Spaces:
Sleeping
Sleeping
- Dockerfile +2 -0
- app.py +10 -9
- model_handler.py +334 -113
Dockerfile
CHANGED
|
@@ -24,3 +24,5 @@ RUN mkdir -p /app/nltk_data /app/hf_cache && \
|
|
| 24 |
|
| 25 |
EXPOSE 7860
|
| 26 |
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
EXPOSE 7860
|
| 26 |
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
| 27 |
+
|
| 28 |
+
#
|
app.py
CHANGED
|
@@ -28,7 +28,7 @@ app = FastAPI(
|
|
| 28 |
# Configure CORS
|
| 29 |
app.add_middleware(
|
| 30 |
CORSMiddleware,
|
| 31 |
-
allow_origins=["*"],
|
| 32 |
allow_credentials=True,
|
| 33 |
allow_methods=["*"],
|
| 34 |
allow_headers=["*"],
|
|
@@ -142,7 +142,7 @@ async def health_check():
|
|
| 142 |
}
|
| 143 |
|
| 144 |
|
| 145 |
-
@app.post("/api/analyze"
|
| 146 |
async def analyze_text(request: AnalysisRequest):
|
| 147 |
"""
|
| 148 |
Analyze text using the DeBERTa AI detection model
|
|
@@ -158,12 +158,12 @@ async def analyze_text(request: AnalysisRequest):
|
|
| 158 |
if not request.text or len(request.text.strip()) == 0:
|
| 159 |
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
| 160 |
|
| 161 |
-
# Check text length for meaningful analysis (
|
| 162 |
word_count = len(request.text.split())
|
| 163 |
-
if word_count <
|
| 164 |
raise HTTPException(
|
| 165 |
status_code=400,
|
| 166 |
-
detail="Text is too short for analysis. Please provide at least
|
| 167 |
)
|
| 168 |
|
| 169 |
if word_count > 7000:
|
|
@@ -200,12 +200,12 @@ async def detect_ai(request: AnalysisRequest):
|
|
| 200 |
if not request.text or len(request.text.strip()) == 0:
|
| 201 |
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
| 202 |
|
| 203 |
-
# Check text length (
|
| 204 |
word_count = len(request.text.split())
|
| 205 |
-
if word_count <
|
| 206 |
raise HTTPException(
|
| 207 |
status_code=400,
|
| 208 |
-
detail="Text is too short. Please provide at least
|
| 209 |
)
|
| 210 |
elif word_count > 7000:
|
| 211 |
raise HTTPException(
|
|
@@ -222,7 +222,8 @@ async def detect_ai(request: AnalysisRequest):
|
|
| 222 |
"probability": result["probability"],
|
| 223 |
"confidence": result["confidence"],
|
| 224 |
"explanation": result["explanation"],
|
| 225 |
-
"mixed_analysis": result.get("mixed_analysis", None)
|
|
|
|
| 226 |
}
|
| 227 |
|
| 228 |
except HTTPException:
|
|
|
|
| 28 |
# Configure CORS
|
| 29 |
app.add_middleware(
|
| 30 |
CORSMiddleware,
|
| 31 |
+
allow_origins=["*"],
|
| 32 |
allow_credentials=True,
|
| 33 |
allow_methods=["*"],
|
| 34 |
allow_headers=["*"],
|
|
|
|
| 142 |
}
|
| 143 |
|
| 144 |
|
| 145 |
+
@app.post("/api/analyze")
|
| 146 |
async def analyze_text(request: AnalysisRequest):
|
| 147 |
"""
|
| 148 |
Analyze text using the DeBERTa AI detection model
|
|
|
|
| 158 |
if not request.text or len(request.text.strip()) == 0:
|
| 159 |
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
| 160 |
|
| 161 |
+
# Check text length for meaningful analysis (50-7000 words)
|
| 162 |
word_count = len(request.text.split())
|
| 163 |
+
if word_count < 50:
|
| 164 |
raise HTTPException(
|
| 165 |
status_code=400,
|
| 166 |
+
detail="Text is too short for analysis. Please provide at least 50 words for accurate AI detection and sentiment analysis."
|
| 167 |
)
|
| 168 |
|
| 169 |
if word_count > 7000:
|
|
|
|
| 200 |
if not request.text or len(request.text.strip()) == 0:
|
| 201 |
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
| 202 |
|
| 203 |
+
# Check text length (50-7000 words)
|
| 204 |
word_count = len(request.text.split())
|
| 205 |
+
if word_count < 50:
|
| 206 |
raise HTTPException(
|
| 207 |
status_code=400,
|
| 208 |
+
detail="Text is too short. Please provide at least 50 words."
|
| 209 |
)
|
| 210 |
elif word_count > 7000:
|
| 211 |
raise HTTPException(
|
|
|
|
| 222 |
"probability": result["probability"],
|
| 223 |
"confidence": result["confidence"],
|
| 224 |
"explanation": result["explanation"],
|
| 225 |
+
"mixed_analysis": result.get("mixed_analysis", None),
|
| 226 |
+
"modelProcessingTime": result.get("modelProcessingTime", None)
|
| 227 |
}
|
| 228 |
|
| 229 |
except HTTPException:
|
model_handler.py
CHANGED
|
@@ -10,6 +10,7 @@ import torch.nn.functional as F
|
|
| 10 |
from transformers import AutoTokenizer, AutoConfig, AutoModel, PreTrainedModel, AutoModelForSequenceClassification
|
| 11 |
import os
|
| 12 |
import logging
|
|
|
|
| 13 |
from typing import Dict, Any, Optional, List, Tuple
|
| 14 |
import numpy as np
|
| 15 |
from pathlib import Path
|
|
@@ -18,11 +19,17 @@ import json
|
|
| 18 |
import nltk
|
| 19 |
from nltk.tokenize import sent_tokenize
|
| 20 |
|
|
|
|
| 21 |
# Download NLTK data
|
| 22 |
try:
|
| 23 |
nltk.data.find('tokenizers/punkt')
|
| 24 |
except LookupError:
|
| 25 |
nltk.download('punkt', quiet=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
logger = logging.getLogger(__name__)
|
| 28 |
|
|
@@ -80,7 +87,7 @@ class AIDetectionModelHandler:
|
|
| 80 |
Initialize the model handler
|
| 81 |
|
| 82 |
Args:
|
| 83 |
-
model_path: Path to the model directory (default:
|
| 84 |
max_length: Maximum token length for input text
|
| 85 |
"""
|
| 86 |
self.max_length = max_length
|
|
@@ -94,20 +101,11 @@ class AIDetectionModelHandler:
|
|
| 94 |
|
| 95 |
# Default model paths
|
| 96 |
if model_path is None:
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
if env_model_path and os.path.exists(env_model_path):
|
| 100 |
-
model_path = env_model_path
|
| 101 |
-
elif os.path.exists("/app/model"):
|
| 102 |
-
model_path = "/app/model"
|
| 103 |
-
else:
|
| 104 |
-
# Fallback to legacy relative path
|
| 105 |
-
backend_dir = Path(__file__).parent
|
| 106 |
-
model_path = str(backend_dir.parent / "model" / "model")
|
| 107 |
|
| 108 |
self.model_path = model_path
|
| 109 |
-
|
| 110 |
-
self.xgboost_path = str(Path(model_path) / "xgboost_model.json")
|
| 111 |
|
| 112 |
# Load the models
|
| 113 |
self._load_models()
|
|
@@ -115,6 +113,9 @@ class AIDetectionModelHandler:
|
|
| 115 |
def _load_models(self):
|
| 116 |
"""Load DeBERTa, sentiment model, and XGBoost classifier"""
|
| 117 |
try:
|
|
|
|
|
|
|
|
|
|
| 118 |
logger.info(f"Loading models from: {self.model_path}")
|
| 119 |
logger.info(f"Using device: {self.device}")
|
| 120 |
|
|
@@ -132,6 +133,8 @@ class AIDetectionModelHandler:
|
|
| 132 |
self.deberta_model.to(self.device)
|
| 133 |
self.deberta_model.eval()
|
| 134 |
|
|
|
|
|
|
|
| 135 |
# 2. Load sentiment analysis model (DistilBERT)
|
| 136 |
logger.info("Loading sentiment model...")
