Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,69 +4,112 @@ from fastapi import FastAPI, UploadFile, File
|
|
| 4 |
from fastapi.responses import JSONResponse
|
| 5 |
import cv2
|
| 6 |
import numpy as np
|
| 7 |
-
from
|
| 8 |
-
from
|
| 9 |
from mediapipe import solutions as mp_solutions
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
CACHE_DIR = "/tmp/hf_cache"
|
| 13 |
-
os.environ["HF_HOME"] = CACHE_DIR
|
| 14 |
-
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 15 |
-
|
| 16 |
app = FastAPI(title="Face Beautification API")
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
# ✅ Download ESRGAN weights from Hugging Face (free)
|
| 24 |
-
model_path = hf_hub_download(
|
| 25 |
-
repo_id="eugenesiow/real-esrgan",
|
| 26 |
-
filename="RealESRGAN_x4plus.pth",
|
| 27 |
-
cache_dir=CACHE_DIR
|
| 28 |
-
)
|
| 29 |
|
| 30 |
-
#
|
| 31 |
-
device = "cuda" if cv2.cuda.getCudaEnabledDeviceCount() > 0 else "cpu"
|
| 32 |
-
model = RealESRGAN(device, scale=4)
|
| 33 |
-
model.load_weights(model_path)
|
| 34 |
|
| 35 |
@app.get("/")
|
| 36 |
async def root():
|
|
|
|
| 37 |
return {"message": "Free Face Beautification API is running!"}
|
| 38 |
|
| 39 |
@app.post("/beautify")
|
| 40 |
async def beautify(image: UploadFile = File(...)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
try:
|
| 42 |
-
# Read image
|
| 43 |
contents = await image.read()
|
| 44 |
npimg = np.frombuffer(contents, np.uint8)
|
| 45 |
img = cv2.imdecode(npimg, cv2.IMREAD_COLOR)
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
| 48 |
results = mp_face.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
|
|
|
| 49 |
if not results.detections:
|
| 50 |
-
return JSONResponse({"error": "No face detected"}, status_code=400)
|
| 51 |
|
|
|
|
| 52 |
for detection in results.detections:
|
| 53 |
bbox = detection.location_data.relative_bounding_box
|
| 54 |
h, w, _ = img.shape
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
face = img[y1:y2, x1:x2]
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
face_smooth = cv2.
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
# Encode final image
|
| 70 |
_, buffer = cv2.imencode(".jpg", img)
|
| 71 |
img_base64 = base64.b64encode(buffer).decode("utf-8")
|
| 72 |
|
|
@@ -75,9 +118,11 @@ async def beautify(image: UploadFile = File(...)):
|
|
| 75 |
"message": "Beautification complete!",
|
| 76 |
"image_base64": img_base64
|
| 77 |
})
|
|
|
|
| 78 |
except Exception as e:
|
| 79 |
-
return JSONResponse({"error": str(e)}, status_code=500)
|
| 80 |
|
| 81 |
@app.get("/health")
|
| 82 |
async def health():
|
| 83 |
-
|
|
|
|
|
|
| 4 |
from fastapi.responses import JSONResponse
|
| 5 |
import cv2
|
| 6 |
import numpy as np
|
| 7 |
+
from realesrgan import RealESRGANer
|
| 8 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 9 |
from mediapipe import solutions as mp_solutions
|
| 10 |
|
| 11 |
+
# Initialize FastAPI app
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
app = FastAPI(title="Face Beautification API")
|
| 13 |
|
| 14 |
+
# --- Model Loading ---
|
| 15 |
+
|
| 16 |
+
# Load Mediapipe face detector
|
| 17 |
+
try:
|
| 18 |
+
mp_face = mp_solutions.face_detection.FaceDetection(
|
| 19 |
+
model_selection=1, min_detection_confidence=0.5)
|
| 20 |
+
except Exception as e:
|
| 21 |
+
print(f"Error loading Mediapipe face detector: {e}")
|
| 22 |
+
mp_face = None
|
| 23 |
+
|
| 24 |
+
# Correctly load the Real-ESRGAN model for CPU inference
|
| 25 |
+
# The model weights are pre-downloaded in the Dockerfile to the 'weights' directory
|
| 26 |
+
model_path = os.path.join("weights", "RealESRGAN_x4plus.pth")
|
| 27 |
+
upsampler = None
|
| 28 |
+
|
| 29 |
+
if os.path.exists(model_path) and mp_face:
|
| 30 |
+
try:
|
| 31 |
+
# Define the model architecture
|
| 32 |
+
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
| 33 |
+
|
| 34 |
+
# Initialize the RealESRGANer
|
| 35 |
+
# `half=False` is important for CPU-only execution
|
| 36 |
+
upsampler = RealESRGANer(
|
| 37 |
+
scale=4,
|
| 38 |
+
model_path=model_path,
|
| 39 |
+
dni_weight=None,
|
| 40 |
+
model=model,
|
| 41 |
+
tile=0,
|
| 42 |
+
tile_pad=10,
|
| 43 |
+
pre_pad=0,
|
| 44 |
+
half=False,
|
| 45 |
+
gpu_id=None, # Explicitly set to None for CPU
|
| 46 |
+
)
|
| 47 |
+
except Exception as e:
|
| 48 |
+
print(f"Error loading Real-ESRGAN model: {e}")
|
| 49 |
+
upsampler = None
|
| 50 |
+
else:
|
| 51 |
+
print("Model weights not found or face detector failed to load.")
