXX9Ttt98uSSpbtqxSU1MVFRVlvdTq7rvv1oQJE7LEExERoREjRmjXrl0qUaKE7r33XkmXiqqvv/66JOn777/XwIED9dlnn6levXrZrum9997TgAEDVKxYMWvfTTfdlOUr2ceOHdNNN910Tdd17tw5tWnTRpJUq1YtrVy5Mtu5/2r69OlWUXnGjBlq3ry5UlNTtXfvXvn5+Vn99u7dq4sXL2bZJ0ktWrRQQECA3njjjRzHL1asmKZOnaqxY8dacV324Ycf6siRI/rpp5/UqFEj9ezZ0ypC5mTmzJk6c+aMtm7dKk9PT40aNSrH5QnCw8O1e/durVq1Su3bt1dERIT1ArT+/fvnOVa1atXUsmVLLV++XK+//rqee+45SZKPj4/27Nmj77//XtHR0Ro3bpzWrVunm2++2ckdzpkxRp988olq166dra1///4KCQnRiy++qPnz5ztdtiMn5cqVy7GY7SyWK5/Jv247e9ZyG2/OnDlq165dlv1Xm5uXz+3sHkmX/pAjKcfnNafPyRijzp07a8GCBU7jv1p79+5V9+7dNWfOHKWlpWnM+Cd16NgJHTh8TDNmvqpde39Rp4h2OnjwYJbnGAAAAAAAFB3/mZm2TZs21Y8//qhDhw5JkubPny/p0uzZgwcP6rvvvrP6xsTE5Dmb9Z84e/asfH19JUkLFy7U2bNnJV0qysbExCgmJkYTJkxQRkZGlhl+27ZtU1xcnGrXri0/Pz+r7+WC7bp169SvXz99+umnCg4OznbepKQkLV++3FoD9LK7775b8+fPV3JystLS0vT++++rT58+13RNpUuXtuLJqSjm7e2thIQEa3vs2LFW/06dOqlUqVJ6+OGH9b///c9ag/XMmTP63//+p4cfflglS5bMNub06dM1bdo0ay3SK/Xs2VPFixfXxx9/bO07efKkRo8erfnz56tChQp66623NGjQIF24cCHXazt79qwqV64sT09PnT59WsuWLcuxX/HixdWkSRM9++yzioiIUFBQkPbu3at169apbdu2VzXWww8/rDFjxuj8+fPW7Nz4+HglJyerY8eOmjp1qnx9fZ3OYG3Xrp3ef/99SZf+8PDtt99abT169ND06dOtAujZs2etZ6JatWoKDQ3VI488osqVK8vf3z/b2M2aNdO+ffu0adMmSZdmDv/555+SpBIlSmQpTB46dMhqy0mHDh30zjvvyBij5ORkLVy40LpmZ3r06KEXXnjBWks5Pj7e2j9z5kylpKRIklJSUrRnz55cc3PZsmVKTk5WZmam5s6da53b2T36qyuf19w+p44dO2rNmjXavXu3dey2bdskSbfeeqsWLFigU6dOWTFfjj8n+/btU9euXTVhwgR9svpLTX19rnYnuMsnpIv8Ot+nEydPK+YPh56d9a6efW6qwsPD87yfAAAAAADA9fxniraVKlXSm2++qW7duqlZs2ZKTk7WDTfcoGrVqumzzz7TM888o+DgYPn5+Wns2LG5vlwrP7z66qu644471KJFC+3YsSPX2XCZmZmKjIxUQECAgoOD9cgjj2j58uUqU6ZMjv0HDx6stLQ0DRw40PqK+K5du6z2JUuWKCQkxFoi4rI2bdqoV69eCgwMVIMGDdSxY0d17tw5/y5Y0h133KHt27fn+iIySZo2bZr1+TRo0EDh4eHq2rWrpk6dmmN/Pz8/devWTUlJSbme9/nnn88yi3jo0KF66KGHrJdudenSRc2aNcs2q/mvRo4cqU2bNslut2vQoEFOC4sdOnRQXFycmjdvLpvNpkaNGunmm2+2XiiX11hNmzZV6dKl9eCDD1ozP48fP64OHTooKChIgYGBCggIUJcuXXKN4dVXX9XatWsVFBSk0aNHZznHK6+8Ind3d9ntdgUFBSkiIiLL/Rk4cKDeeusta/mQK5UpU0YrV67U448/rqCgIIWEhGjLli2SLuXX0qVLFRQUJH9/fw0ZMsRpMXzixImy2WwKDAxUkyZN1KNHD2vpAGdefvllpaSkKCAgQHa7XePHj5d06Q8BdrtdTZo0UVBQkJo2bep05m+rVq10++23y9/fX2XKlNFDDz10VfcoN7l9TrfccosWLlyoIUOGKDg4WA0aNNCrr75qxfDkk0+qY8eOCg4OVuvWra0idE5Gjhyps2fPaszYcVq2fIV2/bhNN5arosp1/BTU9jYFtOmhbas+0E+b18m7+s36buM27dmzJ8/YAQAAAACAa7GZ/9DCh4mJibrxxhslXXpj+3vvvacNGzYUclTA/zl+/LjCwsJ04MABK1dd3fnz5+Xj46OEhAR5e3sXdjhXJTIyUqGhoRoxYkRhh3JNUlJS9NCjo3XClJa9Y2/ZnKxtbBwOxXy9RNVs5zT75Revaq3c/OJwOBQXF6eKFSs6XX8Z/13kCJwhP+AM+YG8kCNwhvyAM+QH8pJXjuR3feQ/lYWzZs2S3W5XQECA5s6dq3feeaewQwIsTz31lMLDwzV9+vQiU7DF9bV582YdjT8vv1a3Oi3YSpLNzU0NWnbX0fjz1mxoAAAAAABQNPxnXkQmSRMmTHD6NXj8t/Xo0UO//vprln1lypRRdHT0dTn/lClTcl064koxMTGKjIzMtn/AgAF69NFH8zmyvy8uLk4dO3bMtr9Dhw564YUXCiGiS+bNm1do585Lbp9t//79dSr+jDwq15GHV6mrGsuz5I3yqFxHa775Vm3bts3xZYwAAAAAAMD1/KeKtoAzq1atKuwQrprdbne6XqurqFixYpGI05Xk9tkmJSWp/7ARqhSS+3rGOano20CHYtYoJSUlxxf6AQAAAAAA1/OfWh4BAIqqtLQ0ORxG7h6e13TcDZ4l5DBGqampBRQZAAAAAADIbxRtAfxr2Gw2JSUl5djWtWtXxcbGSpLatGmj1atXS7q0lvCSJUuuW4x/l4eHh9zcbMpIu7bia3rqBbnZbPL0vLZiLwAAAAAAKDwsjwDgP+GLL77Icf/VriNc2EqWLKmba1bT7iN7VbmO31UfF3d0nwJqVpOXl1cBRgcAAAAAAPITM20BFCk2m02TJk1S8+bNVbduXS1evDhL++uvv64mTZqoVq1amjt3rrXf19dXu3fvzjZeZGSkXnvtNUnSpEmT1KtXL3Xt2lUBAQHq0aOHzp49W7AXdJVsNps6RbRT2qlYpaXkPJv4SqnJiUo7FavOHdrzEjIAAAAAAIoQirYAihybzaaNGzdqzZo1euihh3T8+HGrzdPTU1u3btUXX3yhkSNHKiMj45rGXr9+vebOnavdu3erevXqmjBhQn6H/7eFh4fLt4K39q77TMbhcNrXOBz6Zf1q+VbwVtOmTa9ThAAAAAAAID9QtAVQ5AwZMkSSVLt2bbVo0ULr16+32vr27StJatCggdzd3XXq1KlrGrt79+6qVKmSJGnYsGGKiorKp6j/OS8vL40a+aB8Uk8r5uslSk1OzLFfanKiYr5eIu/U03rs4REsjQAAAAAAQBHDmrYAiry/fvX/ry/cKlas2DXPtHU2tivw9/fXU2NGaeas17Vz5Rx5VK6jir4NdINnCaWnXlDc0X1KOxUr3wreemzsY/Lzu/r1bwEAAAAAgGtgpi2AIuf999+XJB09elQbNmxQixYt8m3szz//XHFxcZKk9957TxEREfk2dn7x9/fX7Jdf1IQRgxTgk6HzMWsUv/ljnY9ZowCfDE0YMUivvfISBVsAAAAAAIooZtoCKHI8PDzUvHlzxcfHa/bs2apRo0a+jd2+fXsNHjxYR44cUe3atTV//vx8Gzs/eXl5qV27dmrbtq1SUlKUmpoqT09PeXl5udzsYAAAAAAAcG0o2gIoch544AE98cQT2fYbY7Js//HHH9bPR48etX5eu3at9fO8efOyHFOpUiV98MEH+RLn9WCz2VSyZEmVLFmysEMBAAAAAAD5hOURAAAAAAAAAMCFMNMWQJFy5Wza/DRp0qQCGxsAAAAAAOBqMdMWAAAAAAAAAFwIRVsAAAAAAAAAcCH/iaLtwIEDFRQUJLvdrsaNG+vbb7/Nte/48ePVoEEDBQcHKywsTN99953VNnLkSNntduufp6enZs2aZbU/++yzqlOnjurUqaOJEyfmS+xPPfWUlixZIunSy5O+/vprp/2NMXr++edVv359NWjQQPXq1dPzzz+f5SvlNptNERERWY4rX7689aKmyMhIeXh46PDhw1b76NGjra+OL126VHa7Xenp6ZKkzMxMNW3aNNsLna7WpEmTNHr06L917PUSGRmp11577W8f//vvv6tt27b5GBH+rlmzZikgIMD6nXD5+bqsIJ5jAAAAAACAa/GfWNP25ZdfVunSpSVJMTExioiIUHx8vGw2W7a+LVu21MSJE1WiRAnt2LFDbdq00cmTJ7MVaE+dOqVatWqpV69ekqR169Zp8eLF2rlzp9zd3dW8eXO1aNFCnTp1+kexT5kyxfp57dq1SkpKUseOHXPtP2HCBK1bt04bNmxQ+fLl9ccff+j222/XuXPnNHXqVKtfbGysvvrqq1zjq1q1qiZMmKDFixdna+vVq5eWL1+uyZMn69lnn9X06dNVoUIFRUZG/v0L/ZerWrWqoqOjCzsMl5ORkSF39+v7a8jf318bN26Uj4+Pjh8/roYNG6pp06aqWbNmgT3HAAAAAAAA1+KaZ9quWLFC9evXV0hIiJ599lnZbDYlJSXphx9+ULt27RQaGqqGDRtqxYoVkqSjR4+qfPnyevLJJxUSEqL69etr+/btGjZsmIKCghQWFqbff/9dkjRv3jx17NhRffr0Uf369dWuXTvt2bNH3bp1U926ddWnTx85HA5J0qJFi9SkSROFhITIbrfriy++yDXmywVbSTp37lyOxdrLunTpohIlSkiSAgMDlZmZqT/++CNbvwULFqhTp06qXLmyJGnJkiWKjIxUyZIl5eHhoUGDBlkFz2u5ritdnuEZExOjN998UwsWLJDdbs9SzL0sKSlJM2fO1Ntvv63y5ctLujSD9u2339bLL7+s5ORkq+8zzzyjsWPH5vpSp/vvv1/r16/XTz/9lGP7nDlzNHfuXL3zzjt67bXX9M477+R2SyVdKnK3bdtWjRo1kr+/v0aOHJnjucPDw7V582ZJ0qhRo1S9enWr7aabbtLx48dzHSs1NVWVK1fW8ePHrWPGjRunMWPGyOFwaMSIEapfv76Cg4PVqFEjpaam5hrviRMn1L59ewUFBem2227LkgOJiYkaOnSowsLCFBQUpOHDhys9PV0bNmxQYGBglnFat26tVatWWc/BZZs3b1bLli0VHBysoKAgffrpp5KkgwcPqlu3bmrcuLGCg4M1Z84cp/c1KSlJgwYNUkBAgAICAjR58mSrrU2bNhozZoxatmypOnXqaPjw4VZbQkKChgwZosDAQAUHB2vQoEGSpPT0dI0dO1ZhYWGy2+3q06ePzp07l+O5IyMjNXToUN16662SLuVMWlqa03t0Oa4JEyaoffv22Yqhzj6nr776Si1atFCjRo3UpEkTrVu3zjpu7ty5stvtCg4OVmhoqDVrPCft27eXj4+PJKlGjRqqVKmSlTPOnmMAAAAAAIDrxlyD06dPm7Jly5oDBw4YY4x5+eWXjSRz/PhxExISYn7//XdjjDHx8fHmpptuMidPnjRHjhwxkszq1auNMcY8//zzxsfHx/z888/GGGPuv/9+M27cOGOMMXPnzjWlS5c2x48fN8YY061bNxMUFGTOnTtn0tPTTWBgoPnqq6+MMcb88ccfxuFwGGOMOXLkiKlSpYq5ePFirrGPGTPG1K5d25QpU8ZER0df1fW+++67xm6359hWr149s2rVKmu7e/fuZsmSJdb2559/btq2bXvN13WlAQMGmNmzZxtjjHn66afNY489lmu8W7duNd7e3jm2eXt7m23bthljjJFkEhMTTbNmzczChQuNMcaUK1fOHDlyJMs533rrLRMREWGMMeaxxx4zTz/9dJYxP/jgAyPJGsOZCxcumMTERGOMMRkZGaZbt25m2bJl2a7rySefNJMnTzbGGBMSEmLCwsLMvn37zC+//GLq1q2b51jjx483EyZMMMYYk5qaaipVqmSOHDlifvrpJ1O/fn2TmZlpjDHm3Llz1s856dmzp5k0aZIxxpjY2FhTqlQp63MYOnSoWbBggTHGGIfDYQYPHmxmzpxpjDGmbt265ocffrCOq1y5sklPTzdHjhwx5cqVM8YYc+bMGVOpUiWzceNGY4wxmZmZ5syZMyYjI8OEhoaaffv2GWOMSU5ONoGBgebHH3/MNc4nnnjC9O3b12RmZpqkpCRjt9vN0qVLjTHGtG7d2tx5550mIyPDpKSkGF9fX7Np0yZjjDGRkZFmxIgR1j2Ii4szxhjz3HPPmWeeecYaf8qUKWbkyJE5nnvAgAEmMDDQnDhxwkgyXbp0MTNmzMjzHrVu3dp07do1x+c1t88pNjbWhIeHm4SEBGOMMQcPHjRVq1Y1Fy9eNNHR0aZOnTrW75/k5GSTnJyc6z37q2+++cZUrVrVpKSkGGOcP8e4epmZmebkyZNOnzH8t5EjcIb8gDPkB/JCjsAZ8gPOkB/IS145kpCQYCRZtYt/6ppm2m7ZskUNGzbULbfcIunSWrGS9NNPP+nw4cPq0qWL7Ha7IiIiZIzR/v37JUmlSpVSt27dJEkNGzZU9erVZbfbJUmNGjXKsnZq8+bNrdmVISEhatmypXx8fOTu7q7g4GCr75EjR9SlSxcFBATo9ttv1x9//KFjx47lGvv06dMVGxurpUuX6vHHH9fFixedXuu3336ryZMn66OPPsrWtnHjRp0/f15du3bNsv+vM3jNFbNIr/a6/ilns4ivNGPGDE2cODHXezF48GAdP35c33zzTY7tK1euVPXq1fXzzz/neS6Hw6ExY8YoODhYISEh2r59u2JiYrL1i4iIUFRUlOLi4nTDDTeoV69eioqKUlRUlLUOr7OxHnjgAc2bN08XL17URx99pCZNmsjX11e1a9dWenq6Bg0apPnz5ys9PV1ubrmnf3R0tIYMGSJJql27ttq3b2+1ffLJJ3rhhRdkt9sVEhKi9evX6+DBg5IuzT69vLbvvHnz1Ldv32xf/9+8ebP8/PzUrFkzSZKbm5vKli2r/fv3a8+ePerTp4/sdruaNWumxMRE7d27N9c4o6KiNHz4cLm5ualkyZLq37+/oqKirPY+ffqoWLFiKlGihOx2u2JjYyVJq1ev1uOPP27dgwoVKljXtnDhQmvd5sWLFzvNzd69e6tUqVKSpPvuu886t7N7JEn9+vXTDTfckG283D6nNWvW6NChQ2rVqpXsdrvuuusuSdLx48f1+eefq3///qpSpYokycvLS15eXrnGfNmuXbs0cOBALVmyRJ6enkpKStLFixeVlpZmPb9XPscAAAAAAADXwzUtJmmMybEoaIxRUFBQlq8rX3b06FF5eHhY28WKFZOnp2eW7YyMDGv7yrbc+vbp00cvvviibr/9dklS2bJllZqaqqioKOulVnfffbcmTJiQJZ6IiAiNGDFCu3btUokSJXTvvfdKulRUff311yVJ33//vQYOHKjPPvtM9erVy3ZN7733ngYMGKBixYpZ+2666aYsX8k+duyYbrrppmu6rnPnzqlNmzaSpFq1amnlypXZzv1X06dPt4rKM2bMUPPmzZWamqq9e/fKz8/P6rd3715dvHgxyz5JatGihQICAvTGG2/kOH6xYsU0depUjR071orrsg8//FBHjhzRTz/9pEaNGqlnz55WETInM2fO1JkzZ7R161Z5enpq1KhROS5PEB4ert27d2vVqlVq3769IiIirBeg9e/fP8+xqlWrppYtW2r58uV6/fXX9dxzz0mSfHx8tGfPHn3//feKjo7WuHHjtG7dOt18881O7nDOjDH65JNPVLt27Wxt/fv3V0hIiF588UXNnz/f6bIdOY1bvnz5HIvZzo658pn867azZy238ebMmaN27dpl2X+1uXn53M7ukSSr0JvT85rT52SMUefOnbVgwQKn8V+tvXv3qnv37pozZ47S0tI0ZvyTOnTshA4cPqYZM1/Vrr2/qFNEOx08eDDLcwwAAAAAAHA9XNNM26ZNm+rHH3/UoUOHJEnz58+XdGn27MGDB/Xdd99ZfWNiYvKczfpPnD17Vr6+vpKkhQsX6uzZs5IuFWVjYmIUExOjCRMmKCMjI8sMv23btikuLk61a9eWn5+f1fdywXbdunXq16+fPv30UwUHB2c7b1JSkpYvX26tAXrZ3Xffrfnz5ys5OVlpaWl6//331adPn2u6ptKlS1vx5FQU8/b2VkJCgrU9duxYq3+nTp1UqlQpPfzww/rf//5nrcF65swZ/e9//9PDDz+skiVLZhtz+vTpmjZtmrUW6ZV69uyp4sWL6+OPP7b2nTx5UqNHj9b8+fNVoUIFvfXWWxo0aJAuXLiQ67WdPXtWlStXlqenp06fPq1ly5bl2K948eJq0qSJnn32WUVERCgoKEh79+7VunXr1LZt26sa6+GHH9aYMWN0/vx5a3ZufHy8kpOT1bFjR02dOlW+vr5OZ7C2a9dO77//vqRLf3j49ttvrbYePXpo+vTpVgH07Nmz1jNRrVo1hYaG6pFHHlHlypXl7++fbexmzZpp37592rRpk6RLM4f//PNP1atXT15eXlkKk4cOHdKff/6Za5wdOnTQO++8I2OMkpOTtXDhQuuanenRo4deeOEFay3l+Ph4a//MmTOVkpIiSUpJSdGePXtyzc1ly5ZZayV/+OGH1rmd3aO/uvJ5ze1z6tixo9asWaPdu3dbx27btk2SdOutt2rBggU6deqUFfPl+HOyb98+de3aVRMmTNAnq7/U1NfnaneCu3xCusiv8306cfK0Yv5w6NlZ7+rZ56YqPDw8z/sJAAAAAACQn66paFupUiW9+eab6tatm5o1a6bk5GTdcMMNqlatmj777DM988wzCg4Olp+fn8aOHZvry7Xyw6uvvqo77rhDLVq00I4dO3KdDZeZmanIyEgFBAQoODhYjzzyiJYvX64yZcrk2H/w4MFKS0vTwIEDra+I79q1y2pfsmSJQkJCrCUiLmvTpo169eqlwMBANWjQQB07dlTnzp3z74Il3XHHHdq+fXuuLyKTpGnTplmfT4MGDRQeHq6uXbtq6tSpOfb38/NTt27dlJSUlOt5n3/++SyziIcOHaqHHnrIeulWly5d1KxZs2yzmv9q5MiR2rRpk+x2uwYNGuS0sNihQwfFxcWpefPmstlsatSokW6++WbrhXJ5jdW0aVOVLl1aDz74oDXz8/jx4+rQoYOCgoIUGBiogIAAdenSJdcYXn31Va1du1ZBQUEaPXp0lnO88sorcnd3l91uV1BQkCIiIrLcn4EDB+qtt96ylg+5UpkyZbRy5Uo9/vjjCgoKUkhIiDZs2CB3d3d99tlnWrp0qYKCguTv768hQ4Y4LYZPnDhRNptNgYGBatKkiXr06GEtHeDMyy+/rJSUFAUEBMhut2v8+PGSLv0hwG63q0mTJgoKClLTpk2dzvxt1aqVNVu9dOnSeuihh67qHuUmt8/plltu0cKFCzVkyBAFBwerQYMGevXVV60YnnzySXXs2FHBwcFq3bq1VYTOyciRI3X27FmNGTtOy5av0K4ft+nGclVUuY6fgtrepoA2PbRt1Qf6afM6eVe/Wd9t3KY9e/bkGTsAAAAAAEB+sZlrXLQxMTFRN954o6RLb2x/7733tGHDhgIJDvg7jh8/rrCwMB04cMDKVeS/yMhIhYaGqn///vLx8VFCQoK8vb0LO6w8paSk6KFHR+uEKS17x96yOVnb2Dgcivl6iarZzmn2yy9e1Vq5uDR7PC4uThUrVnS6djT+u8gROEN+wBnyA3khR+AM+QFnyA/kJa8cOX/+fL7WR645C2fNmiW73a6AgADNnTtX77zzzj8OAsgvTz31lMLDwzV9+nQKtsjR5s2bdTT+vPxa3eq0YCtJNjc3NWjZXUfjz2vLli3XKUIAAAAAAPBfd80zbQFnevTooV9//TXLvjJlyig6OrqQIspdTEyMIiMjs+0fMGCAHn300esfUC7i4uLUsWPHbPs7dOigF154oRAiyiq//5KUH3L7bPv3769T8We0O8FdwRF5LyNx2Y6o5QrwydCMqc/m+DJGZMVfqJEXcgTOkB9whvxAXsgROEN+wBnyA3m53jNt3f/xCMBfrFq1qrBDuGp2u93peq2uomLFikUiTleS22eblJSk/sNGqFJI7usZ56SibwMdilmjlJSUHF/oBwAAAAAAkJ/40wGA/4y0tDQ5HEbuHp7XdNwNniXkMEapqakFFBkAAAAAAMD/oWgL4D/Dw8NDbm42ZaRdW/E1PfWC3Gw2eXpeW7HXVdlsNiUlJeXY1rVrV8XGxkqS2rRpo9WrV0u6tF70kiVLrluMAAAAAAD8l7E8AoD/jJIlS+rmmtW0+8heVa7jd9XHxR3dp4Ca1eTl5VWA0bmGL774Isf9U6ZMuc6RAAAAAADw38VMWwD/GTabTZ0i2intVKzSUnKeaXql1OREpZ2KVecO7YvUS8hsNpsmTZqk5s2bq27dulq8eHGW9tdff11NmjRRrVq1NHfuXGu/r6+vdu/enW28yMhIvfbaa5KkSZMmqVevXuratasCAgLUo0cPnT17tmAvCAAAAACA/xCKtgD+U8LDw+VbwVt7130m43A47WscDv2yfrV8K3iradOm1ynC/GOz2bRx40atWbNGDz30kI4fP261eXp6auvWrfriiy80cuRIZWRkXNPY69ev19y5c7V7925Vr15dEyZMyO/wAQAAAAD4z6JoCxQRJ06c0H333ady5crJy8tLdrtdP/74oyQpPT1dY8aMUWBgoEqWLKmqVauqf//++v33352OOW/ePNlstmz//s0v3PLy8tKokQ/KJ/W0Yr5eotTkxBz7pSYnKubrJfJOPa3HHh5RJJdGGDJkiCSpdu3aatGihdavX2+19e3bV5LUoEEDubu769SpU9c0dvfu3VWpUiVJ0rBhwxQVFZVPUQMAAAAAANa0BYqAs2fPqnnz5mrbtq2+/PJLVaxYUbGxsSpdurQkKSUlRT/99JMmTpyo4OBgnT17Vo888oh69Oih7du3Ox3b29tb+/fvz7Lv3/LCrdz4+/vrqTGjNHPW69q5co48KtdRRd8GusGzhNJTLyju6D6lnYqVbwVvPTb2Mfn5Xf36t67sr8s7/PUzLlas2DXPtHU2NgAAAAAA+Gco2gJFwIwZM1SjRo1sa49e5uPjo2+++SbLMbNnz1ZYWJh+/fVX3XTTTbmObbPZVLly5XyP2dX5+/tr9ssvasuWLVrzzbc6FLNGDmPkZrMpoGY1db5rkMLDw1WiRInCDvVve//99zVx4kQdPXpUGzZs0OzZs/Nt7M8//1xxcXGqWLGi3nvvPUVEROTb2AAAAAAA/NdRtAWKgFWrVqlTp066++679f3336tatWp64IEHNHTo0FyPSUhIkM1ms2bj5iYpKUk1a9ZUZmam7Ha7nnnmGYWEhOTzFbgmLy8vtWvXTm3btlVKSopSU1Pl6ekpLy+vf8XMUQ8PDzVv3lzx8fGaPXu2atSokW9jt2/fXoMHD9aRI0dUu3ZtzZ8/P9/GBgAAAADgv46iLVAEHD58WG+88YZGjRql8ePHa9u2bRo5cqQ8PDzUv3//bP1TU1M1duxY3XvvvfL29s513Pr162vevHkKDAzU+fPn9eqrr6p58+basWOHbrnllhyPSUtLU1pamrV9/vx5SZLD4ZAjjxd7ubISJUpYs2qNMTLGFHJE/9zw4cM1evRoa/vy55OZmZllOy4uzto+fPiw9fN3331n/fz+++9bPxtjVLFixWyF2svjXe5TlPMBBYscgTPkB5whP5AXcgTOkB9whvxAXvLKkfzOHYq2QBHgcDgUGhqqqVOnSpJCQkK0Z88evfHGG9mKtunp6erTp48cDofmzJnjdNymTZuqadOm1nbz5s3VsGFDzZ49W7NmzcrxmGnTpmny5MnZ9sfHx/+rX2BWFMXHxyslJSXfx01OTlZKSopV7L2Sw+FQQkKCjDFyc+N9l8iOHIEz5AecIT+QF3IEzpAfcIb8QF7yypHExJxfdP53UbQFioAqVapkexlWgwYNtGLFiiz70tPT1atXLx05ckTfffed01m2OXFzc1Pjxo118ODBXPuMGzdOo0aNsrbPnz+vGjVqqEKFCtd8PhScy7NpC8Lzzz/vtN3hcMhms6lChQr8jx3kiByBM+QHnCE/kBdyBM6QH3CG/EBe8sqR/H6pO0VboAho3ry59u/fn2XfgQMHVLNmTWv7csH24MGDio6OVrly5a75PMYYxcTEKDAwMNc+Hh4e8vDwyLbfzc2N/7DBYrPZyAk4RY7AGfIDzpAfyAs5AmfIDzhDfiAvznIkv/OGoi1QBDz66KNq1qyZpk6dql69emnbtm16++239fbbb0uSMjIydNddd+mnn37S6tWrlZmZqVOnTkmSypYtq+LFi0uS+vfvr2rVqmnatGmSpMmTJ6tp06a65ZZbdP78ec2aNUsxMTF6/fXXC+dCAQAAAAAAIP504OJ8fX21e/fuPPddLytXrlRQUJDsdrv8/f01YcKEXF/Y9N1336lJkyby8/NTQECA075JSUnq1KmTypcvr/Lly2drt9ls1nnr16+vhx56KNevf8+bN0933XXX377GmJgYLV269G8fn5tz587l+bVySdq0aZNat26tW265RbVr11afPn1UtWpVrVy5UosXL1a9evV03333acKECerbt68k6f7779eqVav022+/yW63q0qVKta/TZs2affu3fL19dWvv/6qY8eO6aabbtLmzZt17tw5DRs2THXr1lVYWJh+++03rVu3TmFhYVd9XceOHfvb9+R6Wbt2rUJDQ//RGEOGDNH69evzKSIAAAAAAIDcUbTFNYmIiFBMTIxiYmL0888/65tvvtFnn32WY98yZcpo8eLF2rt3r7Zv367vv/9eixcvzrHvDTfcoCeeeEJRUVG5nnvTpk2KiYnRrl27tH79eq1ZsyZfrulKeRVtMzIy/ta4V1O03blzp3r06KGnnnpKBw8e1OHDhxUSEqI2bdqoXbt22rVrl/r166eaNWtq165d1nE+Pj56+umnZYxRdHS0qlSpovLlyys+Pl5t2rSx+q1du1aLFi3Sm2++qcjISD333HOKiopS+fLldeDAAX399dcKDw//W9f3b/fuu++qZcuWhR2GyynItXMBAAAAAPivomhbxM2cOVONGzdWSEiIwsLCtHXrVqvNZrNp2rRpCgsLU+3atRUVFaVx48YpJCRE/v7+2rNnjyTp1KlTatu2rRo1aiR/f3+NHDky1xmxN954o7VGR2pqqtLS0nJdsyMkJES1a9eWdGkxZrvdrsOHD+fY18PDQ+3bt1fp0qXzvOaUlBSlpqaqTJkyefZdu3at7Ha7HnjgAQUHB8vf31/bt2+XJMXHx6tjx44KDAxUUFCQBg4cqLi4OD311FOKioqS3W7X8OHDJV26ly+99JLatGmjcePGZZvNu3r16izF0blz58putys4OFihoaE6evSohg8frnPnzslut+c66/P555/XoEGD1L59e2vfmDFjrAL4Zffff7/Wr1+vn376Kcdxqlatqr59++qZZ57Jsb1r165q0aKFHn/8cQ0YMEDPPPOMfH19nd7Lxx9/XI0bN5bdblfr1q1zfFnZW2+9pf/973+SLhWgbTabvvnmG0nSxIkTrXhyG+vBBx+0lm6QpP3796tGjRrKyMjQZ599Zs22DggI0Keffuo03ieffFI333yzWrdurdWrV2dp++CDD9SkSRM1bNhQrVu3tmau161bVz/++KPVb+7cuerZs6ckqU2bNtY4CQkJGjJkiAIDAxUcHKxBgwZJurSu8NixYxUWFia73a4+ffro3LlzTuP84IMPrBzs1q2bTpw4IenSjPFOnTrpnnvuUWBgoEJDQ7M8PznlmCR99dVXatGihRo1aqQmTZpo3bp1OZ537dq1Cg4O1sCBA9WoUSOFhoZqx44ded6jefPmqXPnzurfv79CQ0O1bds2p9cHAAAAAAD+BgOXVrNmTbNr165c98XFxVn7N2/ebPz9/a1tSea1114zxhizdOlS4+XlZVavXm2MMWbGjBnmnnvuMcYYc+HCBZOYmGiMMSYjI8N069bNLFu2LNeYNm7caAIDA42Hh4d59NFHjcPhyPM6Tp48aSpVqmR+/PFHp/2OHDliypUrl22/JBMYGGiCgoKMl5eX6devX65jzJ0719x5553GGGOio6ONu7u7+eGHH4wxxrzxxhumY8eOxhhjZs6caYYOHWodd+bMmWzH//X8zz33XI7nMMaYzz77zLRu3do6Z506dczvv/9ujDEmOTnZJCcn53ptf9WgQQPz8ccfZ9s/cuRI88ADDxhjjBkwYICZPXu2eeutt0xERIQxxpjHHnvMPP3009b5GzVqZOLj40358uXN4cOHza5du0zNmjWzjJmQkGDKlCljjZGX+Ph46+fFixebbt26GWOM2blzp5FkEhISTGxsrKlVq5Yx5tL9DQ8PN2PGjDHGGNO0aVOzadMmp2Pt37/f+Pr6moyMDGOMMSNGjDBTpkwxxhgTFBRkNm7caIwxJjMz05w9ezbXWFetWmUCAwNNYmKiycjIMLfeeqtp1KiRMcaYDRs2mK5du5rU1FRjjDHr1q0zQUFBxhhjnnvuOfPggw9a47Rq1cqsWrXKGGNM69atzWeffWaMMSYyMtKMGDHCZGZmGmP+7zl87rnnzDPPPGMdP2XKFDNy5Mhc49y1a5epVKmS+e2334wxxjz77LOma9euxphLOebj42OOHj1qjDFmzJgxZtiwYcaY3HMsNjbWhIeHm4SEBGOMMQcPHjRVq1Y1Fy9ezHbu6OhoI8lER0cbY4xZsmSJ8fPzy/MezZ0715QsWdIcOHAg1+vKzMw0J0+etO4PcCVyBM6QH3CG/EBeyBE4Q37AGfIDeckrRxISEqz6SH5gpm0R9/PPP6t169YKCAjQ8OHDtXfvXl28eNFq7927tySpYcOGcnNzU7du3SRJjRo1smbtORwOjRkzRsHBwQoJCdH27dsVExOT6zmbNWumnTt36vjx4/rhhx/yXOfz/PnzuvXWW/XEE0+oYcOGf/taN23apB07dig+Pl7x8fGaPXv2VR1Xr149a2ZreHi4YmNjJUlNmzbVmjVr9Nhjj2nVqlUqWbKk03Euz6bMy+eff67+/furSpUqkiQvLy95eXld1bHSpVm9VzI5zHwePHiwjh8/bs1kvVL58uX18MMP68knn8yx/fvvv5eXl5cOHz6spKSkPOO6vHRCQECApkyZkmOOXJ5ZffjwYUVFRWnatGn67rvvdP78eR04cECNGzd2OlbdunXVoEEDrV69WklJSfroo480bNgwSVL79u31yCOP6Pnnn9fOnTudzsqOjo5W7969VapUKRUrVizLZ/fpp59qx44datKkiex2ux566CHFx8fr4sWLGjBggJYuXaqLFy8qNjZWBw4cUJcuXbKNv3r1aj3++OPWLPMKFSpIkj755BMtXLhQdrtddrtdixcvznV2+eU4u3fvrmrVqkmSHnjgAX333XfW592iRQvVrFlTUtbczS3H1qxZo0OHDqlVq1ay2+3WbPDjx4/neP6bb77ZmiHeq1cvnThxQr///nuu9ygtLU2pqalq0qSJqlSpkuuMfAAAAAAA8M9QtC3CLl68qDvvvFMzZ87U7t27tW7dOhljshRtPT09JUnFihWTh4eHtb9YsWLW2qwzZ87UmTNntHXrVu3cuVP33nuvUlNTJV0q0NrtdjVp0iTb+StUqKBu3bpp2bJlkqS77rrLKladOXNGkpSYmKjOnTurR48eGjVqlHXsyJEjrb5/XZv1anh5eenWW2+11rR1FuNf78GV1x0eHq6YmBg1adJEK1asUOPGjZ2uz1mqVCnrZ3d39yx9L9+va7F3717rHjz44IOSLhXXN23alK3vli1bshW8ixUrpqlTp2rs2LG5Fs9GjRqltWvX6ueff86y/8yZM3rggQf08ccfq3Pnznr88cedxvrrr79q5MiR+vDDD7V792599NFHuV5z+/bt9eWXX+rQoUNq3bq1HA6HVqxYoRYtWsjd3T3PsR5++GG9/vrrmj9/vjp27KhKlSpJupSnc+fOlZeXlwYMGOB0fWBnxURjjAYNGmStzRwTE6Pff/9dxYsXV7Vq1dSwYUOtWrVK8+bNU79+/eTu7u703lw59pw5c6xx9+7dm+uaz5f7/7VIf2XBPrfcdTZe586ds1zbiRMnVLt27at+5mw2W7Z7tGnTJn3wwQeaOGmK3pm3UPsOHFL/YSM0ZvyT8vf3V1BQUK7PHwAAAAAAuHYUbYuw1NRUpaenq0aNGpJ01TNPr3T27FlVrlxZnp6eOn36tFWElf7v5V+X18rdv3+/HA6HpEsF2dWrVysoKEiStHz5cqvIU65cOSUlJalz587q1KmTJk6cmOWcs2bNsvoGBgZeU7yZmZlau3at6tWrl2OMV+vIkSMqVaqUevXqpdmzZ+vAgQNKSkqSt7e3EhISnB5bp04d7dixQ6mpqcrIyNCiRYustltvvVULFizQqVOnJF1agzclJUXe3t5KSUmxCm9+fn7WPXj99dclSaNHj9Z7772nb7/91hrv+eef15kzZ9SnT59scfTs2VPFixfXxx9/nGOcXl5emjhxop566qks+x988EH169dPYWFhev755/XNN99kOeeVEhISVLx4cVWuXFnGGL322mu59o2IiNALL7xgFfHatm2ryZMnKyIi4qrG6tixo3777TdNmzZNI0aMsPb/8ssv8vf314gRI3T//fdry5YtucbQvn17LV26VMnJycrMzNS8efOstsufz+XZpw6Hw1rnWLo0o/r999/XggULFBkZmeP4PXr00AsvvGA9C/Hx8db+mTNnKiUlRdKlz/7y2tG5xfnFF19YufLmm2+qffv2Oc62/qvccqxjx45as2aNtf6sJGvN2ZyeuUOHDllr3i5fvlzVqlVTlSpVstyjPXv2aMQjj2nssy9qd4K7StQMlEe5avIJ6aLdCe6qXC9EjcNb6P3333caMwAAAAAAuHoUbYuAiIgIVa9e3fr322+/SZK8vb01ZcoUhYWFqVWrVllm0l6LkSNHatOmTbLb7Ro0aJBVXMvJsmXLFBAQoODgYIWHhysiIkJDhgzJse+rr76qbdu2aeXKldYMv+eeey7XsRs2bKjw8HCdPXtW1atXV79+/bK0X55RGxgYqGLFiunpp5/+W9d72dq1a9WoUSPZ7XY1b95cL7zwgnx8fNS+fXslJycrODjYehHZlcLDw9WpUycFBASoc+fOqlOnjtXWqlUrPfnkk+rYsaOCg4PVunVrxcfHq2zZsurbt6/1Uqmc2O12ffrpp5o0aZJuueUW1apVS9u3b9fatWtzXb7h+eeft15ClZMhQ4aoePHi1vby5cu1Z88eTZo0SZJUsmRJvffeexo6dKgSExNzHCMwMFB33323/P391aZNG9100025nq99+/b69ddfrTzq0KGDjh07Zm3nNZbNZtPgwYNVqVIlhYeHW/vHjRsnf39/hYSE6IMPPrDiz0n37t3VvXt3BQcHq127dtYfFqRLn8/UqVN12223KTg4WAEBAVqyZInVftttt2nr1q2qUqWK/Pz8chz/5ZdfVkpKigICAmS32zV+/HhJ0tixY61Z30FBQWratKnTpUb8/f01bdo0dezYUUFBQVq/fr3eeuutXPv/9RpyyrFbbrlFCxcu1JAhQxQcHKwGDRro1VdfzXUcu92ujz76SKGhoZo2bZr1x4fL96hTp05q3rKlli5bJuNVVsERd8mnQjV5lCipynX8FBxxl4J7PqgTprSmzJjptEANAAAAAACuns2wKCGAf+D8+fPy8fFRQkKCvL2982XMbt26qU+fPtkK98g/a9eu1ejRo7PMMv6rlJQUPfToaJ0wpWXv2Fs2t9z/xmccDsV8vUTVbOc0++UX5enpqbi4OFWsWNFa9xf4K4fDQY4gV+QHnCE/kBdyBM6QH3CG/EBe8sqR/K6PkIUAXMb27dtVp04dubu769577y3scP7TNm/erKPx5+XX6lanBVtJsrm5qUHL7joaf97pshUAAAAAAODqXP0bdgD867377rs5rlc7e/ZstWzZssDPHxoaqtjY2Kvu36NHD/36669Z9pUpU0bR0dH5Hdo/Mnz48ByLmZs3b1aJEiUKISKpTZs2uc6yNcboq6jv5FG5jjy8SuXY50qeJW+UR+U6WvPNt2rdunV+hgoAAAAAwH8ORVsAliFDhuS6RrErWrVqVWGHcFXefPPNwg7hmiQnJ+vQsROqFNLlmo6r6NtAh2LWWC9iAwAAAAAAfw/LIwAAskhLS5PDYeTu4XlNx93gWUIOY5SWllZAkQEAAAAA8N9A0RYAkIWHh4fc3GzKSEu9puPSUy/IzWaTh4dHAUUGAAAAAMB/A0VbAEAWJUuW1M01q+n0kb3XdFzc0X26uWY1eXl5FVBkAAAAAAD8N1C0BQBkYbPZ1CmindJOxSotJemqjklNTlTaqVh17tBeNputgCMEAAAAAODfjaItACCb8PBw+Vbw1t51n8k4HE77GodDv6xfLd8K3mratOl1ihAAAAAAgH8virYAgGy8vLw0auSD8kk9rZivlyg1OTHHfqnJiYr5eom8U0/rsYdHsDQCAAAAAAD5wL2wAwAAuCZ/f389NWaUZs56XTtXzpFH5Tqq6NtAN3iWUHrqBcUd3ae0U7HyreCtx8Y+Jj8/v8IOGQAAAACAfwWKtgCAXPn7+2v2yy9qy5YtWvPNtzoUs0YOY+RmsymgZjV1vmuQwsPDVaJEicIOFQAAAACAfw2KtgAAp7y8vNSuXTu1bdtWKSkpSk1Nlaenp7y8vHjpGAAAAAAABYCiLQDgqthsNpUsWVIlS5Ys7FAAAAAAAPhX40VkAAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAAAAAAAAgAuhaAsAAAAAAAAALoSiLQAAAAAAAAC4EIq2AAAAAAAAAOBCKNoCAOBCPv30UzVo0EB2u127du3Ksc/atWsVGhqaY9v27dvVt2/fggwRAAAAAFDAKNoCRcSJEyd03333qVy5cvLy8pLdbtePP/5otRtjNGnSJFWtWlUlSpRQmzZttGfPnjzHXbFihfz8/OTh4SE/Pz+tXLmyIC8DQB7efPNNTZkyRTExMQoMDLzm40NDQ/Xhhx8WQGQAAAAAgOuFoi1QBJw9e1bNmzfXDTfcoC+//FJ79+79f+3deViUVfsH8O8gArK6sbugRio7iiKGIkGigla+7oYoWZkSKmrkUhYuqCWpWZqvhpq5L6m4pSUur7gLbrnirog/lEURFOb+/eHlkyMwuMKk3891zZVzznnOcz/P3BDXPWfOYPLkyahcubIyZtKkSYiLi8P06dOxb98+2NjY4J133kFOTk6J8yYlJaFr164IDQ1FSkoKQkND0aVLF+zZs6cMroqIHhcZGYkdO3YgOjoazZs3xwcffAAvLy+4ubkhJCQE6enpytj79++jT58+aNy4Mby8vJCSkgJAcxVuQUEBgoKC4OXlBWdnZ/Ts2RO5ubkAgLlz5yIoKAjdu3eHq6srvLy8kJqaWvYXTUREREREREWwaEv0LzBx4kTUrFkT8fHxaNq0KRwcHBAQEIB69eoBeLDKdsqUKRg5ciQ6duwIFxcXzJs3D7m5uVi4cGGJ806ZMgXvvPMOhg8fjgYNGmD48OEICAjAlClTyujKiOhR06ZNg5eXF6ZNm4Zdu3ZhypQp2L9/Pw4fPgxfX1/ExMQoYw8fPoywsDAcOHAAn3/+OXr06FFkvgoVKmDhwoXYv38/jh49CnNzc/z0009K/549ezBhwgQcOXIEgYGBmDhxYplcJxEREREREWmnX94BEFHp1qxZg6CgIHTu3Bnbtm2Dvb09+vfvj48++ggAcO7cOaSlpaF169bKMYaGhvDz88OuXbvwySefFDtvUlISBg8erNEWFBSktWibn5+P/Px85Xl2djYAQK1WQ61WP+sl0itErVZDRJgPz+Hhz9OCBQuwYMEC5Ofn4+7du7CxsVH63njjDbRs2RJqtRqdOnXCxx9/jMuXLyv3/eG4uLg4rF+/HgUFBcjKykKLFi2Uvrfeegs1a9aEWq2Gt7c3fvzxxzJ53ZgjpA3zg7RhflBpmCOkDfODtGF+UGlKy5EXnTss2hL9C6SmpmLGjBmIiorCiBEjsHfvXkRGRsLQ0BC9evVCWloaAMDa2lrjOGtra1y4cKHEedPS0oo95uF8xYmNjcU333xTpP3GjRvIy8t7msuiV5RarUZWVhZEBHp6/EDH07p37x6ysrKwdu1aTJs2DWvWrEH16tWxadMmxMXFIT09HZmZmSgsLNTYLkFEkJGRgczMTNy/fx/p6elYvnw5tmzZgmXLlsHU1BSzZ8/G7t27kZ6ejpycHKhUKmWO27dvIzc3V2POl4U5QtowP0gb5geVhjlC2jA/SBvmB5WmtBzRtj3ls2DRluhfQK1Ww8vLC+PHjwcAeHp64tixY5gxYwZ69eqljFOpVBrHiUiRtsc97THDhw9HVFSU8jw7Oxs1a9aEpaUlzM3Nn/ia6NWlVquhUqlgaWnJP3aegYGBASwsLCAiqFKlCurXr4/CwkIsWbIEFStWhJWVFSpXroxz587hxIkTaNmyJZYvX44aNWrA1dUVGRkZyji1Wg0bGxvUrVsXOTk5WLlyJerUqQMrKyuYmZnB0NAQVlZWAAALCwsYGBgoz18m5ghpw/wgbZgfVBrmCGnD/CBtmB9UmtJyxMjI6IWej0Vbon8BW1tbODk5abQ1bNgQK1asAADY2NgAeLBy1tbWVhmTnp5eZCXto2xsbIqsqi3tGENDQxgaGhZp19PT4//YSKFSqZgTz0FPTw9t2rTBwoUL4eTkhBo1aqB58+bYtGmTcl89PDywdOlSDB06FCKChQsXatxzPT09hIWFYc2aNXBxcYG9vT1atGiBK1euKOMevk4Pxz/635eNOULaMD9IG+YHlYY5QtowP0gb5geVRluOvOi8UYmIvNAZieiF69GjBy5duoQdO3YobYMHD8aePXuwa9cuiAjs7OwwePBgfP755wAefMTaysoKEydOLHFP265duyInJwfr169X2tq2bYvKlStj0aJFTxRbdnY2LCwskJWVxZW2BODBu4/p6emwsrLiHztULOYIacP8IG2YH1Qa5ghpw/wgbZgfVJrScuRF10e40pboX2Dw4MFo3rw5xo8fjy5dumDv3r2YNWsWZs2aBeDBOz2DBg3C+PHj4ejoCEdHR4wfPx7GxsYa3yjfq1cv2NvbIzY2FgAwcOBAtGzZEhMnTsS7776L1atXY8uWLdi5c2e5XCcREREREREREbFoS/Sv0KRJE6xatQrDhw9HTEwM6tSpgylTpqBnz57KmM8//xx3795F//79cevWLXh7e+OPP/6AmZmZMubixYsa7wY1b94cixcvxqhRo/Dll1+iXr16WLJkCby9vcv0+oiIiIiIiIiI6B/cHoGIngu3R6DH8WNFVBrmCGnD/CBtmB9UGuYIacP8IG2YH1Sast4egVlIVAYcHBxw9OjRUtvKyqpVq+Dm5gYPDw84Oztj5MiRKOn9m7/++gve3t5wcnKCi4uL1rG3b99GUFAQqlOF490AACzvSURBVFevjurVqxfpV6lUynkbNGiAzz77DIWFhcXONXfuXHTq1OmZrzE5ORlLly595uNLkpmZiUmTJpU6bteuXfDz84OjoyPq1q2Lbt264cqVK0p/7969YWhoiNTUVKVt6NCh+PrrrwEAiYmJUKlUGDt2rNJ/9OhRODg4KHHUqlULSUlJSv/06dPh7+9f4uujzfnz54t9zXRJYmIivLy8nmuOvn37auwNTURERERERKSLWLQleg0FBgYiOTkZycnJOHToEDZv3oy1a9cWO7ZKlSpYtGgRjh8/jv3792Pbtm0lfklZxYoV8fnnn2PLli0lnnvXrl1ITk7GkSNHsGPHDmzcuPGFXNPjSivaFhQUPNO8T1K0PXz4MDp06ICvvvoKp0+fRmpqKjw9PdGqVSvk5uYq4+zs7DBy5MgS57G1tcXUqVPxf//3f0X6KleujJkzZ6J3797Izc3F6dOnMXbsWMTHx0OlUj3Ttb0OZs+ejRYtWpR3GDqnpDdPiIiIiIiIqHywaEukA+Li4tCkSRN4enqiadOm2LNnj9KnUqkQGxuLpk2bom7dutiyZQuGDx8OT09PODs749ixYwCAtLQ0+Pv7o3HjxnB2dkZkZGSJKy7NzMyUpfx5eXnIz88v8eMfnp6eqFu3LgDAyMgIHh4eGqtDH2VoaIiAgABUrly51GvOzc1FXl4eqlSpUurYxMREeHh4oH///nB3d4ezszP2798PALhx4wZat24NV1dXuLm5oU+fPkhPT8dXX32FLVu2wMPDA/369QPw4F5OnjwZrVq1wvDhw4us5k1ISECrVq2U5/Hx8fDw8IC7uzu8vLxw/vx59OvXD5mZmfDw8Chx1eekSZMQHh6OgIAApS06OlopgD/06aefYseOHTh48GCx89jZ2aFnz54YM2ZMsf3t2rWDr68vhg0bhrCwMIwZM0ZZiVuSYcOGoUmTJvDw8ICfnx9Onz5dZMzPP/+MTz75BMCDArRKpcLmzZsBAF9++aUST0lzRUREYNq0acp8J0+eRM2aNVFQUIC1a9cqq61dXFywevVqrfGOGjUKb7zxBvz8/JCQkKDR9+uvv8Lb2xuNGjWCn5+fsnL9zTffxIEDB5Rx8fHx6NixIwCgVatWyjxZWVno27cvXF1d4e7ujvDwcADA/fv38cUXX6Bp06bw8PBAt27dkJmZqTXOX3/9VcnB4OBgZVX13LlzERQUhO7du8PV1RVeXl4aPz/F5RgAbNq0Cb6+vmjcuDG8vb2xffv2Ys+bmJgId3d39OnTB40bN4aXlxdSUlJKvUdz585FmzZt0KtXL3h5eWHv3r1ar4+IiIiIiIjKmBDRS1e7dm05cuRIiW3p6elKe1JSkjg7OyvPAcj06dNFRGTp0qVibGwsCQkJIiIyceJE6d69u4iI3L17V3JyckREpKCgQIKDg2XZsmUlxvS///1PXF1dxdDQUAYPHixqtbrU67h27ZpYW1vLgQMHlLasrCwBIFlZWUrbuXPnpFq1akWOByCurq7i5uYmxsbGEhoaWuK54uPj5T//+Y+IiGzdulX09fVl3759IiIyY8YMad26tYiIxMXFyUcffaQcl5GRUeT4R88/bty4Ys8hIrJ27Vrx8/NTzlmvXj25evWqiIjcuXNH7ty5U+K1Paphw4aycuXKIu2RkZHSv39/EREJCwuTH374QX7++WcJDAwUEZEhQ4bI6NGjlfM3btxYbty4IdWrV5fU1FQ5cuSI1K5dW2POrKwsqVKlijJHaW7cuKH8e9GiRRIcHCwimq/Z2bNnpU6dOiLy4P76+PhIdHS0iIg0a9ZMdu3apXWuv//+W2rWrCn37t0TEZGIiAiJiYkRERE3Nzf53//+JyIihYWFcuvWrRJjXbNmjbi6ukpOTo4UFBRI+/btpXHjxiIisnPnTmnXrp3k5eWJiMj27dvFzc1NRETGjRsnAwYMUOZp2bKlrFmzRkRE/Pz8ZO3atSIi0rt3b4mIiJDCwkIR+efncNy4cTJmzBjl+JiYGImMjCwxziNHjoi1tbVcvnxZRETGjh0r7dq1E5EHOWZhYSHnz58XEZHo6Gj5+OOPRaTkHDt79qz4+PgoP1OnT58WOzs75X4+auvWrQJAtm7dKiIiS5YsEScnp1LvUXx8vJiYmMipU6dKvK6XqbCwUK5du6bce6JHMT9IG+YHlYY5QtowP0gb5geVprQcKa4+8jy40pZIBxw6dAh+fn5wcXFBv379cPz4cdy7d0/p79q1KwCgUaNG0NPTQ3BwMACgcePGyqo9tVqN6OhouLu7w9PTE/v370dycnKJ52zevDkOHz6MS5cuYd++faXu85mdnY327dvj888/R6NGjZ75Wnft2oWUlBTcuHEDN27cwA8//PBEx9WvX19Z2erj44OzZ88CAJo1a4aNGzdiyJAhWLNmDUxMTLTO83A1ZWnWrVuHXr16wdbWFgBgbGwMY2PjJzoWQLFbFEgxK58//PBDXLp0SVnJ+rjq1atj4MCBGDVqVLH927Ztg7GxMVJTU3H79u1S4/rjjz/g4+MDFxcXxMTEFJsjD1dWp6amYsuWLYiNjcVff/2F7OxsnDp1Ck2aNNE615tvvglHR0ckJCTg9u3bWLx4MT7++GMAQEBAAAYNGoRJkybh8OHDWldlb926FV27doWpqSkqVKig8dqtXr0aKSkp8Pb2hoeHBz777DPcuHED9+7dQ1hYGJYuXYp79+7h7NmzOHXqFNq2bVtk/oSEBAwbNkxZZW5paQkA+P3337FgwQJ4eHjAw8MDixYtKnF1+cM4Q0JCYG9vDwDo378//vrrL+X19vX1Re3atQFo5m5JObZx40acOXMGLVu2hIeHh7Ia/NKlS8We/4033lBWiHfp0gVXrlzB1atXtd6jh3E5OjqWeF1ERERERERUfli0JSpn9+7dw3/+8x/ExcXh6NGj2L59O0REo2hrZGQEAKhQoQIMDQ2V9goVKih7s8bFxSEjIwN79uzB4cOH0aNHD+Tl5QF4UKD18PCAt7d3kfNbWloiODgYy5YtAwB06tRJKVZlZGQAAHJyctCmTRt06NABUVFRyrGRkZHw9fUFAGWbhidlbGyM9u3bK3vaaovx0Xvw+HX7+PggOTkZ3t7eWLFiBZo0aaJ1f05TU1Pl3/r6+hpjH96vp3H8+HHlfg0YMADAg+L6rl27iozdvXt3kYJ3hQoVMH78eHzxxRclbmcRFRWFxMREHDp0SKM9IyMD/fv3x8qVK9GmTRsMGzZMa6wXL15EZGQkfvvtNxw9ehSLFy8u8ZoDAgKwYcMGnDlzBn5+flCr1VixYgV8fX2hr69f6lx9+/bFTz/9hHnz5qF169awtrYG8CBP4+PjYWxsjLCwMK37A5d0Px72hYeHK3szJycn4+rVqzAwMIC9vT0aNWqENWvWYO7cuQgNDYW+vr7We/P43D/99JMy7/Hjx0vc8/nh+EeL9I8X7EvKXW3ztWnTRuParly5grp16yIyMlLJtyNHjpQ4h0ql0nqPRARGRkbIyMjA7du3S/35IyIiIiIiorLFoi1ROcvLy8P9+/dRs2ZNAHjilaePu3XrFmxsbGBkZITr168rRVjgny//erhX7smTJ6FWqwE8KMgmJCTAzc0NALB8+XKlwFOtWjXcvn0bbdq0QVBQEL788kuNc06bNg07d+4EADg7Oz9VvIWFhUhMTET9+vWLjfFJnTt3DqampujSpQt++OEHnDp1Crdv34a5uTmysrK0HluvXj2kpKQgLy8PBQUFWLhwodLXvn17zJ8/H2lpaQAe7MGbm5sLc3Nz5ObmKoU3Jycn5X79+OOPAIChQ4dizpw5+PPPP5X5Jk2ahIyMDHTr1q1IHB07doSBgQFWrlxZbJzGxsb48ssv8dVXX2m0DxgwAKGhoWjatCkmTZqEzZs3a5zzcVlZWTAwMICNjQ1EBNOnTy9xbGBgIL799luliOfv749vvvkGgYGBTzRXq1atcOXKFcTGxiIiIkJpP3HiBJydnREREYFPP/0Uu3fvLjGGgIAALF26FHfu3EFhYSHmzp2r9D18fR6uPlWr1co+x8CDFdW//PIL5s+fj969exc7f4cOHfDtt98qPws3btxQ2uPi4pQvjcvNzdX6pkRAQADWr1+v5MrMmTMREBBQ6hfClZRjrVu3xsaNG5X9ZwEoe85OmzZNyTdXV1cAwJkzZ5Q9b5cvXw57e3vY2toWe4927tyJP//8E8uWr8S+g8n4cEAUen0cAV8/f0yePBlbt27VGjMRERERERGVjSdfekREzyUwMFBjtd/DQo25uTliYmLQtGlT1KpVCx06dHim+SMjI9G5c2d4eHjA3t5eKa4VZ9myZVi4cCEqVqyIwsJCdOrUCX379i127NSpU7F3717cuXMHq1atAgB07twZI0eOLHZ8o0aNcO3aNdy6dQs1atSAv78/fv31V6W/efPm0NPTw7179+Du7o7Ro0c/0/U+lJiYiLi4OFSoUAGFhYX49ttvYWFhgYCAAHz33Xdwd3eHj48PZs6cWeRYHx8fBAUFwcXFBQ4ODvD09MTNmzcBAC1btsSoUaPQunVrqFQqGBgYYPny5ahduzZ69uwJV1dXmJiYaBQKH/Lw8MDq1asxfPhw9OvXDwUFBWjSpAkSExNL3L5h0qRJaNmyZYnX2bdvX3z//ffIz88H8KA4d+zYMcyfPx8AYGJigjlz5qBPnz5ISUmBmZlZkTlcXV3RuXNnODs7o1atWnjnnXdKPF9AQAAuXryo5NE777yD7777Tnle2lwqlQrh4eFYtGgRfHx8lPbhw4fj1KlTMDAwgLGxMWbMmFFiDCEhIUhKSoK7uzvs7e3h5+eHy5cvA3jw+owfPx7vvvsuCgsLcf/+fQQHBytbaLz77rv49NNP4ejoCCcnp2Ln//777zF48GC4uLjAwMAATZo0wX//+1988cUX+Oabb+Dt7a0UXqOjo0t8Y8LZ2RmxsbFo3bo1AKBmzZqYNWtWidf1UEk55ujoiAULFqBv3764e/cu7t27h0aNGuG3334rdh4PDw8sXrwYUVFREBHlzYfH79Ht27dhbGoGq3ouuHFXDxUrW8OyeUcU5Ofh6LnjOPBjPByWrkBU5ICnfhOGiIiIiIiIXiyVaPv8KRFRKbKzs2FhYYGsrCyYm5uXdzikA9RqNdLT0xEeHo7u3bsjNDS0vEN6ZSUmJmLo0KHFvnnwqGPHjiFmYhyyjKzh1LI9DI1Ni4zJz72N49vXwiLvOr6KjnqphduHOWJlZaXsKUz0EPODtGF+UGmYI6QN84O0YX5QaUrLkRddH2EWEhHRC7V//340a9YM+vr66NGjR3mH89rLzc1F3LQfkWVkDY/WXYst2AKAobEpPFp3RZaRNeKm/ahsD0FERERERERlj9sjEBG9YmbPnl3sfrU//PADWrRo8dLP7+Xlhd27dz/xO9QdOnTAxYsXNdqqVKmic/ur9uvXr9g9eJOSklCpUqVyiOjB3sGlrbJNSkrC+RvZcO8YClUpr4dKTw8NW4Tg8KqfsHv3brz99tsvMlwiIiIiIiJ6QizaEhG9Yvr27VviHsW6aM2aNeUdwhMpbl9kXSci2LTlLxja1Ctxhe3jjEzMYGhTDxs3/wl/f/9Sv1CNiIiIiIiIXjxuj0BERPSKunPnDs5cuALrOsV/GVtJrBwa4syFK9wigYiIiIiIqJywaEtERPSKys/Ph1ot0Dc0eqrjKhpVgloEeXl5LykyIiIiIiIi0oZFWyIioleUoaEh9PRUKMh/uuLr/by70FOpYGT0dMVeIiIiIiIiejFYtCUiInpFmZiY4I3a9rh+7vhTHZd+/m+8UdsexsbGLykyIiIiIiIi0oZFWyIioleUSqVCUODbyE87i/zc2090TN6dHOSnnUWbdwL4JWRERERERETlhEVbIiKiV5iPjw8cLM1xfPtaiFqtdayo1TixIwEOluZo1qxZGUVIREREREREj2PRloiI6BVmbGyMqMgBsMi7juQ/liDvTk6x4/Lu5CD5jyUwz7uOIQMjuDUCERERERFROdIv7wCIiIjo5XJ2dsZX0VGIm/YjDq/6CYY29WDl0BAVjSrhft5dpJ//G/lpZ+FgaY4hXwyBk5NTeYdMRERERET0WmPRloiI6DXg7OyMH77/Drt378bGzX/iTPJGqEWgp1LBpbY92nQKh4+PDypVqlTeoRIREREREb32WLQlIiJ6TRgbG+Ptt9+Gv78/cnNzkZeXByMjIxgbG/NLx4iIiIiIiHQIi7ZERESvGZVKBRMTE5iYmJR3KERERERERFQMfhEZERERERERERERkQ5h0ZaIiIiIiIiIiIhIh7BoS0RERERERERERKRDWLQlIiIiIiIiIiIi0iEs2hIRERERERERERHpEBZtiYiIiIiIiIiIiHQIi7ZEREREREREREREOoRFWyIiIiIiIiIiIiIdwqItERERERERERERkQ5h0ZaIiIiIiIiIiIhIh7BoS0RERERERERERKRDWLQlIiIiIiIiIiIi0iEs2hIRERERERERERHpEBZtiYiIiIiIiIiIiHQIi7ZEREREREREREREOoRFWyIiIiIiIiIiIiIdwqItERERERERERERkQ5h0ZaIiIiIiIiIiIhIh7BoS0RERERERERERKRDWLQlIiIiIiIiIiIi0iEs2hIRERERERERERHpEP3yDoCI/t1EBACQnZ1dzpGQrlCr1cjJyYGRkRH09PjeIBXFHCFtmB+kDfODSsMcIW2YH6QN84NKU1qOPKyLPKyTPC8WbYnoueTk5AAAatasWc6REBERERERERGVr5ycHFhYWDz3PCp5UeVfInotqdVqXL16FWZmZlCpVOUdDumA7Oxs1KxZE5cuXYK5uXl5h0M6iDlC2jA/SBvmB5WGOULaMD9IG+YHlaa0HBER5OTkwM7O7oWs1uZKWyJ6Lnp6eqhRo0Z5h0E6yNzcnH/skFbMEdKG+UHaMD+oNMwR0ob5QdowP6g02nLkRaywfYibdBARERERERERERHpEBZtiYiIiIiIiIiIiHQIi7ZERPRCGRoaYvTo0TA0NCzvUEhHMUdIG+YHacP8oNIwR0gb5gdpw/yg0pR1jvCLyIiIiIiIiIiIiIh0CFfaEhEREREREREREekQFm2JiIiIiIiIiIiIdAiLtkREREREREREREQ6hEVbIiIqYvv27Wjfvj3s7OygUqnw+++/a/SLCL7++mvY2dmhUqVKaNWqFY4dO6YxJj8/H5999hmqV68OExMTdOjQAZcvX9YYc+vWLYSGhsLCwgIWFhYIDQ1FZmbmS746el6xsbFo0qQJzMzMYGVlhffeew8nT57UGMMceX3NmDEDbm5uMDc3h7m5OXx8fLBhwwaln7lBj4qNjYVKpcKgQYOUNubI6+3rr7+GSqXSeNjY2Cj9zA+6cuUKPvjgA1SrVg3Gxsbw8PDAgQMHlH7myOvNwcGhyO8QlUqFAQMGAGB+vO4KCgowatQo1KlTB5UqVULdunURExMDtVqtjNGpHBEiIqLHrF+/XkaOHCkrVqwQALJq1SqN/gkTJoiZmZmsWLFCjhw5Il27dhVbW1vJzs5WxvTr10/s7e1l8+bNcvDgQfH39xd3d3cpKChQxrRp00ZcXFxk165dsmvXLnFxcZGQkJCyukx6RkFBQRIfHy9Hjx6V5ORkCQ4Ollq1asnt27eVMcyR19eaNWtk3bp1cvLkSTl58qSMGDFCKlasKEePHhUR5gb9Y+/eveLg4CBubm4ycOBApZ058nobPXq0ODs7y7Vr15RHenq60s/8eL3dvHlTateuLb1795Y9e/bIuXPnZMuWLXLmzBllDHPk9Zaenq7x+2Pz5s0CQLZu3SoizI/X3dixY6VatWqSkJAg586dk2XLlompqalMmTJFGaNLOcKiLRERafV40VatVouNjY1MmDBBacvLyxMLCwuZOXOmiIhkZmZKxYoVZfHixcqYK1euiJ6enmzcuFFERI4fPy4AZPfu3cqYpKQkASAnTpx4yVdFL1J6eroAkG3btokIc4SKqlKlisyePZu5QYqcnBxxdHSUzZs3i5+fn1K0ZY7Q6NGjxd3dvdg+5gdFR0eLr69vif3MEXrcwIEDpV69eqJWq5kfJMHBwRIeHq7R1rFjR/nggw9ERPd+h3B7BCIieirnzp1DWloaWrdurbQZGhrCz88Pu3btAgAcOHAA9+/f1xhjZ2cHFxcXZUxSUhIsLCzg7e2tjGnWrBksLCyUMfTvkJWVBQCoWrUqAOYI/aOwsBCLFy/GnTt34OPjw9wgxYABAxAcHIzAwECNduYIAcDp06dhZ2eHOnXqoFu3bkhNTQXA/CBgzZo18PLyQufOnWFlZQVPT0/897//VfqZI/Soe/fuYcGCBQgPD4dKpWJ+EHx9ffHnn3/i1KlTAICUlBTs3LkT7dq1A6B7v0P0n/1SiYjodZSWlgYAsLa21mi3trbGhQsXlDEGBgaoUqVKkTEPj09LS4OVlVWR+a2srJQxpPtEBFFRUfD19YWLiwsA5ggBR44cgY+PD/Ly8mBqaopVq1bByclJ+SOVufF6W7x4MQ4ePIh9+/YV6ePvD/L29sb8+fPx5ptv4vr16xg7diyaN2+OY8eOMT8IqampmDFjBqKiojBixAjs3bsXkZGRMDQ0RK9evZgjpOH3339HZmYmevfuDYD/jyEgOjoaWVlZaNCgASpUqIDCwkKMGzcO3bt3B6B7OcKiLRERPROVSqXxXESKtD3u8THFjX+SeUh3RERE4PDhw9i5c2eRPubI66t+/fpITk5GZmYmVqxYgbCwMGzbtk3pZ268vi5duoSBAwfijz/+gJGRUYnjmCOvr7Zt2yr/dnV1hY+PD+rVq4d58+ahWbNmAJgfrzO1Wg0vLy+MHz8eAODp6Yljx45hxowZ6NWrlzKOOUIAMGfOHLRt2xZ2dnYa7cyP19eSJUuwYMECLFy4EM7OzkhOTsagQYNgZ2eHsLAwZZyu5Ai3RyAioqfy8BucH3+HMD09XXlH0sbGBvfu3cOtW7e0jrl+/XqR+W/cuFHknU3STZ999hnWrFmDrVu3okaNGko7c4QMDAzwxhtvwMvLC7GxsXB3d8fUqVOZG4QDBw4gPT0djRs3hr6+PvT19bFt2zZMmzYN+vr6yuvHHKGHTExM4OrqitOnT/N3CMHW1hZOTk4abQ0bNsTFixcB8G8Q+seFCxewZcsW9O3bV2ljftCwYcPwxRdfoFu3bnB1dUVoaCgGDx6M2NhYALqXIyzaEhHRU6lTpw5sbGywefNmpe3evXvYtm0bmjdvDgBo3LgxKlasqDHm2rVrOHr0qDLGx8cHWVlZ2Lt3rzJmz549yMrKUsaQbhIRREREYOXKlfjrr79Qp04djX7mCD1ORJCfn8/cIAQEBODIkSNITk5WHl5eXujZsyeSk5NRt25d5ghpyM/Px99//w1bW1v+DiG89dZbOHnypEbbqVOnULt2bQD8G4T+ER8fDysrKwQHByttzA/Kzc2Fnp5mKbRChQpQq9UAdDBHnvgry4iI6LWRk5Mjhw4dkkOHDgkAiYuLk0OHDsmFCxdERGTChAliYWEhK1eulCNHjkj37t3F1tZWsrOzlTn69esnNWrUkC1btsjBgwfl7bffFnd3dykoKFDGtGnTRtzc3CQpKUmSkpLE1dVVQkJCyvx66el8+umnYmFhIYmJiXLt2jXlkZubq4xhjry+hg8fLtu3b5dz587J4cOHZcSIEaKnpyd//PGHiDA3qCg/Pz8ZOHCg8pw58nobMmSIJCYmSmpqquzevVtCQkLEzMxMzp8/LyLMj9fd3r17RV9fX8aNGyenT5+W3377TYyNjWXBggXKGOYIFRYWSq1atSQ6OrpIH/Pj9RYWFib29vaSkJAg586dk5UrV0r16tXl888/V8boUo6waEtEREVs3bpVABR5hIWFiYiIWq2W0aNHi42NjRgaGkrLli3lyJEjGnPcvXtXIiIipGrVqlKpUiUJCQmRixcvaozJyMiQnj17ipmZmZiZmUnPnj3l1q1bZXSV9KyKyw0AEh8fr4xhjry+wsPDpXbt2mJgYCCWlpYSEBCgFGxFmBtU1ONFW+bI661r165ia2srFStWFDs7O+nYsaMcO3ZM6Wd+0Nq1a8XFxUUMDQ2lQYMGMmvWLI1+5ght2rRJAMjJkyeL9DE/Xm/Z2dkycOBAqVWrlhgZGUndunVl5MiRkp+fr4zRpRxRiYg8+bpcIiIiIiIiIiIiInqZuKctERERERERERERkQ5h0ZaIiIiIiIiIiIhIh7BoS0RERERERERERKRDWLQlIiIiIiIiIiIi0iEs2hIRERERERERERHpEBZtiYiIiIiIiIiIiHQIi7ZEREREREREREREOoRFWyIiIiIiIiIiIiIdwqItEREREdFzmDZtGlQqFVxcXMothrlz50KlUmH//v3PdPz58+cRHByMqlWrQqVSYdCgQS82wH+J3r17Q6VSlfro3bs3EhMToVKpkJiYWN5ha7h//z4aNGiACRMmlOl558yZA3t7e9y5c6dMz0tERPSqUomIlHcQRERERET/Vh4eHkhJSQEA7N69G97e3mUew9y5c9GnTx/s27cPXl5eT338+++/jx07dmD27NmwsbGBra0tateu/RIi1W1nz57FjRs3lOcHDx7EgAEDMH78ePj7+yvtlpaWsLS0xPHjx+Hk5ARzc/PyCLdYU6dOxfjx45GamgoTE5MyO29BQQGcnJzQvXt3fPPNN2V2XiIioleVfnkHQERERET0b7V//36kpKQgODgY69atw5w5c8qlaPu8jh49iqZNm+K99957IfOJCPLy8lCpUqUXMl9ZqVevHurVq6c8z8vLAwA4OjqiWbNmRcYX11aeCgoK8O233yI8PLxMC7YAoK+vj08++QRjxoxBdHQ0jI2Ny/T8RERErxpuj0BERERE9IzmzJkDAJgwYQKaN2+OxYsXIzc3F8CDj6lbWVkhNDS0yHGZmZmoVKkSoqKilLZjx46hdevWMDY2hqWlJQYMGIB169Y980fwe/fuDVNTU5w5cwbt2rWDqakpatasiSFDhiA/Px8AlI/4nzlzBhs2bFA+/n/+/HkAQHZ2NoYOHYo6derAwMAA9vb2GDRoUJGPwKtUKkRERGDmzJlo2LAhDA0NMW/ePADA6dOn0aNHD1hZWcHQ0BANGzbEjz/+qHH8wzgWLVqEkSNHws7ODubm5ggMDMTJkyeLXNvGjRsREBAACwsLGBsbo2HDhoiNjdUYs3//fnTo0AFVq1aFkZERPD09sXTp0qe+jyUpbnuEh/f8xIkTCAoKgomJCWxtbZWtCnbv3g1fX1+YmJjgzTffVO7Ro9LS0vDJJ5+gRo0aMDAwQJ06dfDNN9+goKCg1JjWrFmDK1euFMm5r7/+GiqVCocPH0bnzp1hYWGBqlWrIioqCgUFBTh58iTatGkDMzMzODg4YNKkSRrHq9VqjB07FvXr10elSpVQuXJluLm5YerUqRrjevbsiezsbCxevPhJbyMRERGVgEVbIiIiIqJncPfuXSxatAhNmjSBi4sLwsPDkZOTg2XLlgEAKlasiA8++AArVqxAdna2xrGLFi1CXl4e+vTpAwC4du0a/Pz8cPLkScyYMQPz589HTk4OIiIinivG+/fvo0OHDggICMDq1asRHh6O77//HhMnTgQANGrUCElJSbCxscFbb72FpKQkJCUlwdbWFrm5ufDz88O8efMQGRmJDRs2IDo6GnPnzkWHDh3w+C5rv//+O2bMmIGvvvoKmzZtQosWLXD8+HE0adIER48exeTJk5GQkIDg4GBERkYW+xH6ESNG4MKFC5g9ezZmzZqF06dPo3379igsLFTGzJkzB+3atYNarcbMmTOxdu1aREZG4vLly8qYrVu34q233kJmZiZmzpyJ1atXw8PDA127dsXcuXOf656W5v79++jYsSOCg4OxevVqtG3bFsOHD8eIESMQFhaG8PBwrFq1CvXr10fv3r1x4MAB5di0tDQ0bdoUmzZtwldffYUNGzbgww8/RGxsLD766KNSz71u3TpYWVnBycmp2P4uXbrA3d0dK1aswEcffYTvv/8egwcPxnvvvYfg4GCsWrUKb7/9NqKjo7Fy5UrluEmTJuHrr79G9+7dsW7dOixZsgQffvghMjMzNea3sbFBgwYNsG7dume7eURERPQPISIiIiKipzZ//nwBIDNnzhQRkZycHDE1NZUWLVooYw4fPiwAZNasWRrHNm3aVBo3bqw8HzZsmKhUKjl27JjGuKCgIAEgW7du1RpLfHy8AJB9+/YpbWFhYQJAli5dqjG2Xbt2Ur9+fY222rVrS3BwsEZbbGys6OnpacwpIrJ8+XIBIOvXr1faAIiFhYXcvHmzSPw1atSQrKwsjfaIiAgxMjJSxm/dulUASLt27TTGLV26VABIUlKSiDy4x+bm5uLr6ytqtbrE+9GgQQPx9PSU+/fva7SHhISIra2tFBYWlnjsox7GtWzZshL7Hn1tHt7zFStWKG33798XS0tLASAHDx5U2jMyMqRChQoSFRWltH3yySdiamoqFy5c0DjXd999JwCK5MfjGjZsKG3atCnSPnr0aAEgkydP1mj38PAQALJy5coi8Xbs2FFpCwkJEQ8PD63nfqhnz55ibW39RGOJiIioZFxpS0RERET0DObMmYNKlSqhW7duAABTU1N07twZO3bswOnTpwEArq6uaNy4MeLj45Xj/v77b+zduxfh4eFK27Zt2+Di4lJkhWT37t2fK0aVSoX27dtrtLm5ueHChQulHpuQkAAXFxd4eHigoKBAeQQFBRW7ZcPbb7+NKlWqKM/z8vLw559/4v3334exsbHGHO3atUNeXh52796tMUeHDh2KxApAiXfXrl3Izs5G//79oVKpio37zJkzOHHiBHr27AkARc577dq1YrdceFFUKhXatWunPNfX18cbb7wBW1tbeHp6Ku1Vq1aFlZWVxmuRkJAAf39/2NnZacTdtm1bAA/yRJurV6/CysqqxP6QkBCN5w0bNoRKpVLmfzTeR+Nq2rQpUlJS0L9/f2zatKnIyvFHWVlZIT09/Ym2cyAiIqKSsWhLRERERPSUzpw5g+3btyM4OBgigszMTGRmZqJTp04AgF9++UUZGx4ejqSkJJw4cQIAEB8fD0NDQ42CbEZGBqytrYucp7i2p2FsbAwjIyONNkNDQ+ULtrS5fv06Dh8+jIoVK2o8zMzMICL4v//7P43xtra2Gs8zMjJQUFCAH374ocgcD4uaj89RrVq1IrECD7aiAIAbN24AAGrUqKE1bgAYOnRokfP279+/2PO+SMXdcwMDA1StWrXIWAMDA43X4vr161i7dm2RuJ2dnZ8o7rt37xY596Mej8HAwKDEeB+Na/jw4fjuu++we/dutG3bFtWqVUNAQAD2799f5BxGRkbKF9ERERHRs9Mv7wCIiIiIiP5tfvnlF4gIli9fjuXLlxfpnzdvHsaOHYsKFSqge/fuiIqKwty5czFu3Dj8+uuveO+99zRWpVarVk0pNj4qLS3tpV6HNtWrV0elSpU0CtCP9z/q8ZWvVapUQYUKFRAaGooBAwYUO0edOnWeKiZLS0sA0Ni/tqS4hg8fjo4dOxY7pn79+k913rJSvXp1uLm5Ydy4ccX229nZlXr8zZs3X3hc+vr6iIqKQlRUFDIzM7FlyxaMGDECQUFBuHTpEoyNjZWxN2/ehKGhIUxNTV94HERERK8TFm2JiIiIiJ5CYWEh5s2bh3r16mH27NlF+hMSEjB58mRs2LABISEhqFKlCt577z3Mnz8fPj4+SEtL09gaAQD8/Pzw3Xff4fjx4xpbJCxevPilX09JQkJCMH78eFSrVu2pi6vAgxWn/v7+OHToENzc3GBgYPDcMTVv3hwWFhaYOXMmunXrVuwWCfXr14ejoyNSUlIwfvz45z5nWQoJCcH69etRr149jaL+k2rQoAHOnj37EiL7R+XKldGpUydcuXIFgwYNwvnz5zVyNjU1tcQvQiMiIqInx6ItEREREdFT2LBhA65evYqJEyeiVatWRfpdXFwwffp0zJkzR9lDNDw8HEuWLEFERARq1KiBwMBAjWMGDRqEX375BW3btkVMTAysra2xcOFCZUsFPb2y39Vs0KBBWLFiBVq2bInBgwfDzc0NarUaFy9exB9//IEhQ4bA29tb6xxTp06Fr68vWrRogU8//RQODg7IycnBmTNnsHbtWvz1119PFZOpqSkmT56Mvn37IjAwEB999BGsra1x5swZpKSkYPr06QCAn3/+GW3btkVQUBB69+4Ne3t73Lx5E3///TcOHjyIZcuWPfN9eZliYmKwefNmNG/eHJGRkahfvz7y8vJw/vx5rF+/HjNnztS6NUSrVq0QExOD3NxcjdWvz6t9+/ZwcXGBl5cXLC0tceHCBUyZMgW1a9eGo6OjMk6tVmPv3r348MMPX9i5iYiIXlcs2hIRERERPYU5c+bAwMAAffr0Kba/evXqeP/997F8+XJcv34d1tbWCAwMRM2aNXHp0iWMHDmySBHWzs4O27Ztw6BBg9CvXz8YGxvj/fffR0xMDMLCwlC5cuUyuDJNJiYm2LFjByZMmIBZs2bh3LlzqFSpEmrVqoXAwEA4ODiUOoeTkxMOHjyIMWPGYNSoUUhPT0flypXh6Oio8WVdT+PDDz+EnZ0dJk6ciL59+0JE4ODggLCwMGWMv78/9u7di3HjxmHQoEG4desWqlWrBicnJ3Tp0uWZzlsWbG1tsX//fowZMwbffvstLl++DDMzM9SpUwdt2rQpdfVtjx49MHr0aKxbtw6dO3d+YXH5+/tjxYoVmD17NrKzs2FjY4N33nkHX375JSpWrKiMS0xMRFZWlvIlcERERPTsVCIi5R0EEREREREV9fHHH2PRokXIyMh4IdsL0Kuvffv2KCgowIYNG8r83KGhoUhNTcX//ve/Mj83ERHRq4YrbYmIiIiIdEBMTAzs7OxQt25d3L59GwkJCZg9ezZGjRrFgi09sdjYWHh6emLfvn1o0qRJmZ337NmzWLJkyVNveUFERETFY9GWiIiIiEgHVKxYUflIfEFBARwdHREXF4eBAweWd2j0L+Li4oL4+HikpaWV6XkvXryI6dOnw9fXt0zPS0RE9Kri9ghEREREREREREREOqTsv4aWiIiIiIiIiIiIiErEoi0RERERERERERGRDmHRloiIiIiIiIiIiEiHsGhLREREREREREREpENYtCUiIiIiIiIiIiLSISzaEhEREREREREREekQFm2JiIiIiIiIiIiIdAiLtkREREREREREREQ6hEVbIiIiIiIiIiIiIh3y/14klQa4VoOyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# Extract data for plotting\n", + "inference_times = []\n", + "accuracies = []\n", + "labels = []\n", + "\n", + "for key, df in stats_dfs.items():\n", + " # Get the \"overall\" row\n", + " overall_row = df[df['route'] == 'overall']\n", + " \n", + " if not overall_row.empty:\n", + " avg_inference = overall_row['avg_inference_time_ms'].values[0]\n", + " accuracy = overall_row['accuracy_percent'].values[0]\n", + " \n", + " inference_times.append(avg_inference)\n", + " accuracies.append(accuracy)\n", + " \n", + " # Extract model name from filename and subfolder\n", + " # key format: \"subfolder/stats_experiment_MODEL_NAME_...\"\n", + " subfolder, filename = key.rsplit('/', 1) if '/' in key else ('root', key)\n", + " model_name = filename.replace('stats_experiment_', '').split('_')[0:3] # adjust based on your naming\n", + " label = f\"{subfolder}\\n{filename.replace('stats_experiment_', '')[:50]}\" # truncate for readability\n", + " labels.append(label)\n", + "\n", + "# Create scatter plot\n", + "plt.figure(figsize=(14, 8))\n", + "plt.scatter(inference_times, accuracies, s=100, alpha=0.6, edgecolors='black')\n", + "\n", + "# Add labels to each point\n", + "for i, label in enumerate(labels):\n", + " plt.annotate(label, (inference_times[i], accuracies[i]), \n", + " fontsize=8, ha='right', xytext=(5, 5), \n", + " textcoords='offset points', wrap=True)\n", + "\n", + "plt.xlabel('Avg Inference Time (ms)', fontsize=12)\n", + "plt.ylabel('Accuracy (%)', fontsize=12)\n", + "plt.title('Inference Time vs Accuracy Across All Experiments', fontsize=14, fontweight='bold')\n", + "plt.grid(True, alpha=0.3)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "648c05a2", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "genai", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}