File size: 10,463 Bytes
92a0b42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
"""
BabelDocs x Agentic AI MCP - Gradio Application
PDF Translation with Google Drive Integration.
Accepts public GDrive links or local file uploads.
For Anthropic Hackathon - Track 1: Building MCP
Usage:
python app.py
"""
import os
import re
import base64
import tempfile
import httpx
import gradio as gr
from pathlib import Path
from datetime import datetime
from dotenv import load_dotenv
load_dotenv()
# Modal endpoint configuration
# Set BABELDOCS_MODAL_URL as HuggingFace Space secret for production
MODAL_BASE_URL = os.getenv("BABELDOCS_MODAL_URL")
if not MODAL_BASE_URL:
raise ValueError("BABELDOCS_MODAL_URL environment variable required. Set it as a HuggingFace Space secret.")
MODAL_TRANSLATE_URL = f"{MODAL_BASE_URL}-babeldocstranslator-api.modal.run"
MODAL_HEALTH_URL = f"{MODAL_BASE_URL}-babeldocstranslator-health.modal.run"
# Max pages limit (test phase)
MAX_PAGES = 20
# Supported languages
LANGUAGES = {
"fr": "French",
"en": "English",
"es": "Spanish",
"de": "German",
"it": "Italian",
"pt": "Portuguese",
"zh": "Chinese",
"ja": "Japanese",
"ko": "Korean",
"ru": "Russian",
"ar": "Arabic",
}
def log_message(logs: list, message: str) -> list:
"""Add timestamped message to logs."""
timestamp = datetime.now().strftime("%H:%M:%S")
logs.append(f"[{timestamp}] {message}")
return logs
def extract_gdrive_file_id(url: str) -> str | None:
"""Extract file ID from Google Drive URL."""
patterns = [
r"/file/d/([a-zA-Z0-9_-]+)",
r"id=([a-zA-Z0-9_-]+)",
r"/d/([a-zA-Z0-9_-]+)",
]
for pattern in patterns:
match = re.search(pattern, url)
if match:
return match.group(1)
return None
async def download_gdrive_public(url: str) -> tuple[bytes, str]:
"""Download file from public Google Drive link.
Returns (file_bytes, filename).
"""
file_id = extract_gdrive_file_id(url)
if not file_id:
raise ValueError("Invalid Google Drive URL")
# Direct download URL
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
async with httpx.AsyncClient(timeout=120.0, follow_redirects=True) as client:
response = await client.get(download_url)
response.raise_for_status()
# Try to get filename from Content-Disposition header
content_disp = response.headers.get("Content-Disposition", "")
filename_match = re.search(r'filename="?([^";\n]+)"?', content_disp)
if filename_match:
filename = filename_match.group(1)
else:
filename = f"gdrive_{file_id}.pdf"
return response.content, filename
async def translate_pdf_modal(
pdf_file,
gdrive_url: str,
target_lang: str,
progress=gr.Progress()
) -> tuple:
"""Translate PDF using Modal cloud."""
logs = []
# Validate input
if not pdf_file and not gdrive_url:
return None, None, "Please upload a PDF or provide a Google Drive link", "", "\n".join(logs)
if pdf_file and gdrive_url:
return None, None, "Please use either file upload OR Google Drive link, not both", "", "\n".join(logs)
try:
logs = log_message(logs, "Starting translation...")
# Get PDF bytes and filename
if gdrive_url:
logs = log_message(logs, f"Downloading from Google Drive...")
progress(0.05, desc="Downloading from Google Drive...")
pdf_bytes, source_filename = await download_gdrive_public(gdrive_url.strip())
logs = log_message(logs, f"Downloaded: {source_filename}")
else:
pdf_path = Path(pdf_file)
pdf_bytes = pdf_path.read_bytes()
source_filename = pdf_path.name
pdf_base64 = base64.b64encode(pdf_bytes).decode("utf-8")
logs = log_message(logs, f"Input: {source_filename}")
logs = log_message(logs, f"Size: {len(pdf_bytes) / 1024:.1f} KB")
logs = log_message(logs, f"Target: {LANGUAGES.get(target_lang, target_lang)}")
progress(0.1, desc="Uploading to Modal...")
payload = {
"pdf_base64": pdf_base64,
"target_lang": target_lang,
}
logs = log_message(logs, "Translating on Modal cloud...")
logs = log_message(logs, "(This may take several minutes)")
progress(0.2, desc="Translating...")
start_time = datetime.now()
async with httpx.AsyncClient(timeout=900.0, follow_redirects=True) as client:
response = await client.post(MODAL_TRANSLATE_URL, json=payload)
response.raise_for_status()
result = response.json()
duration = (datetime.now() - start_time).total_seconds()
progress(0.8, desc="Processing result...")
