Spaces:
Sleeping
Sleeping
Update yolo_training_script
Browse files- yolo_training_script +1 -107
yolo_training_script
CHANGED
|
@@ -1,107 +1 @@
|
|
| 1 |
-
|
| 2 |
-
# This script is for YOLOv8 training using data from PlantNet and local files.
|
| 3 |
-
|
| 4 |
-
import os
|
| 5 |
-
import requests
|
| 6 |
-
import json
|
| 7 |
-
import random
|
| 8 |
-
import shutil
|
| 9 |
-
from ultralytics import YOLO
|
| 10 |
-
|
| 11 |
-
# ==================== CONFIGURATION & SECRETS ====================
|
| 12 |
-
# Use your API key from the main script
|
| 13 |
-
PLANTNET_API_KEY = "2b10HlR0yP4wZbvHjP8jCo3Aae"
|
| 14 |
-
PLANTNET_SEARCH_URL = "https://my-api.plantnet.org/v2/identify/all"
|
| 15 |
-
|
| 16 |
-
# Define the training directory structure
|
| 17 |
-
TRAIN_DIR = 'yolo_train'
|
| 18 |
-
DATASET_YAML_PATH = os.path.join(TRAIN_DIR, 'dataset.yaml')
|
| 19 |
-
|
| 20 |
-
# Define your 52 morphological features here.
|
| 21 |
-
# This list is crucial and must match the labels you will create in your annotation tool.
|
| 22 |
-
MORPHOLOGICAL_FEATURES = [
|
| 23 |
-
'leaf', 'stem', 'flower', 'fruit', 'root', 'branch', 'petal', 'sepal',
|
| 24 |
-
'bud', 'thorn', 'node', 'vein', 'blade', 'petiole', 'stamen', 'pistil',
|
| 25 |
-
'seed', 'bark', 'trunk', 'tuber', 'rhizome', 'bulb', 'spore', 'cone',
|
| 26 |
-
'tendril', 'pollen', 'nectar', 'bract', 'gemma', 'stomata', 'cuticle',
|
| 27 |
-
'xylem', 'phloem', 'vascular_bundle', 'cambium', 'lenticel', 'stolon',
|
| 28 |
-
'runner', 'corm', 'sheath', 'ligule', 'auricle', 'rachis', 'rachilla',
|
| 29 |
-
'glume', 'lemma', 'palea', 'floret', 'awns', 'caryopsis', 'pericarp', 'endosperm'
|
| 30 |
-
]
|
| 31 |
-
# You can update this list based on what you want to annotate.
|
| 32 |
-
|
| 33 |
-
# ==================== DATA COLLECTION & PREPARATION ====================
|
| 34 |
-
def download_and_prepare_dataset(plant_list: list, num_images_per_plant: int = 50):
|
| 35 |
-
"""
|
| 36 |
-
Downloads and organizes images for a list of plants.
|
| 37 |
-
Note: PlantNet's API is for identification. We'll simulate fetching images
|
| 38 |
-
from a hypothetical image search to demonstrate the concept.
|
| 39 |
-
In a real-world scenario, you would use a web scraper or a curated dataset.
|
| 40 |
-
|
| 41 |
-
This function creates a basic directory structure for YOLO.
|
| 42 |
-
"""
|
| 43 |
-
print("Preparing dataset directory...")
|
| 44 |
-
# Clean up and create new directories
|
| 45 |
-
if os.path.exists(TRAIN_DIR):
|
| 46 |
-
shutil.rmtree(TRAIN_DIR)
|
| 47 |
-
os.makedirs(os.path.join(TRAIN_DIR, 'images'))
|
| 48 |
-
os.makedirs(os.path.join(TRAIN_DIR, 'images', 'train'))
|
| 49 |
-
os.makedirs(os.path.join(TRAIN_DIR, 'images', 'val'))
|
| 50 |
-
os.makedirs(os.path.join(TRAIN_DIR, 'labels'))
|
| 51 |
-
os.makedirs(os.path.join(TRAIN_DIR, 'labels', 'train'))
|
| 52 |
-
os.makedirs(os.path.join(TRAIN_DIR, 'labels', 'val'))
|
| 53 |
-
|
| 54 |
-
# Simulate downloading and creating placeholder images and labels
|
| 55 |
-
print("Simulating dataset creation. Please replace with your actual data and annotations.")
|
| 56 |
-
|
| 57 |
-
# Create dataset.yaml
|
| 58 |
-
with open(DATASET_YAML_PATH, 'w') as f:
|
| 59 |
-
yaml_content = f"""
|
| 60 |
-
path: {os.path.abspath(TRAIN_DIR)}
|
| 61 |
-
train: images/train
|
| 62 |
-
val: images/val
|
| 63 |
-
|
| 64 |
-
names:
|
| 65 |
-
{os.linesep.join([f" {i}: {name}" for i, name in enumerate(MORPHOLOGICAL_FEATURES)])}
|
| 66 |
-
"""
|
| 67 |
-
f.write(yaml_content)
|
| 68 |
-
|
| 69 |
-
print(f"β
Created {DATASET_YAML_PATH}")
|
| 70 |
-
print(f"Next, populate {os.path.join(TRAIN_DIR, 'images', 'train')}, {os.path.join(TRAIN_DIR, 'images', 'val')}, and their corresponding 'labels' directories with your annotated data.")
|
| 71 |
-
|
| 72 |
-
# ==================== YOLO TRAINING ====================
|
| 73 |
-
def start_yolo_training():
|
| 74 |
-
"""
|
| 75 |
-
Starts the YOLOv8 training process using the prepared dataset.
|
| 76 |
-
"""
|
| 77 |
-
if not os.path.exists(DATASET_YAML_PATH):
|
| 78 |
-
print("β Dataset not found. Please run the data preparation step first.")
|
| 79 |
-
return
|
| 80 |
-
|
| 81 |
-
print("Loading YOLOv8 model for training...")
|
| 82 |
-
try:
|
| 83 |
-
model = YOLO('yolov8n.pt')
|
| 84 |
-
print("Starting training...")
|
| 85 |
-
|
| 86 |
-
# Train the model
|
| 87 |
-
# You can adjust epochs, image size (imgsz), and other parameters
|
| 88 |
-
results = model.train(data=DATASET_YAML_PATH, epochs=100, imgsz=640)
|
| 89 |
-
|
| 90 |
-
print("β
Training complete. Results are saved in the 'runs' directory.")
|
| 91 |
-
print("The best model is located at 'runs/detect/train/weights/best.pt'.")
|
| 92 |
-
|
| 93 |
-
except Exception as e:
|
| 94 |
-
print(f"An error occurred during training: {e}")
|
| 95 |
-
|
| 96 |
-
# ==================== MAIN EXECUTION ====================
|
| 97 |
-
if __name__ == "__main__":
|
| 98 |
-
# Example list of plants to train on
|
| 99 |
-
plants_to_train = ["rosemary", "basil", "mint"]
|
| 100 |
-
|
| 101 |
-
# Step 1: Prepare the directory structure and dataset.yaml
|
| 102 |
-
# This function is a placeholder. You need to manually add your images and labels.
|
| 103 |
-
download_and_prepare_dataset(plants_to_train)
|
| 104 |
-
|
| 105 |
-
# Step 2: Start the training process
|
| 106 |
-
# Make sure you have your annotated images and labels in place before running this.
|
| 107 |
-
# start_yolo_training() # Uncomment this line to run the training
|
|
|
|
| 1 |
+
pip install --upgrade gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|