Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -------------------------------
|
| 2 |
+
# app.py (CPU COMPATIBLE VERSION)
|
| 3 |
+
#
|
| 4 |
+
# This file contains the backend logic and Gradio UI for the chatbot.
|
| 5 |
+
#
|
| 6 |
+
# --- FINAL, WORKING VERSION ---
|
| 7 |
+
# - Specifies target_modules in LoraConfig to work with the custom Sam2 model.
|
| 8 |
+
# - Uses a pure PyTorch fine-tuning loop for maximum control and stability.
|
| 9 |
+
# - Custom Sam2Config inherits from PretrainedConfig to solve subscriptable errors.
|
| 10 |
+
# - UI polling is backward-compatible with older Gradio versions.
|
| 11 |
+
# -------------------------------
|
| 12 |
+
import time
|
| 13 |
+
import math
|
| 14 |
+
import json
|
| 15 |
+
import requests
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn as nn
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
+
from torch.utils.data import DataLoader
|
| 20 |
+
from pathlib import Path
|
| 21 |
+
from safetensors.torch import load_file
|
| 22 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
|
| 23 |
+
import gradio as gr
|
| 24 |
+
import os
|
| 25 |
+
from datetime import datetime
|
| 26 |
+
import threading
|
| 27 |
+
import time
|
| 28 |
+
import traceback
|
| 29 |
+
|
| 30 |
+
# --- RLHF & Training Imports ---
|
| 31 |
+
from huggingface_hub import HfApi, login
|
| 32 |
+
from datasets import Dataset, load_dataset, concatenate_datasets
|
| 33 |
+
from peft import LoraConfig, get_peft_model
|
| 34 |
+
|
| 35 |
+
# -------------------------------
|
| 36 |
+
# 0) RLHF & TUNING CONFIGURATION
|
| 37 |
+
# -------------------------------
|
| 38 |
+
FEEDBACK_DATASET_REPO = "Smilyai-labs/Open-Sam-2.5-chat"
|
| 39 |
+
TUNED_MODEL_REPO_OWNER = "Smilyai-labs"
|
| 40 |
+
BASE_MODEL_REPO = "Smilyai-labs/Sam-2.5-PRO-SOLVER-V2"
|
| 41 |
+
FINETUNE_TRIGGER_LIKES = 2
|
| 42 |
+
MIN_LIKES_FOR_TRAINING = 2
|
| 43 |
+
|
| 44 |
+
# --- PyTorch Training Config ---
|
| 45 |
+
LEARNING_RATE = 2e-4
|
| 46 |
+
NUM_EPOCHS = 1
|
| 47 |
+
BATCH_SIZE = 1
|
| 48 |
+
|
| 49 |
+
# --- Login to Hugging Face Hub ---
|
| 50 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 51 |
+
if not HF_TOKEN:
|
| 52 |
+
print("WARNING: Hugging Face token not found. Feedback will not be saved and tuning will not run.")
|
| 53 |
+
else:
|
| 54 |
+
login(token=HF_TOKEN)
|
| 55 |
+
print("Hugging Face token found. Feedback logging and model tuning are enabled.")
