Spaces:
Running
on
Zero
Running
on
Zero
Y Phung Nguyen
commited on
Commit
·
83a4de1
1
Parent(s):
46971ea
Use Q&A breakdown agent
Browse files- pipeline.py +211 -3
- supervisor.py +204 -0
- ui.py +7 -0
pipeline.py
CHANGED
|
@@ -3,6 +3,7 @@ import os
|
|
| 3 |
import json
|
| 4 |
import time
|
| 5 |
import logging
|
|
|
|
| 6 |
import concurrent.futures
|
| 7 |
import gradio as gr
|
| 8 |
import spaces
|
|
@@ -18,9 +19,168 @@ from supervisor import (
|
|
| 18 |
gemini_supervisor_breakdown, gemini_supervisor_search_strategies,
|
| 19 |
gemini_supervisor_rag_brainstorm, execute_medswin_task,
|
| 20 |
gemini_supervisor_synthesize, gemini_supervisor_challenge,
|
| 21 |
-
gemini_supervisor_enhance_answer, gemini_supervisor_check_clarity
|
|
|
|
| 22 |
)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
@spaces.GPU(max_duration=120)
|
| 26 |
def stream_chat(
|
|
@@ -37,6 +197,7 @@ def stream_chat(
|
|
| 37 |
use_rag: bool,
|
| 38 |
medical_model: str,
|
| 39 |
use_web_search: bool,
|
|
|
|
| 40 |
disable_agentic_reasoning: bool,
|
| 41 |
show_thoughts: bool,
|
| 42 |
request: gr.Request
|
|
@@ -73,9 +234,15 @@ def stream_chat(
|
|
| 73 |
"plan": None,
|
| 74 |
"strategy_decisions": [],
|
| 75 |
"stage_metrics": {},
|
| 76 |
-
"search": {"strategies": [], "total_results": 0}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
}
|
| 78 |
-
|
| 79 |
def record_stage(stage_name: str, start_time: float):
|
| 80 |
pipeline_diagnostics["stage_metrics"][stage_name] = round(time.time() - start_time, 3)
|
| 81 |
|
|
@@ -95,6 +262,47 @@ def stream_chat(
|
|
| 95 |
{"role": "assistant", "content": ""}
|
| 96 |
]
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
plan = None
|
| 99 |
if not disable_agentic_reasoning:
|
| 100 |
reasoning_stage_start = time.time()
|
|
|
|
| 3 |
import json
|
| 4 |
import time
|
| 5 |
import logging
|
| 6 |
+
import threading
|
| 7 |
import concurrent.futures
|
| 8 |
import gradio as gr
|
| 9 |
import spaces
|
|
|
|
| 19 |
gemini_supervisor_breakdown, gemini_supervisor_search_strategies,
|
| 20 |
gemini_supervisor_rag_brainstorm, execute_medswin_task,
|
| 21 |
gemini_supervisor_synthesize, gemini_supervisor_challenge,
|
| 22 |
+
gemini_supervisor_enhance_answer, gemini_supervisor_check_clarity,
|
| 23 |
+
gemini_clinical_intake_triage, gemini_summarize_clinical_insights
|
| 24 |
)
|
| 25 |
|
| 26 |
+
MAX_CLINICAL_QA_ROUNDS = 5
|
| 27 |
+
_clinical_intake_sessions = {}
|
| 28 |
+
_clinical_intake_lock = threading.Lock()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def _get_clinical_intake_state(session_id: str):
|
| 32 |
+
with _clinical_intake_lock:
|
| 33 |
+
return _clinical_intake_sessions.get(session_id)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def _set_clinical_intake_state(session_id: str, state: dict):
|
| 37 |
+
with _clinical_intake_lock:
|
| 38 |
+
_clinical_intake_sessions[session_id] = state
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def _clear_clinical_intake_state(session_id: str):
|
| 42 |
+
with _clinical_intake_lock:
|
| 43 |
+
_clinical_intake_sessions.pop(session_id, None)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def _history_to_text(history: list, limit: int = 6) -> str:
|
| 47 |
+
if not history:
|
| 48 |
+
return "No prior conversation."