|
| 137 |
sentiment_model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
|
@@ -140,16 +143,40 @@ class AIDetectionModelHandler:
|
|
| 140 |
self.sentiment_model.to(self.device)
|
| 141 |
self.sentiment_model.eval()
|
| 142 |
|
|
|
|
|
|
|
| 143 |
# 3. Load XGBoost model
|
| 144 |
if os.path.exists(self.xgboost_path):
|
| 145 |
logger.info(f"Loading XGBoost model from: {self.xgboost_path}")
|
|
|
|
| 146 |
self.xgboost_model = xgb.Booster()
|
| 147 |
self.xgboost_model.load_model(self.xgboost_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
logger.info("✅ XGBoost model loaded!")
|
| 149 |
else:
|
| 150 |
logger.warning(f"XGBoost model not found at {self.xgboost_path}, using DeBERTa only")
|
| 151 |
self.xgboost_model = None
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
self.model_loaded = True
|
| 154 |
logger.info("✅ All models loaded successfully!")
|
| 155 |
|
|
@@ -179,9 +206,11 @@ class AIDetectionModelHandler:
|
|
| 179 |
return [0.5] # Neutral if no sentences
|
| 180 |
|
| 181 |
scores = []
|
| 182 |
-
|
|
|
|
| 183 |
with torch.no_grad():
|
| 184 |
-
for sentence in sentences:
|
|
|
|
| 185 |
# Tokenize sentence
|
| 186 |
inputs = self.sentiment_tokenizer(
|
| 187 |
sentence,
|
|
@@ -192,6 +221,7 @@ class AIDetectionModelHandler:
|
|
| 192 |
)
|
| 193 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 194 |
|
|
|
|
| 195 |
# Get sentiment prediction
|
| 196 |
outputs = self.sentiment_model(**inputs)
|
| 197 |
logits = outputs.logits
|
|
@@ -202,7 +232,10 @@ class AIDetectionModelHandler:
|
|
| 202 |
# Convert to polarity score (-1 to 1, where 0.5 is neutral)
|
| 203 |
polarity = (pos_prob - 0.5) * 2 # Maps [0,1] to [-1,1]
|
| 204 |
scores.append(polarity)
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
| 206 |
return scores
|
| 207 |
|
| 208 |
except Exception as e:
|
|
@@ -219,12 +252,16 @@ class AIDetectionModelHandler:
|
|
| 219 |
Returns:
|
| 220 |
Numpy array with [avg_polarity, polarity_variance]
|
| 221 |
"""
|
|
|
|
| 222 |
sentiment_scores = self.get_sentiment_scores(text)
|
| 223 |
|
| 224 |
# Calculate features
|
| 225 |
avg_polarity = float(np.mean(sentiment_scores)) if sentiment_scores else 0.0
|
| 226 |
polarity_variance = float(np.var(sentiment_scores)) if len(sentiment_scores) > 1 else 0.0
|
| 227 |
|
|
|
|
|
|
|
|
|
|
| 228 |
return np.array([avg_polarity, polarity_variance], dtype=np.float32)
|
| 229 |
|
| 230 |
def get_deberta_embeddings(self, text: str) -> np.ndarray:
|
|
@@ -238,7 +275,9 @@ class AIDetectionModelHandler:
|
|
| 238 |
Numpy array of embeddings
|
| 239 |
"""
|
| 240 |
try:
|
|
|
|
| 241 |
# Tokenize input
|
|
|
|
| 242 |
encoded = self.tokenizer(
|
| 243 |
text,
|
| 244 |
padding='max_length',
|
|
@@ -247,23 +286,33 @@ class AIDetectionModelHandler:
|
|
| 247 |
return_tensors='pt'
|
| 248 |
)
|
| 249 |
|
|
|
|
|
|
|
|
|
|
| 250 |
input_ids = encoded['input_ids'].to(self.device)
|
| 251 |
attention_mask = encoded['attention_mask'].to(self.device)
|
| 252 |
|
| 253 |
# Get embeddings
|
| 254 |
with torch.no_grad():
|
|
|
|
| 255 |
outputs = self.deberta_model.model(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
|
|
|
|
|
|
|
| 256 |
last_hidden_state = outputs[0]
|
| 257 |
|
| 258 |
# Mean pooling
|
|
|
|
| 259 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
| 260 |
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, dim=1)
|
| 261 |
sum_mask = torch.clamp(input_mask_expanded.sum(dim=1), min=1e-9)
|
| 262 |
pooled_output = sum_embeddings / sum_mask
|
|
|
|
|
|
|
| 263 |
|
| 264 |
# Convert to numpy
|
| 265 |
embeddings = pooled_output.cpu().numpy().flatten()
|
| 266 |
-
|
| 267 |
return embeddings
|
| 268 |
|
| 269 |
except Exception as e:
|
|
@@ -285,19 +334,26 @@ class AIDetectionModelHandler:
|
|
| 285 |
raise RuntimeError("Model not loaded. Cannot perform prediction.")
|
| 286 |
|
| 287 |
try:
|
|
|
|
| 288 |
# Extract sentiment features
|
| 289 |
logger.info("Extracting sentiment features...")
|
|
|
|
| 290 |
sentiment_features = self.extract_sentiment_features(text)
|
|
|
|
| 291 |
avg_polarity = float(sentiment_features[0])
|
| 292 |
polarity_variance = float(sentiment_features[1])
|
| 293 |
-
|
|
|
|
| 294 |
# If XGBoost is available, use the full two-branch pipeline
|
| 295 |
if self.xgboost_model is not None:
|
| 296 |
logger.info("Using XGBoost two-branch model...")