if not result.get("success"):
error_msg = result.get("message", "Unknown error")
logs = log_message(logs, f"ERROR: {error_msg}")
return None, None, "Translation failed", "", "\n".join(logs)
# Process mono_img PDF
mono_img_path = None
mono_img_base64 = result.get("mono_img_pdf_base64")
if mono_img_base64:
mono_img_bytes = base64.b64decode(mono_img_base64)
stem = Path(source_filename).stem
mono_img_filename = f"{stem}_translated.{target_lang}.pdf"
mono_img_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
mono_img_file.write(mono_img_bytes)
mono_img_file.close()
mono_img_path = mono_img_file.name
logs = log_message(logs, f"Mono: {mono_img_filename} ({len(mono_img_bytes) / 1024:.1f} KB)")
# Process dual_img PDF
dual_img_path = None
dual_img_base64 = result.get("dual_img_pdf_base64")
if dual_img_base64:
dual_img_bytes = base64.b64decode(dual_img_base64)
stem = Path(source_filename).stem
dual_img_filename = f"{stem}_translated.{target_lang}.dual.pdf"
dual_img_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
dual_img_file.write(dual_img_bytes)
dual_img_file.close()
dual_img_path = dual_img_file.name
logs = log_message(logs, f"Dual: {dual_img_filename} ({len(dual_img_bytes) / 1024:.1f} KB)")
if not mono_img_path and not dual_img_path:
logs = log_message(logs, "ERROR: No output PDF in response")
return None, None, "Translation failed", "", "\n".join(logs)
logs = log_message(logs, f"Duration: {duration:.1f} seconds")
stats_msg = f"""**Translation completed!**
- **Duration:** {duration:.1f} seconds
- **Target:** {LANGUAGES.get(target_lang, target_lang)}"""
progress(1.0, desc="Done!")
return mono_img_path, dual_img_path, "Translation successful!", stats_msg, "\n".join(logs)
except httpx.TimeoutException:
logs = log_message(logs, "ERROR: Translation timed out")
return None, None, "Translation timed out", "", "\n".join(logs)
except httpx.HTTPStatusError as e:
logs = log_message(logs, f"ERROR: HTTP {e.response.status_code}")
return None, None, f"HTTP error: {e.response.status_code}", "", "\n".join(logs)
except Exception as e:
logs = log_message(logs, f"ERROR: {str(e)}")
return None, None, f"Error: {str(e)}", "", "\n".join(logs)
# Gradio Interface
with gr.Blocks(title="BabelDocs x Agentic AI MCP") as demo:
gr.Markdown("""
# BabelDocs x Agentic AI MCP - PDF Translation with Google Drive Integration
**Translate PDFs directly from Google Drive and save back automatically**
---
## Key Feature: Full Google Drive Workflow in CLAUDE Desktop MCP
```
"Translate my Q3 report to French and save it to Translations folder"
↓
Claude searches → downloads → translates → uploads → done!
```
---
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Input")
gdrive_url = gr.Textbox(
label="Google Drive Link (public)",
placeholder="https://drive.google.com/file/d/... or leave empty",
info="Paste a public GDrive link, OR upload a local file below",
)
gr.Markdown("**OR**")
pdf_input = gr.File(
label="Upload PDF",
file_types=[".pdf"],
type="filepath",
)
target_lang = gr.Dropdown(
choices=list(LANGUAGES.keys()),
value="fr",
label="Target Language",
)
translate_btn = gr.Button(
"Translate PDF",
variant="primary",
size="lg",
)
with gr.Column(scale=1):
gr.Markdown("### Result")
status_output = gr.Textbox(
label="Status",
interactive=False,
)
stats_output = gr.Markdown(label="Statistics")
gr.Markdown("**Downloads:**")
with gr.Row():
mono_img_output = gr.File(label="Mono (translated + images)")
dual_img_output = gr.File(label="Dual (bilingual + images)")
logs_output = gr.Textbox(
label="Logs",
interactive=False,
lines=10,
max_lines=15,
)
gr.Markdown("""
---
### How it works
```
1. Upload PDF or paste GDrive link
↓
2. Send to Modal cloud (serverless)
↓
3. BabelDOC with Agentic AI translates text + images, preserves layout
↓
4. Download translated PDF
```
---
**Built with:** BabelDOC, Modal, Nebius AI, Gradio | **Hackathon:** Anthropic MCP Track 1
""")
translate_btn.click(
fn=translate_pdf_modal,
inputs=[pdf_input, gdrive_url, target_lang],
outputs=[mono_img_output, dual_img_output, status_output, stats_output, logs_output],
)
if __name__ == "__main__":
demo.launch(
server_name="127.0.0.1",
server_port=7860,
share=False,
)
|