|
| 49 |
+
recent = history[-limit:]
|
| 50 |
+
lines = []
|
| 51 |
+
for turn in recent:
|
| 52 |
+
role = turn.get("role", "user")
|
| 53 |
+
content = turn.get("content", "")
|
| 54 |
+
lines.append(f"{role}: {content}")
|
| 55 |
+
return "\n".join(lines)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def _format_intake_question(question: dict, round_idx: int, max_rounds: int, target_lang: str) -> str:
|
| 59 |
+
header = f"🩺 Clinical intake question {round_idx}/{max_rounds}"
|
| 60 |
+
body = question.get("question") or "Could you share a bit more detail so I can give an accurate answer?"
|
| 61 |
+
focus = question.get("clinical_focus")
|
| 62 |
+
why = question.get("why_it_matters")
|
| 63 |
+
prompt_parts = [header, body]
|
| 64 |
+
if focus:
|
| 65 |
+
prompt_parts.append(f"Focus: {focus}")
|
| 66 |
+
if why:
|
| 67 |
+
prompt_parts.append(f"Why it matters: {why}")
|
| 68 |
+
prompt_parts.append("Please answer in 1-2 sentences so I can continue.")
|
| 69 |
+
prompt_text = "\n\n".join(prompt_parts)
|
| 70 |
+
if target_lang and target_lang != "en":
|
| 71 |
+
try:
|
| 72 |
+
prompt_text = translate_text(prompt_text, target_lang=target_lang, source_lang="en")
|
| 73 |
+
except Exception as exc:
|
| 74 |
+
logger.warning(f"[INTAKE] Question translation failed: {exc}")
|
| 75 |
+
return prompt_text
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def _format_insights_block(insights: dict) -> str:
|
| 79 |
+
if not insights:
|
| 80 |
+
return ""
|
| 81 |
+
lines = []
|
| 82 |
+
profile = insights.get("patient_profile")
|
| 83 |
+
if profile:
|
| 84 |
+
lines.append(f"- Patient profile: {profile}")
|
| 85 |
+
for finding in insights.get("key_findings", []):
|
| 86 |
+
title = finding.get("title", "Insight")
|
| 87 |
+
detail = finding.get("detail", "")
|
| 88 |
+
implication = finding.get("clinical_implication", "")
|
| 89 |
+
line = f"- {title}: {detail}"
|
| 90 |
+
if implication:
|
| 91 |
+
line += f" (Clinical note: {implication})"
|
| 92 |
+
lines.append(line)
|
| 93 |
+
return "\n".join(lines)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def _build_refined_query(base_query: str, insights: dict, insights_block: str) -> str:
|
| 97 |
+
sections = [base_query.strip()] if base_query else []
|
| 98 |
+
if insights_block:
|
| 99 |
+
sections.append(f"Clinical intake summary:\n{insights_block}")
|
| 100 |
+
refined = insights.get("refined_problem_statement")
|
| 101 |
+
if refined:
|
| 102 |
+
sections.append(f"Refined problem statement:\n{refined}")
|
| 103 |
+
handoff = insights.get("handoff_note")
|
| 104 |
+
if handoff:
|
| 105 |
+
sections.append(f"Handoff note:\n{handoff}")
|
| 106 |
+
return "\n\n".join([section for section in sections if section])
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def _start_clinical_intake_session(session_id: str, plan: dict, base_query: str, original_language: str):
|
| 110 |
+
questions = plan.get("questions", []) or []
|
| 111 |
+
if not questions:
|
| 112 |
+
return None
|
| 113 |
+
max_rounds = plan.get("max_rounds") or len(questions)
|
| 114 |
+
max_rounds = max(1, min(MAX_CLINICAL_QA_ROUNDS, max_rounds, len(questions)))
|
| 115 |
+
state = {
|
| 116 |
+
"base_query": base_query,
|
| 117 |
+
"original_language": original_language or "en",
|
| 118 |
+
"questions": questions,
|
| 119 |
+
"max_rounds": max_rounds,
|
| 120 |
+
"current_round": 1,
|
| 121 |
+
"pending_question_index": 0,
|
| 122 |
+
"awaiting_answer": True,
|
| 123 |
+
"answers": [],