|
| 56 |
+
|
| 57 |
+
# --- Global state ---
|
| 58 |
+
LIKE_COUNTER = 0
|
| 59 |
+
like_counter_lock = threading.Lock()
|
| 60 |
+
training_lock = threading.Lock()
|
| 61 |
+
model_lock = threading.Lock()
|
| 62 |
+
TRAINING_STATUS = ""
|
| 63 |
+
|
| 64 |
+
# -------------------------------
|
| 65 |
+
# 1) Local Sam-2 architecture
|
| 66 |
+
# -------------------------------
|
| 67 |
+
class Sam2Config(PretrainedConfig):
|
| 68 |
+
model_type = "sam2"
|
| 69 |
+
|
| 70 |
+
def __init__(
|
| 71 |
+
self,
|
| 72 |
+
vocab_size=32000,
|
| 73 |
+
d_model=384,
|
| 74 |
+
n_layers=6,
|
| 75 |
+
n_heads=6,
|
| 76 |
+
ff_mult=4.0,
|
| 77 |
+
dropout=0.1,
|
| 78 |
+
input_modality="text",
|
| 79 |
+
head_type="causal_lm",
|
| 80 |
+
version="0.1",
|
| 81 |
+
**kwargs
|
| 82 |
+
):
|
| 83 |
+
self.vocab_size = vocab_size
|
| 84 |
+
self.d_model = d_model
|
| 85 |
+
self.n_layers = n_layers
|
| 86 |
+
self.n_heads = n_heads
|
| 87 |
+
self.ff_mult = ff_mult
|
| 88 |
+
self.dropout = dropout
|
| 89 |
+
self.input_modality = input_modality
|
| 90 |
+
self.head_type = head_type
|
| 91 |
+
self.version = version
|
| 92 |
+
super().__init__(**kwargs)
|
| 93 |
+
|
| 94 |
+
class RMSNorm(nn.Module):
|
| 95 |
+
def __init__(self, d, eps=1e-6):
|
| 96 |
+
super().__init__()
|
| 97 |
+
self.eps = eps
|
| 98 |
+
self.weight = nn.Parameter(torch.ones(d))
|
| 99 |
+
def forward(self, x):
|
| 100 |
+
return self.weight * x * (x.pow(2).mean(-1, keepdim=True) + self.eps).rsqrt()
|
| 101 |
+
|
| 102 |
+
class MHA(nn.Module):
|
| 103 |
+
def __init__(self, d_model, n_heads, dropout=0.0):
|
| 104 |
+
super().__init__()
|
| 105 |
+
assert d_model % n_heads == 0
|
| 106 |
+
self.n_heads = n_heads
|
| 107 |
+
self.head_dim = d_model // n_heads
|
| 108 |
+
self.q_proj = nn.Linear(d_model, d_model, bias=False)
|
| 109 |
+
self.k_proj = nn.Linear(d_model, d_model, bias=False)
|
| 110 |
+
self.v_proj = nn.Linear(d_model, d_model, bias=False)
|
| 111 |
+
self.out_proj = nn.Linear(d_model, d_model, bias=False)
|
| 112 |
+
self.dropout = nn.Dropout(dropout)
|
| 113 |
+
def forward(self, x, attn_mask=None):
|
| 114 |
+
B, T, C = x.shape
|
| 115 |
+
q = self.q_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
|
| 116 |
+
k = self.k_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
|
| 117 |
+
v = self.v_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
|
| 118 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
| 119 |
+
causal = torch.triu(torch.ones(T, T, device=x.device, dtype=torch.bool), diagonal=1)
|
| 120 |
+
scores = scores.masked_fill(causal, float("-inf"))
|
| 121 |
+
if attn_mask is not None:
|
| 122 |
+
scores = scores.masked_fill(~attn_mask.unsqueeze(1).unsqueeze(2).bool(), float("-inf"))
|
| 123 |
+
attn = torch.softmax(scores, dim=-1)
|
| 124 |
+
out = torch.matmul(self.dropout(attn), v).transpose(1, 2).contiguous().view(B, T, C)
|
| 125 |
+
return self.out_proj(out)
|
| 126 |
+
|
| 127 |
+
class SwiGLU(nn.Module):
|
| 128 |
+
def __init__(self, d_model, d_ff, dropout=0.0):
|
| 129 |
+
super().__init__()
|
| 130 |
+
self.w1 = nn.Linear(d_model, d_ff, bias=False)
|
| 131 |
+
self.w2 = nn.Linear(d_model, d_ff, bias=False)
|
| 132 |
+
self.w3 = nn.Linear(d_ff, d_model, bias=False)
|
| 133 |
+
self.dropout = nn.Dropout(dropout)
|
| 134 |
+
def forward(self, x):
|
| 135 |
+
return self.w3(self.dropout(torch.nn.functional.silu(self.w1(x)) * self.w2(x)))
|
| 136 |
+
|
| 137 |
+
class Block(nn.Module):
|
| 138 |
+
def __init__(self, d_model, n_heads, ff_mult, dropout=0.0):
|
| 139 |
+
super().__init__()
|
| 140 |
+
self.norm1 = RMSNorm(d_model)
|
| 141 |
+
self.attn = MHA(d_model, n_heads, dropout=dropout)
|
| 142 |
+
self.norm2 = RMSNorm(d_model)
|
| 143 |
+
self.ff = SwiGLU(d_model, int(ff_mult * d_model), dropout=dropout)
|
| 144 |
+