|
| 297 |
-
|
|
|
|
| 298 |
# Get DeBERTa embeddings
|
| 299 |
deberta_embeddings = self.get_deberta_embeddings(text)
|
| 300 |
-
|
|
|
|
|
|
|
| 301 |
# Combine features: DeBERTa embeddings + sentiment features
|
| 302 |
combined_features = np.concatenate([deberta_embeddings, sentiment_features])
|
| 303 |
|
|
@@ -305,8 +361,11 @@ class AIDetectionModelHandler:
|
|
| 305 |
dmatrix = xgb.DMatrix(combined_features.reshape(1, -1))
|
| 306 |
|
| 307 |
# Predict
|
|
|
|
| 308 |
probability = float(self.xgboost_model.predict(dmatrix)[0])
|
| 309 |
-
|
|
|
|
|
|
|
| 310 |
else:
|
| 311 |
# Fallback to DeBERTa only
|
| 312 |
logger.info("Using DeBERTa model only (XGBoost not found)...")
|
|
@@ -323,11 +382,16 @@ class AIDetectionModelHandler:
|
|
| 323 |
attention_mask = encoded['attention_mask'].to(self.device)
|
| 324 |
|
| 325 |
with torch.no_grad():
|
|
|
|
| 326 |
outputs = self.deberta_model(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
|
|
|
|
| 327 |
logits = outputs["logits"]
|
| 328 |
probability = torch.sigmoid(logits).item()
|
| 329 |
|
| 330 |
label = 1 if probability >= threshold else 0
|
|
|
|
|
|
|
| 331 |
|
| 332 |
return {
|
| 333 |
"probability": probability,
|
|
@@ -355,6 +419,7 @@ class AIDetectionModelHandler:
|
|
| 355 |
Tuple of (probability, label) where label is 0 for human, 1 for AI
|
| 356 |
"""
|
| 357 |
try:
|
|
|
|
| 358 |
# Extract sentiment features
|
| 359 |
sentiment_features = self.extract_sentiment_features(text)
|
| 360 |
avg_polarity = float(sentiment_features[0])
|
|
@@ -362,18 +427,24 @@ class AIDetectionModelHandler:
|
|
| 362 |
|
| 363 |
# If XGBoost is available, use the full two-branch pipeline
|
| 364 |
if self.xgboost_model is not None:
|
|
|
|
| 365 |
# Get DeBERTa embeddings
|
| 366 |
deberta_embeddings = self.get_deberta_embeddings(text)
|
| 367 |
-
|
|
|
|
|
|
|
| 368 |
# Combine features: DeBERTa embeddings + sentiment features
|
| 369 |
combined_features = np.concatenate([deberta_embeddings, sentiment_features])
|
| 370 |
|
| 371 |
# Create DMatrix for XGBoost
|
| 372 |
dmatrix = xgb.DMatrix(combined_features.reshape(1, -1))
|
| 373 |
-
|
|
|
|
| 374 |
# Predict
|
| 375 |
probability = float(self.xgboost_model.predict(dmatrix)[0])
|
| 376 |
-
|
|
|
|
|
|
|
| 377 |
else:
|
| 378 |
# Fallback to DeBERTa only
|
| 379 |
encoded = self.tokenizer(
|
|
@@ -388,12 +459,16 @@ class AIDetectionModelHandler:
|
|
| 388 |
attention_mask = encoded['attention_mask'].to(self.device)
|
| 389 |
|
| 390 |
with torch.no_grad():
|
|
|
|
| 391 |
outputs = self.deberta_model(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
|
|
|
|
| 392 |
logits = outputs["logits"]
|
| 393 |
probability = torch.sigmoid(logits).item()
|
| 394 |
|
| 395 |
label = 1 if probability >= 0.5 else 0
|
| 396 |
-
|
|
|
|
| 397 |
return probability, label
|
| 398 |
|
| 399 |
except Exception as e:
|
|
@@ -414,7 +489,7 @@ class AIDetectionModelHandler:
|
|
| 414 |
Dictionary with prediction results and analysis details
|
| 415 |
|
| 416 |
Note:
|
| 417 |
-
Input validation: Text must be
|
| 418 |
analyzed as whole, then chunk size varies:
|
| 419 |
- 6-10 sentences: 3 sentences per chunk
|
| 420 |
- 11-20 sentences: 4 sentences per chunk
|
|
@@ -424,11 +499,11 @@ class AIDetectionModelHandler:
|
|
| 424 |
"""
|
| 425 |
# Get overall prediction (your current method)
|
| 426 |
overall_prob, overall_label = self.predict_single_text_xgboost(text)
|
| 427 |
-
|
| 428 |
# Split text into sentences
|
| 429 |
sentences = sent_tokenize(text)
|
| 430 |
|
| 431 |
-
# Validate input text length (80-
|
| 432 |
total_words = len(text.split())
|
| 433 |
if total_words < 80:
|
| 434 |
return {
|
|
@@ -440,17 +515,31 @@ class AIDetectionModelHandler:
|
|
| 440 |
'modified_probability': overall_prob,
|
| 441 |
'chunk_analysis': []
|
| 442 |
}
|
| 443 |
-
elif total_words >
|
| 444 |
return {
|
| 445 |
'prediction': 'Human' if overall_label == 0 else 'AI',
|
| 446 |
'confidence': abs(overall_prob - 0.5) * 2,
|
| 447 |
'is_mixed': False,
|
| 448 |
-
'reason': f'Text too long for analysis ({total_words} words, maximum
|
| 449 |
'overall_probability': overall_prob,
|
| 450 |
'modified_probability': overall_prob,
|
| 451 |
'chunk_analysis': []
|
| 452 |
}
|
| 453 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
# Dynamic chunking based on total sentence count
|
| 455 |
total_sentences = len(sentences)
|
| 456 |
|
|
@@ -488,28 +577,34 @@ class AIDetectionModelHandler:
|
|
| 488 |
'chunk_analysis': []
|
| 489 |
}
|
| 490 |
|
| 491 |
-
# Create overlapping chunks
|
| 492 |
-
chunks = []
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
|
|
|
| 496 |
logger.info(f"Analyzing text with {total_sentences} sentences using dynamic chunk size of {dynamic_chunk_size}...")
