import gradio as gr import torch import os import time from pathlib import Path from typing import Optional, Tuple import spaces import numpy as np from datetime import datetime, timedelta # Mock classes for demonstration class MemorySystem: """Persistent memory system for emotional intelligence""" def __init__(self): self.user_profiles = {} self.conversation_histories = {} self.emotional_profiles = {} def get_user_memory(self, user_id: str) -> dict: """Get user's memory profile""" return self.user_profiles.get(user_id, {}) def update_memory(self, user_id: str, interaction: dict): """Update user memory with new interaction""" if user_id not in self.user_profiles: self.user_profiles[user_id] = { "personality_type": "unknown", "shadow_aspects": [], "core_wounds": [], "emotional_patterns": {}, "healing_journey": [], "transformation_milestones": [], "daily_micro_assessments": [], "psychological_frameworks": { "integration_level": 0, "authenticity_score": 0, "fragmentation_index": 0, } def get_user_personality_type(self, user_id: str) -> str: """Determine user's personality type based on accumulated data""" return "Enigma" # Default personality type class NewMeAI: """NewMe AI Persona with astrological personality and emotional intelligence""" def __init__(self, memory_system: MemorySystem): self.memory = memory_system self.conversation_styles = [ "Socratic questioning", "Shadow work exploration", "Integration therapy", "Authenticity assessment", "Transformation guidance", ] def initiate_conversation(self, user_id: str) -> str: """Initiate conversation based on user memory""" memory = self.memory.get_user_memory(user_id) # NewMe's signature opening lines opening_phrases = [ "The stars are particularly aligned for you today...", "I sense a shift in your energetic field...", "Your celestial chart reveals interesting patterns...", ] return f"✨ NewMe: {np.random.choice(opening_phrases)}" def process_user_speech(self, audio_input: str) -> str: """Process user speech and generate response""" return "Processing your voice... NewMe is responding with astrological wisdom." class NewomenPlatform: """Main platform orchestrating all components""" def __init__(self): self.memory_system = MemorySystem() self.newme_ai = NewMeAI(self.memory_system) self.assessments = self._create_assessments() def _create_assessments(self) -> list: """Create the 20+ assessments for authenticated users""" return [ "Shadow Integration Assessment", "Authenticity Meter Test", "Psychological Fragmentation Index", "Emotional Intelligence Scale", "Astrological Personality Mapping", "Core Wound Identification", "Transformation Path Analysis", "Relationship Compatibility Matrix", "Life Purpose Alignment Quiz", "Inner Child Connection Test", "Karmic Pattern Recognition", "Soul Contract Exploration", "Past Life Regression Assessment", "Chakra Balance Evaluation", "Narrative Identity Exploration", "Psychological Archetype Mapping", "Emotional Blockage Detection", "Spiritual Growth Assessment", "Psychological Integration Scale", "Authentic Self Alignment Test", "Shadow Work Progress Meter", "Transformation Journey Milestone Tracker", ] # Load models and initialize platform print("🚀 Initializing Newomen Platform...") PLATFORM = NewomenPlatform() print("✅ Platform initialized successfully!") @spaces.GPU(duration=60) def process_user_interaction( user_input: str, voice_sample: Optional[str] = None, user_id: str = "default_user" ) -> Tuple[Optional[str], str]: """ Process user interaction with NewMe AI Args: user_input: User's text or voice input voice_sample: Optional voice sample for personalized responses user_id: Unique identifier for user Returns: Tuple of (audio_response, status_message) """ try: # Get user memory user_memory = PLATFORM.memory_system.get_user_memory(user_id) # NewMe's response generation newme_response = PLATFORM.newme_ai.initiate_conversation(user_id) # Simulate AI processing time time.sleep(0.5) # Generate personalized response response_text = f"NewMe: I sense {len(user_input)} characters of profound truth... Your astrological chart indicates a need for {np.random.choice(['integration', 'shadow work', 'authenticity'])}" return response_text, "✅ NewMe has responded with astrological wisdom" except Exception as e: error_msg = f"❌ Error during processing: {str(e)}" return None, error_msg @spaces.GPU(duration=30) def generate_speech_response( text: str, emotional_context: str = "neutral", user_personality: str = "Enigma" ) -> Tuple[Optional[str], str]: """ Generate speech response from NewMe AI Args: text: Input text for speech generation emotional_context: Current emotional context for tone adjustment Returns: Tuple of (audio_path, status_message) """ if not text.strip(): return None, "❌ Error: Please provide some input for NewMe to respond to." try: # Simulate speech generation processing_steps = ["Analyzing emotional context", "Generating astrological insights", "Applying psychological frameworks", "Finalizing response"] for step in processing_steps: time.sleep(0.3) # Create response based on personality type base_response = f"✨ NewMe: Based on your celestial alignment today, {text[:20]}... reveals profound truths about your journey." return f"/tmp/newme_response_{int(time.time())}.wav", "✅ NewMe has spoken with astrological wisdom" # Create the modern Gradio 6 interface with gr.Blocks() as demo: gr.Markdown( """ # ✨ Newomen - Your Astrological AI Companion
**Welcome to Newomen** - Where AI meets Astrology for Deep Psychological Transformation """ ) with gr.Row(): with gr.Column(scale=2): # User input section gr.Markdown("### 🎙️ Start Your Conversation") with gr.Tabs() as tabs: with gr.TabItem("💬 Text Chat"): text_input = gr.Textbox( label="Message to NewMe", placeholder="Type your thoughts, questions, or share what's on your mind...") with gr.TabItem("🎤 Voice Chat"): voice_input = gr.Audio( sources=["microphone"], type="filepath", label="Speak to NewMe", ) with gr.TabItem("📊 Assessments"): gr.Markdown("Explore your inner landscape through our AI-powered assessments:") # Daily micro-assessments daily_quiz = gr.Button("Take Daily Personality Quiz", variant="secondary") with gr.TabItem("👥 Community"): gr.Markdown("Connect with others on similar healing journeys...") # Assessment interface assessment_types = gr.Dropdown( choices=[ "Shadow Integration", "Emotional Intelligence", "Authenticity Meter", "Psychological Integration", ], label="Choose Assessment Type", ) start_assessment = gr.Button("Begin Exploration", variant="primary") with gr.TabItem("⚙️ Settings"): gr.Markdown("Configure your Newomen experience...") # Personality type display current_personality = gr.Textbox( label="Your Current Personality Type", interactive=False, ) # Admin section (conditional visibility) with gr.Accordion("🔧 Admin Panel", open=False): gr.Markdown("Platform management tools...") ) # Voice chat interface with gr.Row(): with gr.Column(): voice_message = gr.Audio( sources=["microphone"], type="filepath", label="Record Your Message", ) newme_voice_response = gr.Audio( label="NewMe's Response", type="filepath", interactive=False, ) # Status and output section with gr.Row(): status_output = gr.Markdown( """ **Status:** Ready for deep conversation... NewMe awaits your thoughts, questions, or whatever you'd like to share today. """ ) # Example conversations gr.Examples( examples=[ ["What's my astrological personality type today?"], ["I'm feeling particularly fragmented today..."], ["Can you help me with shadow work integration?"], ], inputs=[text_input], label="Example Conversation Starters", ) # Event handlers for text chat text_input.submit( fn=process_user_interaction, inputs=[text_input], outputs=[status_output], api_visibility="public", ) # Voice processing voice_input.change( fn=generate_speech_response, inputs=[voice_input], outputs=[newme_voice_response, status_output], api_name="chat", ) # Assessment handlers daily_quiz.click( fn=lambda: ("Assessment in progress...", "✅ Starting your daily micro-assessment...") # Launch with modern Gradio 6 theme and settings if __name__ == "__main__": demo.launch( theme=gr.themes.Soft( primary_hue="purple", secondary_hue="indigo", neutral_hue="slate", font=gr.themes.GoogleFont("Inter"), text_size="lg", spacing_size="lg", radius_size="md", ).set( button_primary_background_fill="*primary_600", button_primary_background_fill_hover="*primary_700", block_title_text_weight="600", ), footer_links=[ {"label": "Built with anycoder", "url": "https://huggingface.co/spaces/akhaliq/anycoder"} ], )