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
# --- API Endpoints ---
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
@app.get("/")
|
| 57 |
async def root():
|
| 58 |
+
"""Root endpoint to check if the API is running."""
|
| 59 |
return {"message": "Free Face Beautification API is running!"}
|
| 60 |
|
| 61 |
@app.post("/beautify")
|
| 62 |
async def beautify(image: UploadFile = File(...)):
|
| 63 |
+
"""
|
| 64 |
+
Receives an image, detects faces, enhances them, and returns the result.
|
| 65 |
+
"""
|
| 66 |
+
if not upsampler or not mp_face:
|
| 67 |
+
return JSONResponse({"error": "Model not loaded, API is not operational."}, status_code=503)
|
| 68 |
+
|
| 69 |
try:
|
| 70 |
+
# 1. Read and decode the uploaded image
|
| 71 |
contents = await image.read()
|
| 72 |
npimg = np.frombuffer(contents, np.uint8)
|
| 73 |
img = cv2.imdecode(npimg, cv2.IMREAD_COLOR)
|
| 74 |
|
| 75 |
+
if img is None:
|
| 76 |
+
return JSONResponse({"error": "Invalid image file."}, status_code=400)
|
| 77 |
+
|
| 78 |
+
# 2. Detect faces using Mediapipe
|
| 79 |
results = mp_face.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
| 80 |
+
|
| 81 |
if not results.detections:
|
| 82 |
+
return JSONResponse({"error": "No face detected in the image."}, status_code=400)
|
| 83 |
|
| 84 |
+
# 3. Process each detected face
|
| 85 |
for detection in results.detections:
|
| 86 |
bbox = detection.location_data.relative_bounding_box
|
| 87 |
h, w, _ = img.shape
|
| 88 |
+
|
| 89 |
+
# Ensure coordinates are within image bounds
|
| 90 |
+
x1 = max(0, int(bbox.xmin * w))
|
| 91 |
+
y1 = max(0, int(bbox.ymin * h))
|
| 92 |
+
x2 = min(w, int((bbox.xmin + bbox.width) * w))
|
| 93 |
+
y2 = min(h, int((bbox.ymin + bbox.height) * h))
|
| 94 |
+
|
| 95 |
+
# Crop the face
|
| 96 |
face = img[y1:y2, x1:x2]
|
| 97 |
|
| 98 |
+
if face.size == 0:
|
| 99 |
+
continue
|
| 100 |
+
|
| 101 |
+
# 4. Enhance the face using Real-ESRGAN
|
| 102 |
+
# The `enhance` method returns the upscaled image and its mode
|
| 103 |
+
face_upscaled, _ = upsampler.enhance(face)
|
| 104 |
|
| 105 |
+
# 5. Apply a smoothing filter for the "beautification" effect
|
| 106 |
+
face_smooth = cv2.bilateralFilter(face_upscaled, d=9, sigmaColor=75, sigmaSpace=75)
|
| 107 |
+
|
| 108 |
+
# 6. Resize the enhanced face back to its original dimensions and blend it in
|
| 109 |
+
face_smooth_resized = cv2.resize(face_smooth, (x2 - x1, y2 - y1))
|
| 110 |
+
img[y1:y2, x1:x2] = face_smooth_resized
|
| 111 |
|
| 112 |
+
# 7. Encode the final image to Base64 to send in the JSON response
|
| 113 |
_, buffer = cv2.imencode(".jpg", img)
|
| 114 |
img_base64 = base64.b64encode(buffer).decode("utf-8")
|
| 115 |
|
|
|
|
| 118 |
"message": "Beautification complete!",
|
| 119 |
"image_base64": img_base64
|
| 120 |
})
|
| 121 |
+
|
| 122 |
except Exception as e:
|
| 123 |
+
return JSONResponse({"error": f"An unexpected error occurred: {str(e)}"}, status_code=500)
|
| 124 |
|
| 125 |
@app.get("/health")
|
| 126 |
async def health():
|
| 127 |
+
"""Health check endpoint."""
|
| 128 |
+
return {"ready": bool(upsampler and mp_face)}
|