import os import gradio as gr import requests import pandas as pd from rag_agent import BasicAgent DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") username = profile.username if profile else None if not username: return "Please log in to Hugging Face.", None agent = BasicAgent() agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" try: response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15) response.raise_for_status() questions_data = response.json() except Exception as e: return f"Error fetching questions: {e}", None answers_payload, results_log = [], [] for item in questions_data: task_id = item.get("task_id") question = item.get("question") if not task_id or not question: continue try: answer = agent(question) except Exception as e: answer = f"ERROR: {e}" answers_payload.append({"task_id": task_id, "submitted_answer": answer}) results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": answer}) submission_data = { "username": username, "agent_code": agent_code, "answers": answers_payload } try: res = requests.post(f"{DEFAULT_API_URL}/submit", json=submission_data, timeout=60) res.raise_for_status() result = res.json() status = f"✅ Submitted! Score: {result.get('score')}% - {result.get('message')}" return status, pd.DataFrame(results_log) except Exception as e: return f"Submission error: {e}", pd.DataFrame(results_log) with gr.Blocks() as demo: gr.Markdown("# 🧠 RAG Agent: Wikipedia + arXiv") gr.Markdown("Login with Hugging Face and click below to evaluate your agent.") gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status = gr.Textbox(label="Status", lines=4) table = gr.DataFrame(label="Results") run_button.click(fn=run_and_submit_all, outputs=[status, table]) if __name__ == "__main__": demo.launch()