Spaces:
Running
Running
Added update
Browse files- __pycache__/main.cpython-313.pyc +0 -0
- main.py +125 -64
__pycache__/main.cpython-313.pyc
ADDED
|
Binary file (12.7 kB). View file
|
|
|
main.py
CHANGED
|
@@ -21,16 +21,15 @@ DRY_RUN = False
|
|
| 21 |
|
| 22 |
# --- Global State ---
|
| 23 |
model = None
|
| 24 |
-
execution_logs = deque(maxlen=50)
|
| 25 |
-
is_processing = False
|
| 26 |
processing_lock = threading.Lock()
|
| 27 |
|
| 28 |
-
# --- Lifespan Manager
|
| 29 |
@asynccontextmanager
|
| 30 |
async def lifespan(app: FastAPI):
|
| 31 |
global model
|
| 32 |
print("β³ Loading Model...")
|
| 33 |
-
# Load model once when the API starts
|
| 34 |
model = SentenceTransformer('Alibaba-NLP/gte-modernbert-base', trust_remote_code=True)
|
| 35 |
print("β
Model Loaded.")
|
| 36 |
yield
|
|
@@ -41,66 +40,136 @@ app = FastAPI(lifespan=lifespan)
|
|
| 41 |
# --- Helper Functions ---
|
| 42 |
|
| 43 |
def fetch_and_lock_chunk(conn, chunk_size):
|
|
|
|
|
|
|
|
|
|
| 44 |
query = """
|
| 45 |
-
WITH locked_candidates AS (
|
| 46 |
-
SELECT candidate_id, candidate_name
|
| 47 |
-
FROM candidate_profiles
|
| 48 |
-
WHERE
|
| 49 |
-
candidate_embeddings IS NULL
|
| 50 |
-
OR updated_at > candidate_embeddings_updated_at
|
| 51 |
-
LIMIT %s
|
| 52 |
-
FOR UPDATE SKIP LOCKED
|
| 53 |
-
)
|
| 54 |
SELECT
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
FROM
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
"""
|
|
|
|
|
|
|
|
|
|
| 68 |
return pd.read_sql_query(query, conn, params=(chunk_size,))
|
| 69 |
|
| 70 |
def clean_and_format_text(row):
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
('experience_descriptions', 'Experience Details'),
|
| 76 |
-
('degrees', 'Education - Degrees'),
|
| 77 |
-
('certifications', 'Certifications'),
|
| 78 |
-
('achievements', 'Achievements'),
|
| 79 |
-
]
|
| 80 |
-
|
| 81 |
text_parts = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
| 94 |
|
| 95 |
def update_db_batch(conn, updates):
|
| 96 |
if DRY_RUN: return
|
| 97 |
|
|
|
|
| 98 |
query = """
|
| 99 |
-
UPDATE
|
| 100 |
-
SET
|
| 101 |
-
|
| 102 |
FROM (VALUES %s) AS data (id, vector)
|
| 103 |
-
WHERE
|
| 104 |
"""
|
| 105 |
cursor = conn.cursor()
|
| 106 |
try:
|
|
@@ -116,7 +185,7 @@ def run_worker_logic():
|
|
| 116 |
"""
|
| 117 |
The core logic that runs one single batch processing.
|
| 118 |
"""
|
| 119 |
-
log_buffer = []
|
| 120 |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 121 |
|
| 122 |
log_buffer.append(f"<b>BATCH RUN: {timestamp}</b>")
|
|
@@ -131,7 +200,6 @@ def run_worker_logic():
|
|
| 131 |
if df.empty:
|
| 132 |
conn.rollback()
|
| 133 |
log_buffer.append("π€ No pending candidates found.")
|
| 134 |
-
# Add to global logs and exit
|
| 135 |
execution_logs.appendleft("<br>".join(log_buffer))
|
| 136 |
return "No data"
|
| 137 |
|
|
@@ -143,7 +211,8 @@ def run_worker_logic():
|
|
| 143 |
# 3. Log Inputs (For the Root API view)
|
| 144 |
for index, row in df.iterrows():
|
| 145 |
log_buffer.append(f"<div style='border:1px solid #ccc; margin:5px; padding:5px; background:#f9f9f9'>")
|
| 146 |
-
|
|
|
|
| 147 |
log_buffer.append(f"<pre style='white-space: pre-wrap;'>{row['full_text']}</pre>")
|
| 148 |
log_buffer.append("</div>")
|
| 149 |
|
|
@@ -157,7 +226,8 @@ def run_worker_logic():
|
|
| 157 |
)
|
| 158 |
|
| 159 |
# 5. Update DB
|
| 160 |
-
|
|
|
|
| 161 |
|
| 162 |
if not DRY_RUN:
|
| 163 |
update_db_batch(conn, updates)
|
|
@@ -172,16 +242,12 @@ def run_worker_logic():
|
|
| 172 |
print(f"Error: {e}")
|
| 173 |
finally:
|
| 174 |
if conn: conn.close()
|
| 175 |
-
# Push the local buffer to the global execution log
|
| 176 |
execution_logs.appendleft("<br>".join(log_buffer))
|
| 177 |
|
| 178 |
# --- API Endpoints ---
|
| 179 |
|
| 180 |
@app.get("/", response_class=HTMLResponse)
|
| 181 |
async def read_root():
|
| 182 |
-
"""
|
| 183 |
-
Root endpoint: Displays the logs of recent processing batches.