|
| 124 |
+
"decision_reason": plan.get("decision_reason", ""),
|
| 125 |
+
"initial_hypotheses": plan.get("initial_hypotheses", []),
|
| 126 |
+
"started_at": time.time()
|
| 127 |
+
}
|
| 128 |
+
_set_clinical_intake_state(session_id, state)
|
| 129 |
+
first_prompt = _format_intake_question(
|
| 130 |
+
questions[0],
|
| 131 |
+
round_idx=1,
|
| 132 |
+
max_rounds=max_rounds,
|
| 133 |
+
target_lang=state["original_language"]
|
| 134 |
+
)
|
| 135 |
+
return first_prompt
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def _handle_clinical_answer(session_id: str, answer_text: str):
|
| 139 |
+
state = _get_clinical_intake_state(session_id)
|
| 140 |
+
if not state:
|
| 141 |
+
return {"type": "error"}
|
| 142 |
+
questions = state.get("questions", [])
|
| 143 |
+
idx = state.get("pending_question_index", 0)
|
| 144 |
+
if idx >= len(questions):
|
| 145 |
+
logger.warning("[INTAKE] Pending question index out of range, ending intake session")
|
| 146 |
+
_clear_clinical_intake_state(session_id)
|
| 147 |
+
return {"type": "error"}
|
| 148 |
+
question_meta = questions[idx] or {}
|
| 149 |
+
qa_entry = {
|
| 150 |
+
"question": question_meta.get("question", ""),
|
| 151 |
+
"focus": question_meta.get("clinical_focus"),
|
| 152 |
+
"why_it_matters": question_meta.get("why_it_matters"),
|
| 153 |
+
"round": state.get("current_round", len(state.get("answers", [])) + 1),
|
| 154 |
+
"answer": answer_text.strip()
|
| 155 |
+
}
|
| 156 |
+
state["answers"].append(qa_entry)
|
| 157 |
+
next_index = idx + 1
|
| 158 |
+
reached_round_limit = len(state["answers"]) >= state["max_rounds"]
|
| 159 |
+
if reached_round_limit or next_index >= len(questions):
|
| 160 |
+
insights = gemini_summarize_clinical_insights(state["base_query"], state["answers"])
|
| 161 |
+
insights_block = _format_insights_block(insights)
|
| 162 |
+
refined_query = _build_refined_query(state["base_query"], insights, insights_block)
|
| 163 |
+
_clear_clinical_intake_state(session_id)
|
| 164 |
+
return {
|
| 165 |
+
"type": "insights",
|
| 166 |
+
"insights": insights,
|
| 167 |
+
"insights_block": insights_block,
|
| 168 |
+
"refined_query": refined_query,
|
| 169 |
+
"qa_pairs": state["answers"]
|
| 170 |
+
}
|
| 171 |
+
state["pending_question_index"] = next_index
|
| 172 |
+
state["current_round"] = len(state["answers"]) + 1
|
| 173 |
+
state["awaiting_answer"] = True
|
| 174 |
+
_set_clinical_intake_state(session_id, state)
|
| 175 |
+
next_question = questions[next_index]
|
| 176 |
+
prompt = _format_intake_question(
|
| 177 |
+
next_question,
|
| 178 |
+
round_idx=state["current_round"],
|
| 179 |
+
max_rounds=state["max_rounds"],
|
| 180 |
+
target_lang=state["original_language"]
|
| 181 |
+
)
|
| 182 |
+
return {"type": "question", "prompt": prompt}
|
| 183 |
+
|
| 184 |
|
| 185 |
@spaces.GPU(max_duration=120)
|
| 186 |
def stream_chat(
|
|
|
|
| 197 |
use_rag: bool,
|
| 198 |
medical_model: str,
|
| 199 |
use_web_search: bool,
|
| 200 |
+
enable_clinical_intake: bool,
|
| 201 |
disable_agentic_reasoning: bool,
|
| 202 |
show_thoughts: bool,
|
| 203 |
request: gr.Request
|
|
|
|
| 234 |
"plan": None,
|
| 235 |
"strategy_decisions": [],
|
| 236 |
"stage_metrics": {},
|
| 237 |
+
"search": {"strategies": [], "total_results": 0},
|
| 238 |
+
"clinical_intake": {
|
| 239 |
+
"enabled": enable_clinical_intake,
|
| 240 |
+
"activated": False,
|
| 241 |
+
"rounds": 0,
|
| 242 |
+
"reason": "",
|
| 243 |
+
"insights": []
|
| 244 |
+
}
