ONNX-chat-test / app.py
Keeby-smilyai's picture
Create app.py
43abbaa verified
import gradio as gr
import onnxruntime as ort
import numpy as np
from transformers import AutoTokenizer
# Load tokenizer (Qwen tokenizer)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B")
# Load ONNX model
session = ort.InferenceSession("/models/model.onnx")
def chat_fn(user_input, history):
if not user_input.strip():
return history
# Tokenize input
inputs = tokenizer(user_input, return_tensors="np", padding=True)
ort_inputs = {session.get_inputs()[0].name: inputs["input_ids"].astype(np.int64)}
# Run inference
output = session.run(None, ort_inputs)[0]
# Decode model output
text = tokenizer.decode(output[0], skip_special_tokens=True)
history.append(("πŸ§‘β€πŸ’» You: " + user_input, "πŸ€– Sam (Qwen3): " + text))
return history
demo = gr.ChatInterface(fn=chat_fn, title="πŸ’¬ Qwen3-0.6B-ONNX Demo",
description="Running ONNX model on a prebuilt Docker Space (SmilyAI Style!)")
demo.launch(server_name="0.0.0.0", server_port=7860)