|
| 184 |
-
"""
|
| 185 |
html_content = """
|
| 186 |
<html>
|
| 187 |
<head>
|
|
@@ -193,7 +259,7 @@ async def read_root():
|
|
| 193 |
</style>
|
| 194 |
</head>
|
| 195 |
<body>
|
| 196 |
-
<h1>π
|
| 197 |
<p><i>Most recent batches shown first.</i></p>
|
| 198 |
<hr>
|
| 199 |
"""
|
|
@@ -209,18 +275,13 @@ async def read_root():
|
|
| 209 |
|
| 210 |
@app.get("/trigger-batch")
|
| 211 |
async def trigger_processing(background_tasks: BackgroundTasks):
|
| 212 |
-
"""
|
| 213 |
-
External Pinger: Hits this endpoint to trigger one batch of processing.
|
| 214 |
-
"""
|
| 215 |
if processing_lock.locked():
|
| 216 |
return {"status": "busy", "message": "Worker is currently processing a previous batch."}
|
| 217 |
|
| 218 |
-
# We run the worker in a background task so the API response is fast
|
| 219 |
background_tasks.add_task(wrapped_worker)
|
| 220 |
return {"status": "started", "message": "Batch processing started in background."}
|
| 221 |
|
| 222 |
def wrapped_worker():
|
| 223 |
-
"""Thread-safe wrapper for the worker logic"""
|
| 224 |
if processing_lock.acquire(blocking=False):
|
| 225 |
try:
|
| 226 |
run_worker_logic()
|
|
|
|
| 21 |
|
| 22 |
# --- Global State ---
|
| 23 |
model = None
|
| 24 |
+
execution_logs = deque(maxlen=50)
|
| 25 |
+
is_processing = False
|
| 26 |
processing_lock = threading.Lock()
|
| 27 |
|
| 28 |
+
# --- Lifespan Manager ---
|
| 29 |
@asynccontextmanager
|
| 30 |
async def lifespan(app: FastAPI):
|
| 31 |
global model
|
| 32 |
print("β³ Loading Model...")
|
|
|
|
| 33 |
model = SentenceTransformer('Alibaba-NLP/gte-modernbert-base', trust_remote_code=True)
|
| 34 |
print("β
Model Loaded.")
|
| 35 |
yield
|
|
|
|
| 40 |
# --- Helper Functions ---
|
| 41 |
|
| 42 |
def fetch_and_lock_chunk(conn, chunk_size):
|
| 43 |
+
"""
|
| 44 |
+
Fetches candidates from the denormalized table where embeddings are missing.
|
| 45 |
+
"""
|
| 46 |
query = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
SELECT
|
| 48 |
+
id,
|
| 49 |
+
name,
|
| 50 |
+
summary,
|
| 51 |
+
work_experience,
|
| 52 |
+
projects,
|
| 53 |
+
education,
|
| 54 |
+
achievements,
|
| 55 |
+
certifications,
|
| 56 |
+
volunteering,
|
| 57 |
+
skills,
|
| 58 |
+
languages
|
| 59 |
+
FROM public.candidates
|
| 60 |
+
WHERE
|
| 61 |
+
embeddings IS NULL
|
| 62 |
+
FOR UPDATE SKIP LOCKED
|
| 63 |
+
LIMIT %s
|
| 64 |
"""
|
| 65 |
+
# Note: If you add an 'updated_at' column later, change WHERE to:
|
| 66 |
+
# WHERE embeddings IS NULL OR updated_at > embeddings_created_at
|
| 67 |
+
|
| 68 |
return pd.read_sql_query(query, conn, params=(chunk_size,))
|
| 69 |
|
| 70 |
def clean_and_format_text(row):
|
| 71 |
+
"""
|
| 72 |
+
Parses the JSONB and Array columns from the new schema to create a
|
| 73 |
+
rich text representation for embedding.