|
| 245 |
}
|
|
|
|
| 246 |
def record_stage(stage_name: str, start_time: float):
|
| 247 |
pipeline_diagnostics["stage_metrics"][stage_name] = round(time.time() - start_time, 3)
|
| 248 |
|
|
|
|
| 262 |
{"role": "assistant", "content": ""}
|
| 263 |
]
|
| 264 |
|
| 265 |
+
if not enable_clinical_intake:
|
| 266 |
+
_clear_clinical_intake_state(user_id)
|
| 267 |
+
else:
|
| 268 |
+
intake_state = _get_clinical_intake_state(user_id)
|
| 269 |
+
if intake_state and intake_state.get("awaiting_answer"):
|
| 270 |
+
logger.info("[INTAKE] Awaiting patient response - processing answer")
|
| 271 |
+
intake_result = _handle_clinical_answer(user_id, message)
|
| 272 |
+
if intake_result.get("type") == "question":
|
| 273 |
+
logger.info("[INTAKE] Requesting additional follow-up")
|
| 274 |
+
updated_history[-1]["content"] = intake_result["prompt"]
|
| 275 |
+
thoughts_text = thought_handler.get_thoughts() if (show_thoughts and thought_handler) else ""
|
| 276 |
+
yield updated_history, thoughts_text
|
| 277 |
+
if thought_handler:
|
| 278 |
+
logger.removeHandler(thought_handler)
|
| 279 |
+
return
|
| 280 |
+
if intake_result.get("type") == "insights":
|
| 281 |
+
pipeline_diagnostics["clinical_intake"]["activated"] = True
|
| 282 |
+
pipeline_diagnostics["clinical_intake"]["rounds"] = len(intake_result.get("qa_pairs", []))
|
| 283 |
+
pipeline_diagnostics["clinical_intake"]["insights"] = intake_result.get("insights", {}).get("key_findings", [])
|
| 284 |
+
message = intake_result.get("refined_query", message)
|
| 285 |
+
else:
|
| 286 |
+
history_context = _history_to_text(history)
|
| 287 |
+
triage_plan = gemini_clinical_intake_triage(message, history_context, MAX_CLINICAL_QA_ROUNDS)
|
| 288 |
+
pipeline_diagnostics["clinical_intake"]["reason"] = triage_plan.get("decision_reason", "")
|
| 289 |
+
needs_intake = triage_plan.get("needs_additional_info") and triage_plan.get("questions")
|
| 290 |
+
if needs_intake:
|
| 291 |
+
first_prompt = _start_clinical_intake_session(
|
| 292 |
+
user_id,
|
| 293 |
+
triage_plan,
|
| 294 |
+
message,
|
| 295 |
+
original_lang
|
| 296 |
+
)
|
| 297 |
+
if first_prompt:
|
| 298 |
+
pipeline_diagnostics["clinical_intake"]["activated"] = True
|
| 299 |
+
updated_history[-1]["content"] = first_prompt
|
| 300 |
+
thoughts_text = thought_handler.get_thoughts() if (show_thoughts and thought_handler) else ""
|
| 301 |
+
yield updated_history, thoughts_text
|
| 302 |
+
if thought_handler:
|
| 303 |
+
logger.removeHandler(thought_handler)
|
| 304 |
+
return
|
| 305 |
+
|
| 306 |
plan = None
|
| 307 |
if not disable_agentic_reasoning:
|
| 308 |
reasoning_stage_start = time.time()
|
supervisor.py
CHANGED
|
@@ -217,6 +217,210 @@ Keep contexts brief and factual. Avoid redundancy."""
|
|
| 217 |
}
|
| 218 |
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
def gemini_supervisor_breakdown(query: str, use_rag: bool, use_web_search: bool, time_elapsed: float, max_duration: int = 120) -> dict:
|
| 221 |
"""Wrapper to obtain supervisor breakdown synchronously"""
|
| 222 |
if not MCP_AVAILABLE:
|
|
|
|
| 217 |
}
|
| 218 |
|
| 219 |
|
| 220 |
+
async def gemini_clinical_intake_triage_async(
|
| 221 |
+
query: str,
|
| 222 |
+
history_context: str,
|
| 223 |
+
max_rounds: int = 5
|
| 224 |
+
) -> dict:
|
| 225 |
+
"""Gemini Intake Agent: Decide if additional clinical intake is needed and plan questions"""
|
| 226 |
+
history_block = history_context if history_context else "No prior conversation."