|
| 497 |
-
|
| 498 |
for i in range(0, len(sentences) - dynamic_chunk_size + 1, dynamic_chunk_size - overlap):
|
| 499 |
# Create chunk from sentences
|
| 500 |
-
|
|
|
|
|
|
|
| 501 |
chunk_text = ' '.join(chunk_sentences)
|
| 502 |
-
|
| 503 |
# Only analyze chunks that meet minimum length requirement
|
| 504 |
if len(chunk_text.strip()) >= min_chunk_length:
|
| 505 |
chunks.append(chunk_text)
|
| 506 |
-
|
|
|
|
| 507 |
# Analyze this chunk
|
| 508 |
prob, label = self.predict_single_text_xgboost(chunk_text)
|
| 509 |
chunk_predictions.append((prob, label))
|
| 510 |
chunk_probabilities.append(prob)
|
| 511 |
-
|
| 512 |
logger.info(f" Chunk {len(chunks)}: {chunk_text[:60]}... → {'AI' if label == 1 else 'Human'} ({prob:.3f})")
|
|
|
|
|
|
|
| 513 |
|
| 514 |
if len(chunk_predictions) < 2:
|
| 515 |
return {
|
|
@@ -519,6 +614,10 @@ class AIDetectionModelHandler:
|
|
| 519 |
'reason': 'Too few chunks for mixed analysis',
|
| 520 |
'overall_probability': overall_prob,
|
| 521 |
'modified_probability': overall_prob,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
'chunk_analysis': chunk_predictions
|
| 523 |
}
|
| 524 |
|
|
@@ -530,68 +629,148 @@ class AIDetectionModelHandler:
|
|
| 530 |
# Mixed text detection logic
|
| 531 |
is_mixed = human_chunks > 0 and ai_chunks > 0
|
| 532 |
mixed_ratio = min(human_chunks, ai_chunks) / total_chunks
|
|
|
|
|
|
|
| 533 |
|
| 534 |
logger.info(f"\nChunk Analysis Summary:")
|
| 535 |
logger.info(f" Total chunks analyzed: {total_chunks}")
|
| 536 |
logger.info(f" Human chunks: {human_chunks}")
|
| 537 |
logger.info(f" AI chunks: {ai_chunks}")
|
| 538 |
logger.info(f" Mixed ratio: {mixed_ratio:.2f}")
|
|
|
|
|
|
|
| 539 |
|
| 540 |
-
|
| 541 |
-
if is_mixed and mixed_ratio > 0.25: # At least 25% of each type
|
| 542 |
-
# Calculate weighted average of chunk probabilities
|
| 543 |
-
# Weight by chunk length (longer chunks have more influence)
|
| 544 |
-
chunk_weights = [len(chunk) for chunk in chunks]
|
| 545 |
-
total_weight = sum(chunk_weights)
|
| 546 |
-
|
| 547 |
-
# Calculate weighted average probability
|
| 548 |
-
weighted_prob = sum(prob * weight for prob, weight in zip(chunk_probabilities, chunk_weights)) / total_weight
|
| 549 |
-
|
| 550 |
-
# Blend original overall probability with chunk-based probability
|
| 551 |
-
# More chunks = more influence from chunk analysis
|
| 552 |
-
chunk_influence = min(total_chunks / 5.0, 1.0) # Max influence at 5+ chunks
|
| 553 |
-
modified_prob = (overall_prob * (1 - chunk_influence)) + (weighted_prob * chunk_influence)
|
| 554 |
-
|
| 555 |
final_prediction = 'Mixed'
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
logger.info(
|
| 559 |
-
logger.info(f" → Original overall probability: {overall_prob:.3f}")
|
| 560 |
-
logger.info(f" → Weighted chunk probability: {weighted_prob:.3f}")
|
| 561 |
-
logger.info(f" → Chunk influence factor: {chunk_influence:.3f}")
|
| 562 |
-
logger.info(f" → Modified probability: {modified_prob:.3f}")
|
| 563 |
-
|
| 564 |
else:
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
)
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 587 |
else:
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 595 |
return {
|
| 596 |
'prediction': final_prediction,
|
| 597 |
'confidence': confidence,
|
|
@@ -604,9 +783,14 @@ class AIDetectionModelHandler:
|
|
| 604 |
'modified_probability': modified_prob,
|
| 605 |
'chunk_probabilities': chunk_probabilities,
|
| 606 |
'chunk_analysis': chunk_predictions,
|
|
|
|
|
|
|
|
|
|
| 607 |
'chunk_size': chunk_size,
|
| 608 |
'overlap': overlap
|
| 609 |
}
|
|
|
|
|
|
|
| 610 |
|
| 611 |
def detect_ai(self, text: str) -> Dict[str, Any]:
|
| 612 |
"""
|
|
@@ -654,24 +838,24 @@ class AIDetectionModelHandler:
|
|
| 654 |
|
| 655 |
elif prediction == "AI":
|
| 656 |
explanation = f"This text is classified as AI-Generated with {certainty}."
|
| 657 |
-
explanation += " The text
|
| 658 |
if pol_var <= 0.10:
|
| 659 |
-
explanation += "
|
| 660 |
elif pol_var <= 0.35:
|
| 661 |
-
explanation += " Low emotional variation which
|
| 662 |
elif pol_var <= 0.60:
|
| 663 |
-
explanation += " Moderate emotional variation which is
|
| 664 |
else:
|
| 665 |
-
explanation += " High emotional variation is
|
| 666 |
else: # Human
|
| 667 |
explanation = f"This text is classified as Human-Authored with {certainty}."
|
| 668 |
-
explanation += "
|
| 669 |
if pol_var > 0.60:
|
| 670 |
-
explanation += " High emotional variation which
|
| 671 |
elif pol_var >= 0.36:
|
| 672 |
-
explanation += " Moderate emotional variation which shows
|
| 673 |
elif pol_var >= 0.11:
|
| 674 |
-
explanation += " Low emotional variation which may indicate formal or academic
|
| 675 |
else:
|
| 676 |
explanation += " Very low emotional variation indicates consistent tone with focused perspective."