|
| 74 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
text_parts = []
|
| 76 |
+
|
| 77 |
+
# 1. Basic Info
|
| 78 |
+
if row.get('name'):
|
| 79 |
+
text_parts.append(f"Name: {row['name']}")
|
| 80 |
+
|
| 81 |
+
if row.get('summary'):
|
| 82 |
+
text_parts.append(f"Summary: {row['summary']}")
|
| 83 |
+
|
| 84 |
+
# 2. Skills (Postgres Array -> Python List)
|
| 85 |
+
if row.get('skills') and isinstance(row['skills'], list):
|
| 86 |
+
# Filter out empty strings/None
|
| 87 |
+
valid_skills = [s for s in row['skills'] if s]
|
| 88 |
+
if valid_skills:
|
| 89 |
+
text_parts.append(f"Skills: {', '.join(valid_skills)}")
|
| 90 |
+
|
| 91 |
+
# 3. Work Experience (JSONB List of Dicts)
|
| 92 |
+
# Schema keys: role, company, description, duration
|
| 93 |
+
if row.get('work_experience') and isinstance(row['work_experience'], list):
|
| 94 |
+
exps = []
|
| 95 |
+
for item in row['work_experience']:
|
| 96 |
+
if isinstance(item, dict):
|
| 97 |
+
role = item.get('role', '')
|
| 98 |
+
company = item.get('company', '')
|
| 99 |
+
desc = item.get('description', '')
|
| 100 |
+
# Format: "Role at Company: Description"
|
| 101 |
+
entry = f"{role} at {company}".strip()
|
| 102 |
+
if desc:
|
| 103 |
+
entry += f": {desc}"
|
| 104 |
+
exps.append(entry)
|
| 105 |
+
if exps:
|
| 106 |
+
text_parts.append("Work Experience:\n" + "\n".join(exps))
|
| 107 |
+
|
| 108 |
+
# 4. Projects (JSONB List of Dicts)
|
| 109 |
+
# Schema keys: title, description, link
|
| 110 |
+
if row.get('projects') and isinstance(row['projects'], list):
|
| 111 |
+
projs = []
|
| 112 |
+
for item in row['projects']:
|
| 113 |
+
if isinstance(item, dict):
|
| 114 |
+
title = item.get('title', '')
|
| 115 |
+
desc = item.get('description', '')
|
| 116 |
+
entry = f"{title}".strip()
|
| 117 |
+
if desc:
|
| 118 |
+
entry += f": {desc}"
|
| 119 |
+
projs.append(entry)
|
| 120 |
+
if projs:
|
| 121 |
+
text_parts.append("Projects:\n" + "\n".join(projs))
|
| 122 |
+
|
| 123 |
+
# 5. Education (JSONB List of Dicts)
|
| 124 |
+
# Schema keys: degree, institution, year
|
| 125 |
+
if row.get('education') and isinstance(row['education'], list):
|
| 126 |
+
edus = []
|
| 127 |
+
for item in row['education']:
|
| 128 |
+
if isinstance(item, dict):
|
| 129 |
+
degree = item.get('degree', '')
|
| 130 |
+
inst = item.get('institution', '')
|
| 131 |
+
entry = f"{degree} from {inst}".strip()
|
| 132 |
+
edus.append(entry)
|
| 133 |
+
if edus:
|
| 134 |
+
text_parts.append("Education: " + ", ".join(edus))
|
| 135 |
+
|
| 136 |
+
# 6. Certifications (JSONB List of Dicts)
|
| 137 |
+
# Schema keys: name, issuer
|
| 138 |
+
if row.get('certifications') and isinstance(row['certifications'], list):
|
| 139 |
+
certs = []
|
| 140 |
+
for item in row['certifications']:
|
| 141 |
+
if isinstance(item, dict):
|
| 142 |
+
name = item.get('name', '')
|
| 143 |
+
issuer = item.get('issuer', '')
|
| 144 |
+
entry = f"{name} by {issuer}".strip()
|
| 145 |
+
certs.append(entry)
|
| 146 |
+
if certs:
|
| 147 |
+
text_parts.append("Certifications: " + ", ".join(certs))
|
| 148 |
|
| 149 |
+
# 7. Achievements (JSONB List of Dicts)
|
| 150 |
+
if row.get('achievements') and isinstance(row['achievements'], list):
|
| 151 |
+
achievements = []
|
| 152 |
+
for item in row['achievements']:
|
| 153 |
+
if isinstance(item, dict):
|
| 154 |
+
title = item.get('title', '')
|
| 155 |
+
desc = item.get('description', '')
|
| 156 |
+
entry = f"{title}: {desc}".strip()
|
| 157 |
+
achievements.append(entry)
|
| 158 |
+
if achievements:
|
| 159 |
+
text_parts.append("Achievements: " + "; ".join(achievements))
|
| 160 |
+
|
| 161 |
+
return "\n\n".join(text_parts)
|
| 162 |
|
| 163 |
def update_db_batch(conn, updates):
|
| 164 |
if DRY_RUN: return
|
| 165 |
|
| 166 |
+
# Updated to target public.candidates and cast ID to UUID
|
| 167 |
query = """
|
| 168 |
+
UPDATE public.candidates AS c
|
| 169 |
+
SET embeddings = data.vector::vector,
|
| 170 |
+
embeddings_created_at = NOW()
|
| 171 |
FROM (VALUES %s) AS data (id, vector)
|
| 172 |
+
WHERE c.id = data.id::uuid
|
| 173 |
"""
|
| 174 |
cursor = conn.cursor()
|
| 175 |
try:
|
|
|
|
| 185 |
"""
|
| 186 |
The core logic that runs one single batch processing.
