from imports import * save_path = "" def audio_to_mel_spec(audio, save_path, sr=22050, n_mels=128, hop_length=512): y, sr = librosa.load(audio, sr=sr, duration=30) melspec = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=n_mels, hop_length=hop_length) melspec_db = librosa.power_to_db(melspec, ref=np.max) plt.figure(figsize=(4.32, 2.88), dpi=100) plt.imshow(melspec_db, aspect='auto', origin='lower', cmap='magma', vmin=-42, vmax=0) plt.axis('off') plt.tight_layout(pad=0) plt.savefig(save_path, bbox_inches='tight', pad_inches=0) genre_map = { 0: "blues", 1: "classical", 2: "country", 3: "disco", 4: "hiphop", 5: "jazz", 6: "metal", 7: "pop", 8: "reggae", 9: "rock" } def load_image(img_path): img = image.load_img(img_path, target_size=(224, 224)) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array = img_array / 255. return img_array model_CNN = tf.keras.models.load_model("models/vgg16_clean.keras", compile=False) print(model_CNN)