|
| 677 |
|
|
@@ -689,6 +873,7 @@ class AIDetectionModelHandler:
|
|
| 689 |
"avg_polarity": avg_pol,
|
| 690 |
"polarity_variance": pol_var
|
| 691 |
},
|
|
|
|
| 692 |
"mixed_analysis": {
|
| 693 |
"is_mixed": chunk_result["is_mixed"],
|
| 694 |
"mixed_ratio": chunk_result.get("mixed_ratio", 0),
|
|
@@ -697,10 +882,16 @@ class AIDetectionModelHandler:
|
|
| 697 |
"total_chunks": chunk_result.get("total_chunks", 0),
|
| 698 |
"overall_probability": chunk_result["overall_probability"],
|
| 699 |
"modified_probability": chunk_result["modified_probability"]
|
| 700 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 701 |
}
|
|
|
|
| 702 |
|
| 703 |
def analyze_text(self, text: str) -> Dict[str, Any]:
|
|
|
|
| 704 |
"""
|
| 705 |
Comprehensive text analysis combining AI detection with sentiment features
|
| 706 |
|
|
@@ -710,15 +901,34 @@ class AIDetectionModelHandler:
|
|
| 710 |
Returns:
|
| 711 |
Complete analysis results with model-based sentiment features
|
| 712 |
"""
|
| 713 |
-
# Validate input text length (80-
|
| 714 |
total_words = len(text.split())
|
| 715 |
if total_words < 80:
|
| 716 |
raise ValueError(f"Text too short for analysis ({total_words} words, minimum 80 words required)")
|
| 717 |
-
elif total_words >
|
| 718 |
-
raise ValueError(f"Text too long for analysis ({total_words} words, maximum
|
| 719 |
|
| 720 |
# Get AI detection results (includes sentiment features from model)
|
| 721 |
ai_detection = self.detect_ai(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 722 |
model_sentiment = ai_detection.get("sentiment_features", {})
|
| 723 |
|
| 724 |
# Perform basic text analysis
|
|
@@ -734,7 +944,6 @@ class AIDetectionModelHandler:
|
|
| 734 |
# Determine complexity based on AI probability and text metrics
|
| 735 |
is_ai = ai_detection["classification"] == "ai"
|
| 736 |
is_mixed = ai_detection["classification"] == "mixed"
|
| 737 |
-
ai_prob = ai_detection["probability"]
|
| 738 |
|
| 739 |
# Handle different prediction types
|
| 740 |
if is_mixed:
|
|
@@ -757,7 +966,6 @@ class AIDetectionModelHandler:
|
|
| 757 |
insights = []
|
| 758 |
|
| 759 |
if is_mixed and ai_detection["confidence"] > 60:
|
| 760 |
-
mixed_analysis = ai_detection.get("mixed_analysis", {})
|
| 761 |
insights.append({
|
| 762 |
"type": "observation",
|
| 763 |
"title": "Mixed Content Detected",
|
|
@@ -774,14 +982,14 @@ class AIDetectionModelHandler:
|
|
| 774 |
insights.append({
|
| 775 |
"type": "observation",
|
| 776 |
"title": "AI-Generated Content Detected",
|
| 777 |
-
"description": f"This text shows strong indicators
|
| 778 |
-
"suggestion": "Consider adding personal
|
| 779 |
})
|
| 780 |
elif not is_ai and ai_detection["confidence"] > 75:
|
| 781 |
insights.append({
|
| 782 |
"type": "strength",
|
| 783 |
"title": "Human Writing Characteristics",
|
| 784 |
-
"description": f"
|
| 785 |
})
|
| 786 |
|
| 787 |
# Sentence variety analysis
|
|
@@ -792,8 +1000,8 @@ class AIDetectionModelHandler:
|
|
| 792 |
insights.append({
|
| 793 |
"type": "improvement",
|
| 794 |
"title": "Sentence Variety",
|
| 795 |
-
"description": "Sentences have similar lengths, which may indicate AI generation.",
|
| 796 |
-
"suggestion": "
|
| 797 |
})
|
| 798 |
else:
|
| 799 |
insights.append({
|
|
@@ -818,6 +1026,11 @@ class AIDetectionModelHandler:
|
|
| 818 |
# Construct full analysis response with model sentiment features
|
| 819 |
polarity_variance = model_sentiment.get("polarity_variance", 0)
|
| 820 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 821 |
return {
|
| 822 |
"advancedSentiment": {
|
| 823 |
"emotions": emotions,
|
|
@@ -856,7 +1069,13 @@ class AIDetectionModelHandler:
|
|
| 856 |
},
|
| 857 |
"aiOrHuman": ai_detection["classification"],
|
| 858 |
"aiOrHumanConfidence": ai_detection["confidence"],
|
| 859 |
-
"aiOrHumanExplanation": ai_detection["explanation"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 860 |
}
|
| 861 |
|
| 862 |
def get_model_info(self) -> Dict[str, Any]:
|
|
@@ -877,3 +1096,5 @@ class AIDetectionModelHandler:
|
|
| 877 |
],
|
| 878 |
"description": "Two-branch model for detecting AI-Generated vs Human-Authored text using DeBERTa semantic embeddings combined with sentiment features"
|
| 879 |
}
|
|
|
|
|
|
|
|
|
| 10 |
from transformers import AutoTokenizer, AutoConfig, AutoModel, PreTrainedModel, AutoModelForSequenceClassification
|
| 11 |
import os
|
| 12 |
import logging
|
| 13 |
+
import time
|
| 14 |
from typing import Dict, Any, Optional, List, Tuple
|
| 15 |
import numpy as np
|
| 16 |
from pathlib import Path
|
|
|
|
| 19 |
import nltk
|
| 20 |
from nltk.tokenize import sent_tokenize
|
| 21 |
|
| 22 |
+
|
| 23 |
# Download NLTK data
|
| 24 |
try:
|
| 25 |
nltk.data.find('tokenizers/punkt')
|
| 26 |
except LookupError:
|
| 27 |
nltk.download('punkt', quiet=True)
|
| 28 |
+
|
| 29 |
+
try:
|
| 30 |
+
nltk.data.find('tokenizers/punkt_tab')
|
| 31 |
+
except LookupError:
|
| 32 |
+
nltk.download('punkt_tab', quiet=True)
|
| 33 |
|
| 34 |
logger = logging.getLogger(__name__)
|
| 35 |
|
|
|
|
| 87 |
Initialize the model handler
|
| 88 |
|
| 89 |
Args:
|
| 90 |
+
model_path: Path to the model directory (default: ../model/model)
|
| 91 |
max_length: Maximum token length for input text
|
| 92 |
"""
|
| 93 |
self.max_length = max_length
|
|
|
|
| 101 |
|
| 102 |
# Default model paths
|
| 103 |
if model_path is None:
|
| 104 |
+
backend_dir = Path(__file__).parent
|
| 105 |
+
model_path = str(backend_dir.parent / "model" / "model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
self.model_path = model_path
|
| 108 |
+
self.xgboost_path = str(Path(model_path).parent / "xgboost_model.json")
|
|
|
|
| 109 |
|
| 110 |
# Load the models
|
| 111 |
self._load_models()
|
|
|
|
| 113 |
def _load_models(self):
|
| 114 |
"""Load DeBERTa, sentiment model, and XGBoost classifier"""
|
| 115 |
try:
|
| 116 |
+
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
| 117 |
+
logger.info(f"Selected device: {self.device}")
|
| 118 |
+
|
| 119 |
logger.info(f"Loading models from: {self.model_path}")
|
| 120 |
logger.info(f"Using device: {self.device}")
|
| 121 |
|
|
|
|
| 133 |
self.deberta_model.to(self.device)
|
| 134 |
self.deberta_model.eval()
|
| 135 |
|
| 136 |
+
print("DeBERTa model device:", next(self.deberta_model.parameters()).device)
|
| 137 |
+
|
| 138 |
# 2. Load sentiment analysis model (DistilBERT)
|
| 139 |
logger.info("Loading sentiment model...")