self.drop = nn.Dropout(dropout)
|
| 145 |
+
def forward(self, x, attn_mask=None):
|
| 146 |
+
x = x + self.drop(self.attn(self.norm1(x), attn_mask=attn_mask))
|
| 147 |
+
x = x + self.drop(self.ff(self.norm2(x)))
|
| 148 |
+
return x
|
| 149 |
+
|
| 150 |
+
class Sam2(PreTrainedModel): # <-- CHANGE THIS LINE: inherit from PreTrainedModel
|
| 151 |
+
config_class = Sam2Config # <-- ADD THIS LINE: tell HF what config class to use
|
| 152 |
+
|
| 153 |
+
def __init__(self, config: Sam2Config):
|
| 154 |
+
super().__init__(config) # <-- CHANGE THIS LINE: pass config to parent
|
| 155 |
+
self.config = config # You can keep this if you use it elsewhere
|
| 156 |
+
self.embed = nn.Embedding(config.vocab_size, config.d_model)
|
| 157 |
+
self.blocks = nn.ModuleList([Block(config.d_model, config.n_heads, config.ff_mult, dropout=config.dropout) for _ in range(config.n_layers)])
|
| 158 |
+
self.norm = RMSNorm(config.d_model)
|
| 159 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
| 160 |
+
self.lm_head.weight = self.embed.weight
|
| 161 |
+
|
| 162 |
+
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
| 163 |
+
return {"input_ids": input_ids}
|
| 164 |
+
|
| 165 |
+
def forward(self, input_ids=None, inputs_embeds=None, attention_mask=None, labels=None, **kwargs):
|
| 166 |
+
if inputs_embeds is not None:
|
| 167 |
+
x = inputs_embeds
|
| 168 |
+
else:
|
| 169 |
+
if input_ids is None:
|
| 170 |
+
raise ValueError("You must provide either input_ids or inputs_embeds")
|
| 171 |
+
x = self.embed(input_ids)
|
| 172 |
+
|
| 173 |
+
for blk in self.blocks:
|
| 174 |
+
x = blk(x, attn_mask=attention_mask)
|
| 175 |
+
x = self.norm(x)
|
| 176 |
+
logits = self.lm_head(x)
|
| 177 |
+
loss = None
|
| 178 |
+
if labels is not None:
|
| 179 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 180 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 181 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 182 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 183 |
+
shift_labels = shift_labels.view(-1)
|
| 184 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 185 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 186 |
+
if loss is not None:
|
| 187 |
+
return (loss, logits)
|
| 188 |
+
return (logits,)
|
| 189 |
+
|
| 190 |
+
# -------------------------------
|
| 191 |
+
# 2) Load initial resources
|
| 192 |
+
# -------------------------------
|
| 193 |
+
weights_filename = "model.safetensors"
|
| 194 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_REPO)
|
| 195 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 196 |
+
# --- FIXED: Removed extra spaces in URLs ---
|
| 197 |
+
config_url = f"https://huggingface.co/{BASE_MODEL_REPO}/raw/main/config.json"
|
| 198 |
+
config_data = requests.get(config_url).json()
|
| 199 |
+
cfg = Sam2Config(**config_data)
|
| 200 |
+
|
| 201 |
+
# --- FIXED: Removed extra spaces in URLs ---
|
| 202 |
+
weights_url = f"https://huggingface.co/{BASE_MODEL_REPO}/resolve/main/{weights_filename}"
|
| 203 |
+
weights_content = requests.get(weights_url).content
|
| 204 |
+
with open(weights_filename, "wb") as f: f.write(weights_content)
|
| 205 |
+
|
| 206 |
+
model = Sam2(cfg)
|
| 207 |
+
state_dict = load_file(weights_filename)
|
| 208 |
+
model.load_state_dict(state_dict)
|
| 209 |
+
|
| 210 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 211 |
+
model.to(device).eval()
|
| 212 |
+
print(f"Inference will run on: {device}")
|
| 213 |
+
|
| 214 |
+
EOT_ID = tokenizer.convert_tokens_to_ids("<|eot|>") or tokenizer.eos_token_id
|
| 215 |
+
SPECIAL_TOKENS = {"bos": "<|bos|>", "eot": "<|eot|>", "user": "<|user|>", "assistant": "<|assistant|>", "system": "<|system|>"}
|
| 216 |
+
SYSTEM_PROMPT = "You are Sam-2, a friendly and concise chatbot. Always give short, direct answers and avoid medical or legal advice."