|
| 227 |
+
safe_rounds = max(1, min(5, max_rounds))
|
| 228 |
+
prompt = f"""You are a clinical intake coordinator helping a medical AI system.
|
| 229 |
+
Your job is to review the patient's latest request and decide if more clinical details are required before analysis.
|
| 230 |
+
|
| 231 |
+
Patient query:
|
| 232 |
+
"{query}"
|
| 233 |
+
|
| 234 |
+
Recent conversation (if any):
|
| 235 |
+
{history_block}
|
| 236 |
+
|
| 237 |
+
Return ONLY valid JSON (no markdown):
|
| 238 |
+
{{
|
| 239 |
+
"needs_additional_info": true | false,
|
| 240 |
+
"decision_reason": "brief justification",
|
| 241 |
+
"max_rounds": {safe_rounds},
|
| 242 |
+
"questions": [
|
| 243 |
+
{{
|
| 244 |
+
"order": 1,
|
| 245 |
+
"question": "single follow-up question to ask the patient",
|
| 246 |
+
"clinical_focus": "what aspect it clarifies (e.g., onset, severity, meds)",
|
| 247 |
+
"why_it_matters": "concise clinical rationale",
|
| 248 |
+
"optional": false
|
| 249 |
+
}},
|
| 250 |
+
...
|
| 251 |
+
],
|
| 252 |
+
"initial_hypotheses": [
|
| 253 |
+
"optional bullet on potential etiologies or next steps"
|
| 254 |
+
]
|
| 255 |
+
}}
|
| 256 |
+
|
| 257 |
+
Guidelines:
|
| 258 |
+
- Ask at most {safe_rounds} questions. Use fewer if the query is already specific.
|
| 259 |
+
- Order questions to maximize clinical value.
|
| 260 |
+
- Only mark needs_additional_info true when the current data is insufficient for safe reasoning.
|
| 261 |
+
- Keep wording patient-friendly and concise."""
|
| 262 |
+
|
| 263 |
+
system_prompt = "You are a triage clinician. Decide if more intake questions are required and outline them as structured JSON."
|
| 264 |
+
|
| 265 |
+
response = await call_agent(
|
| 266 |
+
user_prompt=prompt,
|
| 267 |
+
system_prompt=system_prompt,
|
| 268 |
+
model=GEMINI_MODEL_LITE,
|
| 269 |
+
temperature=0.15
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
try:
|
| 273 |
+
json_start = response.find('{')
|
| 274 |
+
json_end = response.rfind('}') + 1
|
| 275 |
+
if json_start >= 0 and json_end > json_start:
|
| 276 |
+
plan = json.loads(response[json_start:json_end])
|
| 277 |
+
return plan
|
| 278 |
+
raise ValueError("Clinical intake JSON not found")
|
| 279 |
+
except Exception as exc:
|
| 280 |
+
logger.error(f"[GEMINI INTAKE] Triage parsing failed: {exc}")
|
| 281 |
+
return {
|
| 282 |
+
"needs_additional_info": False,
|
| 283 |
+
"decision_reason": "Fallback: proceeding without intake",
|
| 284 |
+
"max_rounds": safe_rounds,
|
| 285 |
+
"questions": [],
|
| 286 |
+
"initial_hypotheses": []
|
| 287 |
+
}
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def gemini_clinical_intake_triage(
|
| 291 |
+
query: str,
|
| 292 |
+
history_context: str,
|
| 293 |
+
max_rounds: int = 5
|
| 294 |
+
) -> dict:
|
| 295 |
+
"""Wrapper for synchronous clinical intake triage"""
|
| 296 |
+
if not MCP_AVAILABLE:
|
| 297 |
+
logger.warning("[GEMINI INTAKE] MCP unavailable, skipping clinical intake triage")
|
| 298 |
+
return {
|
| 299 |
+
"needs_additional_info": False,
|
| 300 |
+
"decision_reason": "MCP unavailable",
|
| 301 |
+
"max_rounds": max_rounds,
|
| 302 |
+
"questions": [],
|
| 303 |
+
"initial_hypotheses": []
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
try:
|
| 307 |
+
loop = asyncio.get_event_loop()
|
| 308 |
+
if loop.is_running():
|
| 309 |
+
if nest_asyncio:
|
| 310 |
+
return nest_asyncio.run(
|
| 311 |
+
gemini_clinical_intake_triage_async(query, history_context, max_rounds)
|
| 312 |
+
)
|
| 313 |
+
raise RuntimeError("nest_asyncio not available")
|
| 314 |
+
return loop.run_until_complete(
|
| 315 |
+
gemini_clinical_intake_triage_async(query, history_context, max_rounds)
|
| 316 |
+
)
|
| 317 |
+
except Exception as exc:
|
| 318 |
+
logger.error(f"[GEMINI INTAKE] Triage request failed: {exc}")
|
| 319 |
+
return {
|
| 320 |
+
"needs_additional_info": False,
|
| 321 |
+
"decision_reason": "Triage agent error",
|
| 322 |
+
"max_rounds": max_rounds,
|
| 323 |
+
"questions": [],
|
| 324 |
+
"initial_hypotheses": []
|
| 325 |
+
}
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
async def gemini_summarize_clinical_insights_async(
|
| 329 |
+
query: str,
|
| 330 |
+
qa_pairs: list
|
| 331 |
+
) -> dict:
|
| 332 |
+
"""Gemini Intake Agent: Convert answered intake questions into key clinical insights"""
|
| 333 |
+
qa_json = json.dumps(qa_pairs[:8]) # guard against very long history
|
| 334 |
+
prompt = f"""You are a clinical documentation expert.