|
| 187 |
"""
|
| 188 |
+
log_buffer = []
|
| 189 |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 190 |
|
| 191 |
log_buffer.append(f"<b>BATCH RUN: {timestamp}</b>")
|
|
|
|
| 200 |
if df.empty:
|
| 201 |
conn.rollback()
|
| 202 |
log_buffer.append("π€ No pending candidates found.")
|
|
|
|
| 203 |
execution_logs.appendleft("<br>".join(log_buffer))
|
| 204 |
return "No data"
|
| 205 |
|
|
|
|
| 211 |
# 3. Log Inputs (For the Root API view)
|
| 212 |
for index, row in df.iterrows():
|
| 213 |
log_buffer.append(f"<div style='border:1px solid #ccc; margin:5px; padding:5px; background:#f9f9f9'>")
|
| 214 |
+
# row['id'] is now the UUID
|
| 215 |
+
log_buffer.append(f"<strong>ID: {row['id']} ({row.get('name', 'Unknown')})</strong>")
|
| 216 |
log_buffer.append(f"<pre style='white-space: pre-wrap;'>{row['full_text']}</pre>")
|
| 217 |
log_buffer.append("</div>")
|
| 218 |
|
|
|
|
| 226 |
)
|
| 227 |
|
| 228 |
# 5. Update DB
|
| 229 |
+
# Ensure ID is converted to string for the tuple list if it isn't already
|
| 230 |
+
updates = list(zip(df['id'].astype(str).tolist(), embeddings.tolist()))
|
| 231 |
|
| 232 |
if not DRY_RUN:
|
| 233 |
update_db_batch(conn, updates)
|
|
|
|
| 242 |
print(f"Error: {e}")
|
| 243 |
finally:
|
| 244 |
if conn: conn.close()
|
|
|
|
| 245 |
execution_logs.appendleft("<br>".join(log_buffer))
|
| 246 |
|
| 247 |
# --- API Endpoints ---
|
| 248 |
|
| 249 |
@app.get("/", response_class=HTMLResponse)
|
| 250 |
async def read_root():
|
|
|
|
|
|
|
|
|
|
| 251 |
html_content = """
|
| 252 |
<html>
|
| 253 |
<head>
|
|
|
|
| 259 |
</style>
|
| 260 |
</head>
|
| 261 |
<body>
|
| 262 |
+
<h1>π Candidates Embedding Worker</h1>
|
| 263 |
<p><i>Most recent batches shown first.</i></p>
|
| 264 |
<hr>
|
| 265 |
"""
|
|
|
|
| 275 |
|
| 276 |
@app.get("/trigger-batch")
|
| 277 |
async def trigger_processing(background_tasks: BackgroundTasks):
|
|
|
|
|
|
|
|
|
|
| 278 |
if processing_lock.locked():
|
| 279 |
return {"status": "busy", "message": "Worker is currently processing a previous batch."}
|
| 280 |
|
|
|
|
| 281 |
background_tasks.add_task(wrapped_worker)
|
| 282 |
return {"status": "started", "message": "Batch processing started in background."}
|
| 283 |
|
| 284 |
def wrapped_worker():
|
|
|
|
| 285 |
if processing_lock.acquire(blocking=False):
|
| 286 |
try:
|
| 287 |
run_worker_logic()
|