Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,167 @@ from fastapi import FastAPI
|
|
| 2 |
|
| 3 |
app = FastAPI()
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
app = FastAPI()
|
| 4 |
|
| 5 |
+
import json
|
| 6 |
+
from torch.utils.data.dataloader import DataLoader
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import torch
|
| 9 |
+
from pydantic import BaseModel
|
| 10 |
+
from fastapi.responses import JSONResponse
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
from transformers import (
|
| 14 |
+
AutoConfig,
|
| 15 |
+
AutoModelForSequenceClassification,
|
| 16 |
+
AutoTokenizer,
|
| 17 |
+
default_data_collator,
|
| 18 |
+
set_seed
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
DATA_DIR = r"./bank_intenet_model"
|
| 24 |
+
model_name_or_path = os.path.join(DATA_DIR, "model")
|
| 25 |
+
ar_id_to_label_file = os.path.join(DATA_DIR, "id_to_label_ar.json")
|
| 26 |
+
en_id_to_label_file = os.path.join(DATA_DIR, "id_to_label_en.json")
|
| 27 |
+
id_to_label_files ={
|
| 28 |
+
'ar' : ar_id_to_label_file,
|
| 29 |
+
'en' :en_id_to_label_file,
|
| 30 |
+
}
|
| 31 |
+
seed = 42
|
| 32 |
+
max_length=128
|
| 33 |
+
per_device_eval_batch_size = 16
|
| 34 |
+
use_slow_tokenizer = True
|
| 35 |
+
pad_to_max_length =True
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def load_id_to_label(lang):
|
| 39 |
+
"""
|
| 40 |
+
Loads a JSON file containing a dictionary of integer IDs mapped to string labels and returns a dictionary with integer
|
| 41 |
+
keys and string values.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
- lang (str): the selected language
|
| 45 |
+
Returns:
|
| 46 |
+
- id_to_label (dict): a dictionary with integer keys and string values based on the selected langauge.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
json_file_path = id_to_label_files[lang]
|
| 51 |
+
|
| 52 |
+
with open(json_file_path, "r", encoding="utf-8") as f:
|
| 53 |
+
content_dict = json.load(f)
|
| 54 |
+
return {int(key): value for key, value in content_dict.items()}
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def pridct(my_list, lang):
|
| 59 |
+
"""
|
| 60 |
+
Makes predictions on a list of texts using a Hugging Face model.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
- my_list (list): a list of texts to make predictions on
|
| 64 |
+
-lang (string): a language to select from for the predicated labels.
|
| 65 |
+
|
| 66 |
+
Returns:
|
| 67 |
+
- output_dict (dict): a dictionary containing the predicted labels, the corresponding texts, and the prediction
|
| 68 |
+
probabilities
|
| 69 |
+
"""
|
| 70 |
+
padding = "max_length" if pad_to_max_length else False
|
| 71 |
+
tokenized_texts = tokenizer(my_list,
|
| 72 |
+
padding=padding,
|
| 73 |
+
truncation=True ,
|
| 74 |
+
add_special_tokens =True,
|
| 75 |
+
max_length=max_length,
|
| 76 |
+
return_tensors='pt')
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
print("tokenized_texts : ",tokenized_texts)
|
| 80 |
+
all_predictions = []
|
| 81 |
+
all_probs = []
|
| 82 |
+
all_texts = []
|
| 83 |
+
model.eval()
|
| 84 |
+
pt_inputs = {k: torch.tensor(v) for k, v in tokenized_texts.items()}
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
outputs = model(**pt_inputs)
|
| 87 |
+
|
| 88 |
+
outputs.logits.cpu().numpy()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
logits = outputs.logits
|
| 92 |
+
print('logits',logits )
|
| 93 |
+
predictions = outputs.logits.argmax(dim=-1)
|
| 94 |
+
softmax_outputs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
| 95 |
+
all_predictions.extend(predictions.cpu().numpy().tolist())
|
| 96 |
+
all_probs.extend(softmax_outputs.detach().cpu().numpy().tolist())
|
| 97 |
+
#all_texts.extend([settings.tokenizer.decode(inp, skip_special_tokens=True) for inp in pt_inputs])
|
| 98 |
+
|
| 99 |
+
id_to_label = load_id_to_label(lang)
|
| 100 |
+
labeled_predictions = [id_to_label[pred] for pred in all_predictions]
|
| 101 |
+
all_probs = [float(f"{max(prob):.3f}") for prob in all_probs]
|
| 102 |
+
df = pd.DataFrame({"text": my_list, "predicted_ids":all_predictions, "predicted_label": labeled_predictions, "prob_value": all_probs})
|
| 103 |
+
|
| 104 |
+
return df.to_dict()
|
| 105 |
+
|
| 106 |
+
def remove_empty_values(sentences):
|
| 107 |
+
return [value for value in sentences if value != '']
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def sent_tokenize(text, dot=True, new_line=True, question_mark=True, exclamation_mark=True):
|
| 111 |
+
separators = []
|
| 112 |
+
split_text = [text]
|
| 113 |
+
if new_line==True:
|
| 114 |
+
separators.append('\n')
|
| 115 |
+
if dot==True:
|
| 116 |
+
separators.append('. ')
|
| 117 |
+
if question_mark==True:
|
| 118 |
+
separators.append('?')
|
| 119 |
+
separators.append('؟')
|
| 120 |
+
if exclamation_mark==True:
|
| 121 |
+
separators.append('!')
|
| 122 |
+
|
| 123 |
+
for sep in separators:
|
| 124 |
+
new_split_text = []
|
| 125 |
+
for part in split_text:
|
| 126 |
+
tokens = part.split(sep)
|
| 127 |
+
tokens_with_separator = [token + sep for token in tokens[:-1]]
|
| 128 |
+
tokens_with_separator.append(tokens[-1].strip())
|
| 129 |
+
new_split_text.extend(tokens_with_separator)
|
| 130 |
+
split_text = new_split_text
|
| 131 |
+
|
| 132 |
+
split_text = remove_empty_values(split_text)
|
| 133 |
+
return split_text
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
config = AutoConfig.from_pretrained(model_name_or_path )
|
| 137 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=not use_slow_tokenizer)
|
| 138 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path,
|
| 139 |
+
from_tf=bool(".ckpt" in model_name_or_path ),
|
| 140 |
+
config=config)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class BankRequest(BaseModel):
|
| 144 |
+
lang: str
|
| 145 |
+
text: str
|
| 146 |
+
|
| 147 |
+
@app.post("/predict")
|
| 148 |
+
def predict(request: BankRequest):
|
| 149 |
+
# Load tagger
|
| 150 |
+
lang = request.lang
|
| 151 |
+
text = request.text
|
| 152 |
+
|
| 153 |
+
sentences = sent_tokenize(text, dot=True, new_line=True, question_mark=True, exclamation_mark=True)
|
| 154 |
+
results = []
|
| 155 |
+
|
| 156 |
+
sentence = sentences[0]
|
| 157 |
+
|
| 158 |
+
result = pridct(sentence, lang)
|
| 159 |
+
results.append(result)
|
| 160 |
+
|
| 161 |
+
content = {"resp": results, "statusText": "OK", "statusCode": 0}
|
| 162 |
+
|
| 163 |
+
return JSONResponse(
|
| 164 |
+
content=content,
|
| 165 |
+
media_type="application/json",
|
| 166 |
+
status_code=200,
|
| 167 |
+
)
|
| 168 |
+
|