|
| 335 |
+
Summarize the following intake Q&A into key insights for a supervising medical agent.
|
| 336 |
+
|
| 337 |
+
Original patient query:
|
| 338 |
+
"{query}"
|
| 339 |
+
|
| 340 |
+
Collected intake Q&A (JSON):
|
| 341 |
+
{qa_json}
|
| 342 |
+
|
| 343 |
+
Return ONLY valid JSON:
|
| 344 |
+
{{
|
| 345 |
+
"patient_profile": "1-2 sentence overview combining key demographics/symptoms",
|
| 346 |
+
"refined_problem_statement": "what problem the supervisor should solve now",
|
| 347 |
+
"key_findings": [
|
| 348 |
+
{{
|
| 349 |
+
"title": "short label",
|
| 350 |
+
"detail": "what the patient reported",
|
| 351 |
+
"clinical_implication": "why it matters"
|
| 352 |
+
}}
|
| 353 |
+
],
|
| 354 |
+
"handoff_note": "action-oriented instruction for the supervisor (<=2 sentences)"
|
| 355 |
+
}}
|
| 356 |
+
|
| 357 |
+
Guidelines:
|
| 358 |
+
- Highlight red flags, chronic meds, relevant history, and symptom trajectory.
|
| 359 |
+
- Only include facts explicitly stated in the Q&A."""
|
| 360 |
+
|
| 361 |
+
system_prompt = "You transform clinical intake dialogs into structured insights for downstream medical reasoning."
|
| 362 |
+
|
| 363 |
+
response = await call_agent(
|
| 364 |
+
user_prompt=prompt,
|
| 365 |
+
system_prompt=system_prompt,
|
| 366 |
+
model=GEMINI_MODEL_LITE,
|
| 367 |
+
temperature=0.2
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
try:
|
| 371 |
+
json_start = response.find('{')
|
| 372 |
+
json_end = response.rfind('}') + 1
|
| 373 |
+
if json_start >= 0 and json_end > json_start:
|
| 374 |
+
return json.loads(response[json_start:json_end])
|
| 375 |
+
raise ValueError("Clinical insight JSON not found")
|
| 376 |
+
except Exception as exc:
|
| 377 |
+
logger.error(f"[GEMINI INTAKE] Insight summarization failed: {exc}")
|
| 378 |
+
return {
|
| 379 |
+
"patient_profile": "",
|
| 380 |
+
"refined_problem_statement": query,
|
| 381 |
+
"key_findings": [
|
| 382 |
+
{"title": "Patient concern", "detail": query, "clinical_implication": "Requires standard evaluation"}
|
| 383 |
+
],
|
| 384 |
+
"handoff_note": "Proceed with regular workflow."