|
| 217 |
+
|
| 218 |
+
AutoModelForCausalLM.register(Sam2Config, Sam2)
|
| 219 |
+
|
| 220 |
+
# -------------------------------
|
| 221 |
+
# 3) Inference and Feedback Functions
|
| 222 |
+
# -------------------------------
|
| 223 |
+
def sample_next_token( logits, past_tokens, temperature=0.8, top_k=40, top_p=0.9, repetition_penalty=1.1, max_repeat=5, no_repeat_ngram_size=3 ):
|
| 224 |
+
if logits.dim() == 3: logits = logits[:, -1, :].clone()
|
| 225 |
+
else: logits = logits.clone()
|
| 226 |
+
batch_size, vocab_size = logits.size(0), logits.size(1)
|
| 227 |
+
orig_logits = logits.clone()
|
| 228 |
+
if temperature != 1.0: logits = logits / float(temperature)
|
| 229 |
+
past_list = past_tokens.tolist() if isinstance(past_tokens, torch.Tensor) else list(past_tokens)
|
| 230 |
+
for token_id in set(past_list):
|
| 231 |
+
if 0 <= token_id < vocab_size: logits[:, token_id] /= repetition_penalty
|
| 232 |
+
if len(past_list) >= max_repeat:
|
| 233 |
+
last_token, count = past_list[-1], 1
|
| 234 |
+
for i in reversed(past_list[:-1]):
|
| 235 |
+
if i == last_token: count += 1
|
| 236 |
+
else: break
|
| 237 |
+
if count >= max_repeat: logits[:, last_token] = -float("inf")
|
| 238 |
+
if no_repeat_ngram_size > 0 and len(past_list) >= no_repeat_ngram_size:
|
| 239 |
+
ngram = tuple(past_list[-no_repeat_ngram_size:])
|
| 240 |
+
for token_id in range(vocab_size):
|
| 241 |
+
if tuple(past_list[-(no_repeat_ngram_size - 1):] + [token_id]) == ngram: logits[:, token_id] = -float("inf")
|
| 242 |
+
if top_k is not None and top_k > 0:
|
| 243 |
+
tk = min(max(1, int(top_k)), vocab_size)
|
| 244 |
+
topk_vals, _ = torch.topk(logits, tk, dim=-1)
|
| 245 |
+
min_topk = topk_vals[:, -1].unsqueeze(-1)
|
| 246 |
+
logits[logits < min_topk] = -float("inf")
|
| 247 |
+
if top_p is not None and 0.0 < top_p < 1.0:
|
| 248 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
| 249 |
+
sorted_probs = F.softmax(sorted_logits, dim=-1)
|
| 250 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
| 251 |
+
for b in range(batch_size):
|
| 252 |
+
sorted_mask = cumulative_probs[b] > top_p
|
| 253 |
+
if sorted_mask.numel() > 0:
|
| 254 |
+
sorted_mask[0] = False
|
| 255 |
+
tokens_to_remove = sorted_indices[b][sorted_mask]
|
| 256 |
+
logits[b, tokens_to_remove] = -float("inf")
|
| 257 |
+
for b in range(batch_size):
|
| 258 |
+
if torch.isneginf(logits[b]).all(): logits[b] = orig_logits[b]
|
| 259 |
+
probs = F.softmax(logits, dim=-1)
|
| 260 |
+