|
| 140 |
sentiment_model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
|
|
|
| 143 |
self.sentiment_model.to(self.device)
|
| 144 |
self.sentiment_model.eval()
|
| 145 |
|
| 146 |
+
print("Sentiment model device:", next(self.sentiment_model.parameters()).device)
|
| 147 |
+
|
| 148 |
# 3. Load XGBoost model
|
| 149 |
if os.path.exists(self.xgboost_path):
|
| 150 |
logger.info(f"Loading XGBoost model from: {self.xgboost_path}")
|
| 151 |
+
t0 = time.perf_counter()
|
| 152 |
self.xgboost_model = xgb.Booster()
|
| 153 |
self.xgboost_model.load_model(self.xgboost_path)
|
| 154 |
+
# Force GPU or CPU depending on hardware
|
| 155 |
+
if torch.cuda.is_available():
|
| 156 |
+
logger.info("Setting XGBoost to use GPU predictor")
|
| 157 |
+
try:
|
| 158 |
+
self.xgboost_model.set_param({"predictor": "gpu_predictor", "tree_method": "gpu_hist"})
|
| 159 |
+
logger.info("XGBoost configured to use GPU (gpu_predictor, gpu_hist)")
|
| 160 |
+
except Exception as ie:
|
| 161 |
+
logger.warning(f"Failed to set XGBoost GPU params: {ie}")
|
| 162 |
+
else:
|
| 163 |
+
logger.info("Setting XGBoost to use CPU predictor")
|
| 164 |
+
try:
|
| 165 |
+
self.xgboost_model.set_param({"predictor": "cpu_predictor", "tree_method": "hist"})
|
| 166 |
+
except Exception as ie:
|
| 167 |
+
logger.warning(f"Failed to set XGBoost CPU params: {ie}")
|
| 168 |
+
|
| 169 |
+
t1 = time.perf_counter()
|
| 170 |
+
logger.info(f"XGBoost model loaded in {t1 - t0:.4f}s")
|
| 171 |
logger.info("✅ XGBoost model loaded!")
|
| 172 |
else:
|
| 173 |
logger.warning(f"XGBoost model not found at {self.xgboost_path}, using DeBERTa only")
|
| 174 |
self.xgboost_model = None
|
| 175 |
|
| 176 |
+
# 🔍 OPTIONAL: PRINT GPU NAME
|
| 177 |
+
if torch.cuda.is_available():
|
| 178 |
+
print("GPU detected:", torch.cuda.get_device_name(0))
|
| 179 |
+
|
| 180 |
self.model_loaded = True
|
| 181 |
logger.info("✅ All models loaded successfully!")
|
| 182 |
|
|
|
|
| 206 |
return [0.5] # Neutral if no sentences
|
| 207 |
|
| 208 |
scores = []
|
| 209 |
+
start_total = time.perf_counter()
|
| 210 |
+
|
| 211 |
with torch.no_grad():
|
| 212 |
+
for i, sentence in enumerate(sentences):
|
| 213 |
+
s0 = time.perf_counter()
|
| 214 |
# Tokenize sentence
|
| 215 |
inputs = self.sentiment_tokenizer(
|
| 216 |
sentence,
|
|
|
|
| 221 |
)
|
| 222 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 223 |
|
| 224 |
+
|
| 225 |
# Get sentiment prediction
|
| 226 |
outputs = self.sentiment_model(**inputs)
|
| 227 |
logits = outputs.logits
|
|
|
|
| 232 |
# Convert to polarity score (-1 to 1, where 0.5 is neutral)
|
| 233 |
polarity = (pos_prob - 0.5) * 2 # Maps [0,1] to [-1,1]
|
| 234 |
scores.append(polarity)
|
| 235 |
+
s1 = time.perf_counter()
|
| 236 |
+
logger.debug(f"Sentiment sentence processed in {s1 - s0:.4f}s")
|
| 237 |
+
total_time = time.perf_counter() - start_total
|
| 238 |
+
logger.info(f"Extracted sentiment scores for {len(sentences)} sentences in {total_time:.4f}s")
|
| 239 |
return scores
|
| 240 |
|
| 241 |
except Exception as e:
|
|
|
|
| 252 |
Returns:
|
| 253 |
Numpy array with [avg_polarity, polarity_variance]
|
| 254 |
"""
|
| 255 |
+
start = time.perf_counter()
|
| 256 |
sentiment_scores = self.get_sentiment_scores(text)
|
| 257 |
|
| 258 |
# Calculate features
|
| 259 |
avg_polarity = float(np.mean(sentiment_scores)) if sentiment_scores else 0.0
|
| 260 |
polarity_variance = float(np.var(sentiment_scores)) if len(sentiment_scores) > 1 else 0.0
|
| 261 |
|
| 262 |
+
duration = time.perf_counter() - start
|
| 263 |
+
logger.info(f"Sentiment features extracted in {duration:.4f}s (avg_polarity={avg_polarity:.4f}, variance={polarity_variance:.4f})")
|
| 264 |
+
|
| 265 |
return np.array([avg_polarity, polarity_variance], dtype=np.float32)
|
| 266 |
|
| 267 |
def get_deberta_embeddings(self, text: str) -> np.ndarray:
|
|
|
|
| 275 |
Numpy array of embeddings
|
| 276 |
"""
|
| 277 |
try:
|
| 278 |
+
t_total = time.perf_counter()
|
| 279 |
# Tokenize input
|
| 280 |
+
t0 = time.perf_counter()
|
| 281 |
encoded = self.tokenizer(
|
| 282 |
text,
|
| 283 |
padding='max_length',
|
|
|
|
| 286 |
return_tensors='pt'
|
| 287 |
)
|
| 288 |
|
| 289 |
+
t1 = time.perf_counter()
|
| 290 |
+
logger.debug(f"Tokenization time: {t1 - t0:.4f}s")
|
| 291 |
+
|
| 292 |
input_ids = encoded['input_ids'].to(self.device)
|
| 293 |
attention_mask = encoded['attention_mask'].to(self.device)
|
| 294 |
|
| 295 |
# Get embeddings
|
| 296 |
with torch.no_grad():
|
| 297 |
+
t0 = time.perf_counter()
|
| 298 |
outputs = self.deberta_model.model(input_ids=input_ids, attention_mask=attention_mask)
|
| 299 |
+
t1 = time.perf_counter()
|
| 300 |
+
logger.debug(f"Transformer forward pass time: {t1 - t0:.4f}s")
|
| 301 |
+
|
| 302 |
last_hidden_state = outputs[0]
|
| 303 |
|
| 304 |
# Mean pooling
|
| 305 |
+
t0 = time.perf_counter()
|
| 306 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
| 307 |
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, dim=1)
|
| 308 |
sum_mask = torch.clamp(input_mask_expanded.sum(dim=1), min=1e-9)
|
| 309 |
pooled_output = sum_embeddings / sum_mask
|
| 310 |
+
t1 = time.perf_counter()
|
| 311 |
+
logger.debug(f"Pooling time: {t1 - t0:.4f}s")
|
| 312 |
|
| 313 |
# Convert to numpy
|
| 314 |
embeddings = pooled_output.cpu().numpy().flatten()
|
| 315 |
+
total = time.perf_counter() - t_total
|
| 316 |
return embeddings
|
| 317 |
|
| 318 |
except Exception as e:
|
|
|
|
| 334 |
raise RuntimeError("Model not loaded. Cannot perform prediction.")
|
| 335 |
|
| 336 |
try:
|
| 337 |
+
overall_start = time.perf_counter()
|
| 338 |
# Extract sentiment features
|
| 339 |
logger.info("Extracting sentiment features...")
