Spaces:
Sleeping
Sleeping
| import json | |
| import numpy as np | |
| import torch | |
| from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN | |
| from huggingface_hub import hf_hub_download | |
| CONFIG_NAME = "config.json" | |
| revision = None | |
| cache_dir = None | |
| force_download = False | |
| proxies = None | |
| resume_download = False | |
| local_files_only = False | |
| token = None | |
| def load_model(model_name="ceyda/butterfly_cropped_uniq1K_512"): | |
| """ | |
| Loads a pre-trained LightweightGAN model from Hugging Face Model Hub. | |
| Args: | |
| model_name (str): The name of the pre-trained model to load. Defaults to "ceyda/butterfly_cropped_uniq1K_512". | |
| model_version (str): The version of the pre-trained model to load. Defaults to None. | |
| Returns: | |
| LightweightGAN: The loaded pre-trained model. | |
| """ | |
| # Load the config | |
| config_file = hf_hub_download( | |
| repo_id=str(model_name), | |
| filename=CONFIG_NAME, | |
| revision=revision, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| resume_download=resume_download, | |
| token=token, | |
| local_files_only=local_files_only, | |
| ) | |
| with open(config_file, "r", encoding="utf-8") as f: | |
| config = json.load(f) | |
| # Call the _from_pretrained with all the needed arguments | |
| gan = LightweightGAN(latent_dim=256, image_size=512) | |
| gan = gan._from_pretrained( | |
| model_id=str(model_name), | |
| revision=revision, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| resume_download=resume_download, | |
| local_files_only=local_files_only, | |
| token=token, | |
| use_auth_token=False, | |
| config=config, # usually in **model_kwargs | |
| ) | |
| gan.eval() | |
| return gan | |
| def generate(gan, batch_size=1): | |
| """ | |
| Generates images using the given GAN model. | |
| Args: | |
| gan (nn.Module): The GAN model to use for generating images. | |
| batch_size (int, optional): The number of images to generate in each batch. Defaults to 1. | |
| Returns: | |
| numpy.ndarray: A numpy array of generated images. | |
| """ | |
| with torch.no_grad(): | |
| ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0.0, 1.0) * 255 | |
| ims = ims.permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8) | |
| return ims | |