if torch.isnan(probs).any(): probs = torch.ones_like(logits) / logits.size(1)
|
| 261 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 262 |
+
return next_token.to(device)
|
| 263 |
+
|
| 264 |
+
def predict(message, history):
|
| 265 |
+
chat_history = []
|
| 266 |
+
for human, assistant in history:
|
| 267 |
+
chat_history.append(f"{SPECIAL_TOKENS['user']} {human} {SPECIAL_TOKENS['eot']}")
|
| 268 |
+
if assistant:
|
| 269 |
+
chat_history.append(f"{SPECIAL_TOKENS['assistant']} {assistant} {SPECIAL_TOKENS['eot']}")
|
| 270 |
+
chat_history.append(f"{SPECIAL_TOKENS['user']} {message} {SPECIAL_TOKENS['eot']}")
|
| 271 |
+
prompt = f"{SPECIAL_TOKENS['system']} {SYSTEM_PROMPT} {SPECIAL_TOKENS['eot']}\n" + "\n".join(chat_history) + f"\n{SPECIAL_TOKENS['assistant']}"
|
| 272 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 273 |
+
input_ids = inputs["input_ids"]
|
| 274 |
+
attention_mask = inputs["attention_mask"]
|
| 275 |
+
generated_text = ""
|
| 276 |
+
for _ in range(256):
|
| 277 |
+
with torch.no_grad(), model_lock:
|
| 278 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
| 279 |
+
logits = outputs[0]
|
| 280 |
+
next_token = sample_next_token(logits, input_ids[0], temperature=0.4, top_k=50, top_p=0.9, repetition_penalty=1.1)
|
| 281 |
+
token_id = int(next_token.squeeze().item())
|
| 282 |
+
if token_id == EOT_ID: break
|
| 283 |
+
token_str = tokenizer.decode([token_id], skip_special_tokens=True)
|
| 284 |
+
input_ids = torch.cat([input_ids, next_token], dim=1)
|
| 285 |
+
attention_mask = torch.cat([attention_mask, torch.ones((attention_mask.size(0), 1), device=device, dtype=attention_mask.dtype)], dim=1)
|
| 286 |
+
generated_text += token_str
|
| 287 |
+
yield generated_text
|
| 288 |
+
|
| 289 |
+
def log_feedback(data: gr.LikeData, history: list):
|
| 290 |
+
global LIKE_COUNTER
|
| 291 |
+
if not HF_TOKEN:
|
| 292 |
+
print("Feedback not logged. HF_TOKEN not set.")
|
| 293 |
+
return
|
| 294 |
+
feedback_entry = { "prompt": history[data.index[0]][0], "response": data.value, "feedback": 1 if data.liked else 0, "timestamp": datetime.utcnow().isoformat() }
|
| 295 |
+
new_feedback_dataset = Dataset.from_dict({k: [v] for k, v in feedback_entry.items()})
|
| 296 |
+
try:
|
| 297 |
+
existing_dataset = load_dataset(FEEDBACK_DATASET_REPO, split="train", cache_dir="./cache")
|
| 298 |
+
combined_dataset = concatenate_datasets([existing_dataset, new_feedback_dataset])
|
| 299 |
+
except Exception as e:
|
| 300 |
+
print(f"Could not load existing dataset: {e}. Creating a new one.")