|
| 340 |
+
sentiment_start = time.perf_counter()
|
| 341 |
sentiment_features = self.extract_sentiment_features(text)
|
| 342 |
+
sentiment_time = time.perf_counter() - sentiment_start
|
| 343 |
avg_polarity = float(sentiment_features[0])
|
| 344 |
polarity_variance = float(sentiment_features[1])
|
| 345 |
+
logger.info(f"Sentiment extraction took {sentiment_time:.4f}s")
|
| 346 |
+
|
| 347 |
# If XGBoost is available, use the full two-branch pipeline
|
| 348 |
if self.xgboost_model is not None:
|
| 349 |
logger.info("Using XGBoost two-branch model...")
|
| 350 |
+
embed_start = time.perf_counter()
|
| 351 |
+
|
| 352 |
# Get DeBERTa embeddings
|
| 353 |
deberta_embeddings = self.get_deberta_embeddings(text)
|
| 354 |
+
embed_time = time.perf_counter() - embed_start
|
| 355 |
+
logger.info(f"DeBERTa embedding extraction took {embed_time:.4f}s")
|
| 356 |
+
|
| 357 |
# Combine features: DeBERTa embeddings + sentiment features
|
| 358 |
combined_features = np.concatenate([deberta_embeddings, sentiment_features])
|
| 359 |
|
|
|
|
| 361 |
dmatrix = xgb.DMatrix(combined_features.reshape(1, -1))
|
| 362 |
|
| 363 |
# Predict
|
| 364 |
+
xgb_start = time.perf_counter()
|
| 365 |
probability = float(self.xgboost_model.predict(dmatrix)[0])
|
| 366 |
+
xgb_time = time.perf_counter() - xgb_start
|
| 367 |
+
logger.info(f"XGBoost prediction took {xgb_time:.4f}s")
|
| 368 |
+
|
| 369 |
else:
|
| 370 |
# Fallback to DeBERTa only
|
| 371 |
logger.info("Using DeBERTa model only (XGBoost not found)...")
|
|
|
|
| 382 |
attention_mask = encoded['attention_mask'].to(self.device)
|
| 383 |
|
| 384 |
with torch.no_grad():
|
| 385 |
+
t0 = time.perf_counter()
|
| 386 |
outputs = self.deberta_model(input_ids=input_ids, attention_mask=attention_mask)
|
| 387 |
+
t1 = time.perf_counter()
|
| 388 |
+
logger.info(f"DeBERTa forward & classification took {t1 - t0:.4f}s")
|
| 389 |
logits = outputs["logits"]
|
| 390 |
probability = torch.sigmoid(logits).item()
|
| 391 |
|
| 392 |
label = 1 if probability >= threshold else 0
|
| 393 |
+
overall_time = time.perf_counter() - overall_start
|
| 394 |
+
logger.info(f"Total prediction pipeline took {overall_time:.4f}s (prob={probability:.4f})")
|
| 395 |
|
| 396 |
return {
|
| 397 |
"probability": probability,
|
|
|
|
| 419 |
Tuple of (probability, label) where label is 0 for human, 1 for AI
|
| 420 |
"""
|
| 421 |
try:
|
| 422 |
+
start_total = time.perf_counter()
|
| 423 |
# Extract sentiment features
|
| 424 |
sentiment_features = self.extract_sentiment_features(text)
|
| 425 |
avg_polarity = float(sentiment_features[0])
|
|
|
|
| 427 |
|
| 428 |
# If XGBoost is available, use the full two-branch pipeline
|
| 429 |
if self.xgboost_model is not None:
|
| 430 |
+
embed_start = time.perf_counter()
|
| 431 |
# Get DeBERTa embeddings
|
| 432 |
deberta_embeddings = self.get_deberta_embeddings(text)
|
| 433 |
+
embed_time = time.perf_counter() - embed_start
|
| 434 |
+
logger.info(f"DeBERTa embedding extraction took {embed_time:.4f}s")
|
| 435 |
+
|
| 436 |
# Combine features: DeBERTa embeddings + sentiment features
|
| 437 |
combined_features = np.concatenate([deberta_embeddings, sentiment_features])
|
| 438 |
|
| 439 |
# Create DMatrix for XGBoost
|
| 440 |
dmatrix = xgb.DMatrix(combined_features.reshape(1, -1))
|
| 441 |
+
xgb_start = time.perf_counter()
|
| 442 |
+
|
| 443 |
# Predict
|
| 444 |
probability = float(self.xgboost_model.predict(dmatrix)[0])
|
| 445 |
+
xgb_time = time.perf_counter() - xgb_start
|
| 446 |
+
logger.info(f"XGBoost prediction (single) took {xgb_time:.4f}s")
|
| 447 |
+
|
| 448 |
else:
|
| 449 |
# Fallback to DeBERTa only
|
| 450 |
encoded = self.tokenizer(
|
|
|
|
| 459 |
attention_mask = encoded['attention_mask'].to(self.device)
|
| 460 |
|
| 461 |
with torch.no_grad():
|
| 462 |
+
t0 = time.perf_counter()
|
| 463 |
outputs = self.deberta_model(input_ids=input_ids, attention_mask=attention_mask)
|
| 464 |
+
t1 = time.perf_counter()
|
| 465 |
+
logger.info(f"DeBERTa forward (single) took {t1 - t0:.4f}s")
|
| 466 |
logits = outputs["logits"]
|
| 467 |
probability = torch.sigmoid(logits).item()
|
| 468 |
|
| 469 |
label = 1 if probability >= 0.5 else 0
|
| 470 |
+
total = time.perf_counter() - start_total
|
| 471 |
+
logger.info(f"predict_single_text_xgboost total time: {total:.4f}s")
|
| 472 |
return probability, label
|
| 473 |
|
| 474 |
except Exception as e:
|
|
|
|
| 489 |
Dictionary with prediction results and analysis details
|
| 490 |
|
| 491 |
Note:
|
| 492 |
+
Input validation: Text must be 80-2000 words. Dynamic chunking: 4-5 sentences
|
| 493 |
analyzed as whole, then chunk size varies:
|
| 494 |
- 6-10 sentences: 3 sentences per chunk
|
| 495 |
- 11-20 sentences: 4 sentences per chunk
|
|
|
|
| 499 |
"""
|
| 500 |
# Get overall prediction (your current method)
|
| 501 |
overall_prob, overall_label = self.predict_single_text_xgboost(text)
|
| 502 |
+
|
| 503 |
# Split text into sentences
|
| 504 |
sentences = sent_tokenize(text)
|
| 505 |
|
| 506 |
+
# Validate input text length (80-2000 words)
|
| 507 |
total_words = len(text.split())
|
| 508 |
if total_words < 80:
|
| 509 |
return {
|
|
|
|
| 515 |
'modified_probability': overall_prob,
|
| 516 |
'chunk_analysis': []
|
| 517 |
}
|
| 518 |
+
elif total_words > 2000:
|
| 519 |
return {
|
| 520 |
'prediction': 'Human' if overall_label == 0 else 'AI',
|
| 521 |
'confidence': abs(overall_prob - 0.5) * 2,
|
| 522 |
'is_mixed': False,
|
| 523 |
+
'reason': f'Text too long for analysis ({total_words} words, maximum 2000 words allowed)',
|
| 524 |
'overall_probability': overall_prob,
|
| 525 |
'modified_probability': overall_prob,
|
| 526 |
'chunk_analysis': []
|
| 527 |
}
|
| 528 |
|
| 529 |
+
# Compute sentence character offsets (start/end) to map back to original text
|
| 530 |
+
sentence_offsets: List[Tuple[int, int]] = []
|
| 531 |
+
search_start = 0
|
| 532 |
+
for sent in sentences:
|
| 533 |
+
# find the sentence occurrence starting from search_start
|
| 534 |
+
idx = text.find(sent, search_start)
|
| 535 |
+
if idx == -1:
|
| 536 |
+
# fallback: skip whitespace and set to previous end
|
| 537 |
+
idx = search_start
|
| 538 |
+
start_char = idx
|
| 539 |
+
end_char = start_char + len(sent)
|
| 540 |
+
sentence_offsets.append((start_char, end_char))
|
| 541 |
+
search_start = end_char
|
| 542 |
+
|
| 543 |
# Dynamic chunking based on total sentence count
|
| 544 |
total_sentences = len(sentences)
|
| 545 |
|
|
|
|
| 577 |
'chunk_analysis': []
|
| 578 |
}
|
| 579 |
|
| 580 |
+
# Create overlapping chunks and retain sentence index ranges
|
| 581 |
+
chunks = [] # textual chunks (for backward compat)
|
| 582 |
+
chunk_sentence_ranges: List[Tuple[int, int]] = [] # inclusive start, inclusive end sentence idx
|
| 583 |
+
chunk_predictions: List[Tuple[float, int]] = []
|
| 584 |
+
chunk_probabilities: List[float] = []
|
| 585 |
+
|
| 586 |
logger.info(f"Analyzing text with {total_sentences} sentences using dynamic chunk size of {dynamic_chunk_size}...")
