Rubaha commited on
Commit
f99016e
Β·
verified Β·
1 Parent(s): 989fcbd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +163 -0
app.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from PIL import Image
4
+
5
+ # -------------------------
6
+ # 1) Secrets (from environment variables)
7
+ # -------------------------
8
+ # Make sure you set these in your environment or a .env file
9
+ # Example in Linux/macOS:
10
+ # export GROQ_API_KEY="your_key"
11
+ # export HUGGINGFACEHUB_API_TOKEN="your_token"
12
+
13
+ os.environ["HF_TOKEN"] = os.environ.get("HUGGINGFACEHUB_API_TOKEN", "")
14
+
15
+ if not os.environ.get("GROQ_API_KEY"):
16
+ raise ValueError("❌ Missing GROQ_API_KEY in environment variables")
17
+
18
+ if not os.environ.get("HUGGINGFACEHUB_API_TOKEN"):
19
+ print("⚠️ HUGGINGFACEHUB_API_TOKEN missing. If a model is gated, it may fail to download.")
20
+
21
+ # -------------------------
22
+ # 2) Device config
23
+ # -------------------------
24
+ device = "cuda" if torch.cuda.is_available() else "cpu"
25
+ dtype = torch.float16 if device == "cuda" else torch.float32
26
+ print("Device:", device)
27
+
28
+ torch.backends.cuda.matmul.allow_tf32 = True
29
+
30
+ # -------------------------
31
+ # 3) LangChain (Groq)
32
+ # -------------------------
33
+ from langchain_groq import ChatGroq
34
+ from langchain_core.prompts import ChatPromptTemplate
35
+ from langchain_core.output_parsers import StrOutputParser
36
+
37
+ llm = ChatGroq(model="llama-3.1-8b-instant", temperature=0.7)
38
+
39
+ prompt_refiner = ChatPromptTemplate.from_template("""
40
+ You are an expert AI prompt engineer for SDXL text-to-image generation.
41
+ Convert the user's idea into a high-quality image prompt.
42
+
43
+ Rules:
44
+ - concise (max 60 words)
45
+ - include subject, environment, lighting, composition, style
46
+ - avoid brand names, watermarks, copyrighted characters
47
+ - keep any style the user mentions (anime/realistic/etc.)
48
+
49
+ User idea: {text}
50
+
51
+ Final image prompt:
52
+ """)
53
+
54
+ caption_refiner = ChatPromptTemplate.from_template("""
55
+ You are an expert image caption editor.
56
+ Rewrite the caption in clear, neutral English (1–2 sentences). No identity guessing.
57
+
58
+ Raw caption: {caption}
59
+
60
+ Final caption:
61
+ """)
62
+
63
+ prompt_chain = prompt_refiner | llm | StrOutputParser()
64
+ caption_chain = caption_refiner | llm | StrOutputParser()
65
+
66
+ NEG_DEFAULT = "lowres, blurry, bad anatomy, extra fingers, watermark, text, logo, jpeg artifacts, deformed"
67
+
68
+ # -------------------------
69
+ # 4) SDXL pipeline
70
+ # -------------------------
71
+ from diffusers import StableDiffusionXLPipeline
72
+
73
+ MODEL_ID = "playgroundai/playground-v2.5-1024px-aesthetic"
74
+
75
+ pipe = StableDiffusionXLPipeline.from_pretrained(
76
+ MODEL_ID,
77
+ torch_dtype=dtype,
78
+ use_safetensors=True,
79
+ token=os.environ.get("HUGGINGFACEHUB_API_TOKEN") or None
80
+ ).to(device)
81
+
82
+ pipe.enable_attention_slicing()
83
+ try:
84
+ pipe.enable_vae_tiling()
85
+ except Exception:
86
+ pass
87
+
88
+ pipe.safety_checker = None
89
+
90
+ def _gen(seed: int):
91
+ seed = int(seed)
92
+ return torch.Generator(device="cuda").manual_seed(seed) if device == "cuda" else torch.Generator().manual_seed(seed)
93
+
94
+ @torch.inference_mode()
95
+ def text_to_image(user_text, steps=30, guidance=6.5, seed=123, size=1024, negative_prompt=NEG_DEFAULT):
96
+ if not user_text or not str(user_text).strip():
97
+ raise ValueError("Please enter a non-empty prompt.")
98
+
99
+ enhanced = prompt_chain.invoke({"text": user_text}).strip()
100
+
101
+ g = _gen(seed)
102
+ img = pipe(
103
+ prompt=enhanced,
104
+ negative_prompt=negative_prompt,
105
+ num_inference_steps=int(steps),
106
+ guidance_scale=float(guidance),
107
+ height=int(size),
108
+ width=int(size),
109
+ generator=g
110
+ ).images[0]
111
+ return enhanced, img
112
+
113
+ # -------------------------
114
+ # 5) Image β†’ Text (BLIP)
115
+ # -------------------------
116
+ from transformers import pipeline as hf_pipeline
117
+
118
+ caption_model = hf_pipeline(
119
+ "image-to-text",
120
+ model="Salesforce/blip-image-captioning-base",
121
+ device=0 if device == "cuda" else -1
122
+ )
123
+
124
+ def image_to_text(img):
125
+ if img is None:
126
+ raise ValueError("Please upload an image.")
127
+ raw = caption_model(img)[0]["generated_text"].strip()
128
+ refined = caption_chain.invoke({"caption": raw}).strip()
129
+ return raw, refined
130
+
131
+ # -------------------------
132
+ # 6) Gradio App
133
+ # -------------------------
134
+ import gradio as gr
135
+
136
+ with gr.Blocks(title="LangChain Text ↔ Image (SDXL, Secure)") as app:
137
+ gr.Markdown("## πŸ” LangChain Text ↔ Image (SDXL, Secret Key Based) β€” Better Quality on T4")
138
+
139
+ with gr.Tab("Text β†’ Image (SDXL)"):
140
+ txt = gr.Textbox(label="Enter text prompt", placeholder="e.g., A futuristic hospital lab with AI robots, cinematic lighting, ultra-detailed")
141
+ with gr.Row():
142
+ size = gr.Radio([512, 1024], value=1024, label="Resolution (Use 512 if OOM)")
143
+ seed = gr.Number(value=123, label="Seed")
144
+ with gr.Row():
145
+ steps = gr.Slider(10, 50, value=30, step=1, label="Steps (Quality ↑ with steps)")
146
+ guidance = gr.Slider(1.0, 10.0, value=6.5, step=0.1, label="Guidance (5–8 best)")
147
+ negative = gr.Textbox(value=NEG_DEFAULT, label="Negative prompt (quality control)")
148
+ btn1 = gr.Button("Generate Image")
149
+
150
+ refined_prompt = gr.Textbox(label="Enhanced Prompt (LangChain)", interactive=False)
151
+ img = gr.Image(label="Generated Image")
152
+
153
+ btn1.click(text_to_image, [txt, steps, guidance, seed, size, negative], [refined_prompt, img])
154
+
155
+ with gr.Tab("Image β†’ Text"):
156
+ img_in = gr.Image(type="pil", label="Upload image")
157
+ btn2 = gr.Button("Generate Caption")
158
+ raw = gr.Textbox(label="Raw Caption (BLIP)", interactive=False)
159
+ clean = gr.Textbox(label="Refined Caption (LangChain)", interactive=False)
160
+
161
+ btn2.click(image_to_text, img_in, [raw, clean])
162
+
163
+ app.launch(share=True)