|
| 301 |
+
combined_dataset = new_feedback_dataset
|
| 302 |
+
try:
|
| 303 |
+
combined_dataset.push_to_hub(FEEDBACK_DATASET_REPO, private=False)
|
| 304 |
+
feedback_icon = 'π' if data.liked else 'π'
|
| 305 |
+
print(f"Successfully logged {feedback_icon} feedback. Dataset now has {len(combined_dataset)} entries.")
|
| 306 |
+
if data.liked:
|
| 307 |
+
with like_counter_lock:
|
| 308 |
+
LIKE_COUNTER += 1
|
| 309 |
+
current_likes = LIKE_COUNTER
|
| 310 |
+
print(f"Like recorded. Total likes since start: {current_likes}.")
|
| 311 |
+
if current_likes > 0 and current_likes % FINETUNE_TRIGGER_LIKES == 0:
|
| 312 |
+
print(f"--- Like threshold of {FINETUNE_TRIGGER_LIKES} reached! Triggering fine-tuning. ---")
|
| 313 |
+
tuning_thread = threading.Thread(target=run_tuning_task, daemon=True)
|
| 314 |
+
tuning_thread.start()
|
| 315 |
+
except Exception as e:
|
| 316 |
+
print(f"Error logging feedback to Hub: {e}")
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
# -------------------------------
|
| 320 |
+
# 6) Background Fine-Tuning Logic (PyTorch Loop)
|
| 321 |
+
# -------------------------------
|
| 322 |
+
def run_tuning_task():
|
| 323 |
+
global model, TRAINING_STATUS
|
| 324 |
+
|
| 325 |
+
if not training_lock.acquire(blocking=False):
|
| 326 |
+
print("Tuning is already in progress. Skipping this trigger.")
|
| 327 |
+
return
|
| 328 |
+
|
| 329 |
+
print("\n--- Starting PyTorch Fine-Tuning Task ---")
|
| 330 |
+
try:
|
| 331 |
+
TRAINING_STATUS = "π§ Preparing to improve Sam-2.5..."
|
| 332 |
+
|
| 333 |
+
if not HF_TOKEN:
|
| 334 |
+
TRAINING_STATUS = "Error: HF_TOKEN not set. Cannot run tuning."
|
| 335 |
+
time.sleep(10)
|
| 336 |
+
return
|
| 337 |
+
|
| 338 |
+
feedback_data = load_dataset(FEEDBACK_DATASET_REPO, split="train", cache_dir="./cache")
|
| 339 |
+
liked_data = feedback_data.filter(lambda x: x['feedback'] == 1)
|
| 340 |
+
print(f"Found {len(liked_data)} total liked responses for training.")
|
| 341 |
+
|
| 342 |
+
if len(liked_data) < MIN_LIKES_FOR_TRAINING:
|
| 343 |
+
TRAINING_STATUS = f"β
Improvement complete! (Not enough new data to train, will try again later)."
|
| 344 |
+
time.sleep(5)
|
| 345 |
+
return
|
| 346 |
+
|
| 347 |
+
def format_for_training(example):
|
| 348 |
+
return { "text": f"{SPECIAL_TOKENS['system']} {SYSTEM_PROMPT} {SPECIAL_TOKENS['eot']}\n{SPECIAL_TOKENS['user']} {example['prompt']} {SPECIAL_TOKENS['eot']}\n{SPECIAL_TOKENS['assistant']} {example['response']} {SPECIAL_TOKENS['eot']}"}
|
| 349 |
+
train_dataset = liked_data.map(format_for_training)
|
| 350 |
+
|
| 351 |
+
print("Loading base model for tuning...")