|
| 385 |
+
}
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
def gemini_summarize_clinical_insights(query: str, qa_pairs: list) -> dict:
|
| 389 |
+
"""Wrapper for synchronous clinical insight summarization"""
|
| 390 |
+
if not MCP_AVAILABLE:
|
| 391 |
+
logger.warning("[GEMINI INTAKE] MCP unavailable, using fallback intake summary")
|
| 392 |
+
return {
|
| 393 |
+
"patient_profile": "",
|
| 394 |
+
"refined_problem_statement": query,
|
| 395 |
+
"key_findings": [
|
| 396 |
+
{"title": "Patient concern", "detail": query, "clinical_implication": "Requires standard evaluation"}
|
| 397 |
+
],
|
| 398 |
+
"handoff_note": "Proceed with regular workflow."
|
| 399 |
+
}
|
| 400 |
+
|
| 401 |
+
try:
|
| 402 |
+
loop = asyncio.get_event_loop()
|
| 403 |
+
if loop.is_running():
|
| 404 |
+
if nest_asyncio:
|
| 405 |
+
return nest_asyncio.run(
|
| 406 |
+
gemini_summarize_clinical_insights_async(query, qa_pairs)
|
| 407 |
+
)
|
| 408 |
+
raise RuntimeError("nest_asyncio not available")
|
| 409 |
+
return loop.run_until_complete(
|
| 410 |
+
gemini_summarize_clinical_insights_async(query, qa_pairs)
|
| 411 |
+
)
|
| 412 |
+
except Exception as exc:
|
| 413 |
+
logger.error(f"[GEMINI INTAKE] Insight summarization request failed: {exc}")
|
| 414 |
+
return {
|
| 415 |
+
"patient_profile": "",
|
| 416 |
+
"refined_problem_statement": query,
|
| 417 |
+
"key_findings": [
|
| 418 |
+
{"title": "Patient concern", "detail": query, "clinical_implication": "Requires standard evaluation"}
|
| 419 |
+
],
|
| 420 |
+
"handoff_note": "Proceed with regular workflow."
|
| 421 |
+
}
|
| 422 |
+
|
| 423 |
+
|
| 424 |
def gemini_supervisor_breakdown(query: str, use_rag: bool, use_web_search: bool, time_elapsed: float, max_duration: int = 120) -> dict:
|
| 425 |
"""Wrapper to obtain supervisor breakdown synchronously"""
|
| 426 |
if not MCP_AVAILABLE:
|
ui.py
CHANGED
|
@@ -144,6 +144,11 @@ def create_demo():
|
|
| 144 |
"Show agentic thought",
|
| 145 |
size="sm"
|
| 146 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
agentic_thoughts_box = gr.Textbox(
|
| 148 |
label="Agentic Thoughts",
|
| 149 |
placeholder="Internal thoughts from MedSwin and supervisor will appear here...",
|
|
@@ -261,6 +266,7 @@ def create_demo():
|
|
| 261 |
use_rag,
|
| 262 |
medical_model,
|
| 263 |
use_web_search,
|
|
|
|
| 264 |
disable_agentic_reasoning,
|
| 265 |
show_thoughts_state
|
| 266 |
],
|
|
@@ -283,6 +289,7 @@ def create_demo():
|
|
| 283 |
use_rag,
|
| 284 |
medical_model,
|
| 285 |
use_web_search,
|
|
|
|
| 286 |
disable_agentic_reasoning,
|
| 287 |
show_thoughts_state
|
| 288 |
],
|
|
|
|
| 144 |
"Show agentic thought",
|
| 145 |
size="sm"
|
| 146 |
)
|
| 147 |
+
enable_clinical_intake = gr.Checkbox(
|
| 148 |
+
value=True,
|
| 149 |
+
label="Enable clinical intake (max 5 Q&A)",
|
| 150 |
+
info="Ask focused follow-up questions before breaking down the case"
|
| 151 |
+
)
|
| 152 |
agentic_thoughts_box = gr.Textbox(
|
| 153 |
label="Agentic Thoughts",
|
| 154 |
placeholder="Internal thoughts from MedSwin and supervisor will appear here...",
|
|
|
|
| 266 |
use_rag,
|
| 267 |
medical_model,
|
| 268 |
use_web_search,
|
| 269 |
+
enable_clinical_intake,
|
| 270 |
disable_agentic_reasoning,
|
| 271 |
show_thoughts_state
|
| 272 |
],
|
|
|
|
| 289 |
use_rag,
|
| 290 |
medical_model,
|
| 291 |
use_web_search,
|
| 292 |
+
enable_clinical_intake,
|
| 293 |
disable_agentic_reasoning,
|
| 294 |
show_thoughts_state
|
| 295 |
],
|