Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import os | |
| import shutil | |
| from PIL import Image | |
| import torch | |
| import torchvision.transforms as transforms | |
| from torchvision import models | |
| # Set up dataset path | |
| DATASET_PATH = "categorized_images" | |
| os.makedirs(DATASET_PATH, exist_ok=True) | |
| # Load class names dynamically from dataset folder | |
| class_names = sorted(os.listdir(DATASET_PATH)) # Get categories from folder names | |
| num_classes = len(class_names) | |
| # Load the trained model | |
| model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1) | |
| model.classifier[1] = torch.nn.Linear(1280, num_classes) | |
| model.load_state_dict(torch.load("custom_image_model.pth", map_location=torch.device('cpu'))) | |
| model.eval() | |
| # Define image transformation | |
| transform = transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
| ]) | |
| def predict_and_save(image, filename): | |
| """Predict category and save the image in the correct folder.""" | |
| image_tensor = transform(image).unsqueeze(0) | |
| with torch.no_grad(): | |
| output = model(image_tensor) | |
| probabilities = torch.nn.functional.softmax(output, dim=1) | |
| predicted_index = torch.argmax(probabilities, dim=1).item() | |
| predicted_category = class_names[predicted_index] | |
| confidence = probabilities[0][predicted_index].item() | |
| # Ensure category folder exists | |
| category_path = os.path.join(DATASET_PATH, predicted_category) | |
| os.makedirs(category_path, exist_ok=True) | |
| # Save image in the correct category folder | |
| image_save_path = os.path.join(category_path, filename) | |
| image.save(image_save_path) | |
| return predicted_category, confidence, image_save_path | |
| # Streamlit UI | |
| st.title("π Smart Image Categorizer") | |
| st.write("Upload your images and let AI categorize them instantly!") | |
| uploaded_files = st.file_uploader("Upload images (single or multiple)", type=["png", "jpg", "jpeg"], accept_multiple_files=True) | |
| if uploaded_files: | |
| for uploaded_file in uploaded_files: | |
| image = Image.open(uploaded_file).convert("RGB") | |
| category, confidence, saved_path = predict_and_save(image, uploaded_file.name) | |
| st.image(image, caption=f"{uploaded_file.name} β {category} ({confidence:.2%})", use_column_width=True) | |
| st.success(f"β Categorized as: **{category}** (Confidence: {confidence:.2%})") | |
| st.info(f"π Image saved to: {saved_path}") | |