|
| 352 |
+
model_to_tune = Sam2(cfg)
|
| 353 |
+
state_dict_to_tune = load_file(weights_filename)
|
| 354 |
+
model_to_tune.load_state_dict(state_dict_to_tune)
|
| 355 |
+
|
| 356 |
+
# --- THIS IS THE FIX ---
|
| 357 |
+
# We explicitly tell PEFT which linear layers in our MHA block to adapt.
|
| 358 |
+
peft_config = LoraConfig(
|
| 359 |
+
r=16,
|
| 360 |
+
lora_alpha=32,
|
| 361 |
+
lora_dropout=0.05,
|
| 362 |
+
bias="none",
|
| 363 |
+
task_type="CAUSAL_LM",
|
| 364 |
+
target_modules=["q_proj", "v_proj"]
|
| 365 |
+
)
|
| 366 |
+
# --- END FIX ---
|
| 367 |
+
|
| 368 |
+
peft_model = get_peft_model(model_to_tune, peft_config)
|
| 369 |
+
peft_model.to(device)
|
| 370 |
+
peft_model.print_trainable_parameters()
|
| 371 |
+
|
| 372 |
+
tokenized_dataset = train_dataset.map(lambda examples: tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512), batched=True)
|
| 373 |
+
# --- ADDED: Remove the unused 'text' column to clean up the dataset ---
|
| 374 |
+
tokenized_dataset = tokenized_dataset.remove_columns(["text"])
|
| 375 |
+
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask'])
|
| 376 |
+
train_dataloader = DataLoader(tokenized_dataset, batch_size=BATCH_SIZE)
|
| 377 |
+
|
| 378 |
+
optimizer = torch.optim.AdamW(peft_model.parameters(), lr=LEARNING_RATE)
|
| 379 |
+
|
| 380 |
+
TRAINING_STATUS = f"π§ Sam-2.5 is starting training on {len(liked_data)} examples... Thank you all for your contribution to the dataset. The model will train and hot swap shortly.(This can be slow on CPU)"
|
| 381 |
+
print("Starting model tuning on CPU...")
|
| 382 |
+
peft_model.train()
|
| 383 |
+
for epoch in range(NUM_EPOCHS):
|
| 384 |
+
time.sleep(0.01)
|
| 385 |
+
for i, batch in enumerate(train_dataloader):
|
| 386 |
+
input_ids = batch['input_ids'].to(device)
|
| 387 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 388 |
+
outputs = peft_model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids)
|
| 389 |
+
loss = outputs[0]
|
| 390 |
+
loss.backward()
|
| 391 |
+
optimizer.step()
|
| 392 |
+
optimizer.zero_grad()
|
| 393 |
+
current_loss = loss.item()
|
| 394 |
+
print(f"Epoch {epoch+1}, Batch {i+1}/{len(train_dataloader)}, Loss: {current_loss:.4f}")
|
| 395 |
+
# --- UPDATE UI WITH LIVE LOSS ---
|
| 396 |
+
TRAINING_STATUS = f"π§ You are witnessing the training of sam2.5. Training... Batch {i+1}/{len(train_dataloader)}, Loss: {current_loss:.4f}"
|
| 397 |
+
|
| 398 |
+
print("Tuning complete.")
|
| 399 |
+
|
| 400 |
+
TRAINING_STATUS = "β¨ Finishing up... Merging improvements."
|
| 401 |
+
merged_model = peft_model.merge_and_unload()
|
| 402 |
+
|
| 403 |
+
# --- FIXED: Safe Model Swap using model_lock ---
|
| 404 |
+
with model_lock:
|
| 405 |
+
print("Hot-swapping live model...")
|
| 406 |
+
# Create a new instance and copy state, preserving the object reference
|
| 407 |
+
new_state_dict = merged_model.state_dict()
|
| 408 |
+
model.load_state_dict(new_state_dict)
|
| 409 |
+
model.to(device).eval()
|
| 410 |
+
|
| 411 |
+
date_str = datetime.now().strftime("%Y%m%d-%H%M")
|
| 412 |
+
new_repo_id = f"{TUNED_MODEL_REPO_OWNER}/Sam-2.5-PUBLIC-RLHF-{date_str}"
|
| 413 |
+
|
| 414 |
+
print(f"Saving and uploading tuned model to {new_repo_id}...")
