Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import numpy as np
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
|
| 9 |
+
def load_model():
|
| 10 |
+
"""Load the Segformer model and processor."""
|
| 11 |
+
processor = SegformerImageProcessor.from_pretrained("jonathandinu/face-parsing")
|
| 12 |
+
model = SegformerForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing")
|
| 13 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
| 14 |
+
model.to(device)
|
| 15 |
+
return processor, model, device
|
| 16 |
+
|
| 17 |
+
def process_image(image: Image.Image, processor, model, device):
|
| 18 |
+
"""Run inference on the image and return the segmentation mask."""
|
| 19 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 20 |
+
outputs = model(**inputs)
|
| 21 |
+
logits = outputs.logits
|
| 22 |
+
upsampled_logits = nn.functional.interpolate(
|
| 23 |
+
logits, size=image.size[::-1], mode="bilinear", align_corners=False
|
| 24 |
+
)
|
| 25 |
+
labels = upsampled_logits.argmax(dim=1)[0].cpu().numpy()
|
| 26 |
+
return labels
|
| 27 |
+
|
| 28 |
+
def visualize_segmentation(labels: np.ndarray):
|
| 29 |
+
"""Visualize segmentation mask using Matplotlib."""
|
| 30 |
+
fig, ax = plt.subplots()
|
| 31 |
+
ax.imshow(labels, cmap="jet", alpha=0.7)
|
| 32 |
+
ax.axis("off")
|
| 33 |
+
st.pyplot(fig)
|
| 34 |
+
|
| 35 |
+
# Streamlit UI
|
| 36 |
+
st.title("Face Parsing using Segformer")
|
| 37 |
+
st.write("Upload an image to perform semantic segmentation on faces.")
|
| 38 |
+
|
| 39 |
+
# Load model
|
| 40 |
+
processor, model, device = load_model()
|
| 41 |
+
|
| 42 |
+
# File uploader
|
| 43 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
| 44 |
+
|
| 45 |
+
if uploaded_file:
|
| 46 |
+
image = Image.open(uploaded_file).convert("RGB")
|
| 47 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 48 |
+
|
| 49 |
+
# Process image
|
| 50 |
+
with st.spinner("Processing..."):
|
| 51 |
+
labels = process_image(image, processor, model, device)
|
| 52 |
+
|
| 53 |
+
# Display result
|
| 54 |
+
visualize_segmentation(labels)
|