|
| 415 |
+
|
| 416 |
+
# Create a directory to save the model
|
| 417 |
+
local_dir = f"./{new_repo_id.split('/')[-1]}"
|
| 418 |
+
os.makedirs(local_dir, exist_ok=True)
|
| 419 |
+
|
| 420 |
+
# Save model using Hugging Face format
|
| 421 |
+
merged_model.save_pretrained(local_dir, safe_serialization=False)
|
| 422 |
+
tokenizer.save_pretrained(local_dir)
|
| 423 |
+
|
| 424 |
+
# Push to Hub
|
| 425 |
+
from huggingface_hub import HfApi
|
| 426 |
+
api = HfApi()
|
| 427 |
+
api.create_repo(repo_id=new_repo_id, repo_type="model", exist_ok=True)
|
| 428 |
+
api.upload_folder(
|
| 429 |
+
folder_path=local_dir,
|
| 430 |
+
repo_id=new_repo_id,
|
| 431 |
+
repo_type="model"
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
# Clean up local files
|
| 435 |
+
import shutil
|
| 436 |
+
shutil.rmtree(local_dir)
|
| 437 |
+
|
| 438 |
+
print("Upload and hot-swap complete!")
|
| 439 |
+
TRAINING_STATUS = "β
Sam-2.5 has been successfully upgraded! Thank you. You have helped shaped the newest generation of sam 2.5 pro solver. You, helped make AI"
|
| 440 |
+
time.sleep(5)
|
| 441 |
+
|
| 442 |
+
except Exception as e:
|
| 443 |
+
print(f"An error occurred during the tuning process: {e}")
|
| 444 |
+
traceback.print_exc()
|
| 445 |
+
TRAINING_STATUS = f"An error occurred during training: {e}"
|
| 446 |
+
time.sleep(10)
|
| 447 |
+
finally:
|
| 448 |
+
TRAINING_STATUS = ""
|
| 449 |
+
training_lock.release()
|
| 450 |
+
print("--- PyTorch Fine-Tuning Task Finished ---")
|
| 451 |
+
|
| 452 |
+
# -------------------------------
|
| 453 |
+
# 7) UI Functions & Gradio Interface
|
| 454 |
+
# -------------------------------
|
| 455 |
+
def check_training_status():
|
| 456 |
+
global TRAINING_STATUS
|
| 457 |
+
if TRAINING_STATUS:
|
| 458 |
+
return gr.update(value=TRAINING_STATUS, visible=True)
|
| 459 |
+
else:
|
| 460 |
+
return gr.update(value="", visible=False)
|
| 461 |
+
|
| 462 |
+
def poll_status_updater():
|
| 463 |
+
while True:
|
| 464 |
+
yield check_training_status()
|
| 465 |
+
time.sleep(1)
|
| 466 |
+
|
| 467 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="blue")) as demo:
|
| 468 |
+
gr.Markdown("""
|
| 469 |
+
# Sam-2.5-PRO-SOLVER-V2 Chat
|
| 470 |
+
A self-improving chatbot powered by Sam-2. Use the thumb icons to rate responses!
|
| 471 |
+
The model automatically fine-tunes on your positive feedback and gets smarter live.
|
| 472 |
+
""")
|
| 473 |
+
|
| 474 |
+
training_status_md = gr.Markdown(value="", visible=False)
|
| 475 |
+
chatbot = gr.Chatbot(label="Sam-2", bubble_full_width=False)
|
| 476 |
+
chat_interface = gr.ChatInterface(fn=predict, chatbot=chatbot)
|
| 477 |
+
chatbot.like(log_feedback, inputs=[chatbot], outputs=None)
|
| 478 |
+
|
| 479 |
+
demo.load(poll_status_updater, None, training_status_md)
|
| 480 |
+
TRAINING_STATUS = "Not training yet. Waiting for more examples. Sam-2.5 is ready."
|
| 481 |
+
if __name__ == "__main__":
|
| 482 |
+
print("Starting Gradio app. Tuning will be triggered by user feedback.")
|
| 483 |
+
demo.launch(show_api=True)
|