|
| 587 |
+
|
| 588 |
for i in range(0, len(sentences) - dynamic_chunk_size + 1, dynamic_chunk_size - overlap):
|
| 589 |
# Create chunk from sentences
|
| 590 |
+
start_idx = i
|
| 591 |
+
end_idx = i + dynamic_chunk_size - 1
|
| 592 |
+
chunk_sentences = sentences[start_idx:end_idx + 1]
|
| 593 |
chunk_text = ' '.join(chunk_sentences)
|
| 594 |
+
|
| 595 |
# Only analyze chunks that meet minimum length requirement
|
| 596 |
if len(chunk_text.strip()) >= min_chunk_length:
|
| 597 |
chunks.append(chunk_text)
|
| 598 |
+
chunk_sentence_ranges.append((start_idx, end_idx))
|
| 599 |
+
|
| 600 |
# Analyze this chunk
|
| 601 |
prob, label = self.predict_single_text_xgboost(chunk_text)
|
| 602 |
chunk_predictions.append((prob, label))
|
| 603 |
chunk_probabilities.append(prob)
|
| 604 |
+
|
| 605 |
logger.info(f" Chunk {len(chunks)}: {chunk_text[:60]}... → {'AI' if label == 1 else 'Human'} ({prob:.3f})")
|
| 606 |
+
|
| 607 |
+
|
| 608 |
|
| 609 |
if len(chunk_predictions) < 2:
|
| 610 |
return {
|
|
|
|
| 614 |
'reason': 'Too few chunks for mixed analysis',
|
| 615 |
'overall_probability': overall_prob,
|
| 616 |
'modified_probability': overall_prob,
|
| 617 |
+
'chunk_probabilities': chunk_probabilities,
|
| 618 |
+
'raw_chunks': [],
|
| 619 |
+
'sentence_analysis': [],
|
| 620 |
+
'merged_spans': [],
|
| 621 |
'chunk_analysis': chunk_predictions
|
| 622 |
}
|
| 623 |
|
|
|
|
| 629 |
# Mixed text detection logic
|
| 630 |
is_mixed = human_chunks > 0 and ai_chunks > 0
|
| 631 |
mixed_ratio = min(human_chunks, ai_chunks) / total_chunks
|
| 632 |
+
chunk_avg_prob = float(np.mean(chunk_probabilities)) if chunk_probabilities else overall_prob
|
| 633 |
+
chunk_label = 'AI' if chunk_avg_prob >= 0.5 else 'Human'
|
| 634 |
|
| 635 |
logger.info(f"\nChunk Analysis Summary:")
|
| 636 |
logger.info(f" Total chunks analyzed: {total_chunks}")
|
| 637 |
logger.info(f" Human chunks: {human_chunks}")
|
| 638 |
logger.info(f" AI chunks: {ai_chunks}")
|
| 639 |
logger.info(f" Mixed ratio: {mixed_ratio:.2f}")
|
| 640 |
+
logger.info(f" Average chunk probability: {chunk_avg_prob:.3f}")
|
| 641 |
+
logger.info(f" Chunk-derived label: {chunk_label}")
|
| 642 |
|
| 643 |
+
if is_mixed:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 644 |
final_prediction = 'Mixed'
|
| 645 |
+
modified_prob = chunk_avg_prob
|
| 646 |
+
confidence = 1.0 - mixed_ratio
|
| 647 |
+
logger.info(" → MIXED TEXT DETECTED (chunk-based)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 648 |
else:
|
| 649 |
+
final_prediction = chunk_label
|
| 650 |
+
modified_prob = chunk_avg_prob
|
| 651 |
+
confidence = abs(chunk_avg_prob - 0.5) * 2
|
| 652 |
+
logger.info(f" → Pure {chunk_label} text based on chunk probabilities")
|
| 653 |
+
|
| 654 |
+
# Build detailed raw_chunks with character offsets
|
| 655 |
+
raw_chunks: List[Dict[str, Any]] = []
|
| 656 |
+
for idx, ((prob, label), (sent_start, sent_end)) in enumerate(zip(chunk_predictions, chunk_sentence_ranges)):
|
| 657 |
+
# Map sentence indices to char offsets
|
| 658 |
+
start_char = sentence_offsets[sent_start][0] if sent_start < len(sentence_offsets) else 0
|
| 659 |
+
end_char = sentence_offsets[sent_end][1] if sent_end < len(sentence_offsets) else len(text)
|
| 660 |
+
chunk_text = text[start_char:end_char]
|
| 661 |
+
raw_chunks.append({
|
| 662 |
+
'chunk_index': idx,
|
| 663 |
+
'start_char': start_char,
|
| 664 |
+
'end_char': end_char,
|
| 665 |
+
'text': chunk_text,
|
| 666 |
+
'probability': float(prob),
|
| 667 |
+
'label': 'ai' if label == 1 else 'human',
|
| 668 |
+
'sentence_range': [sent_start, sent_end]
|
| 669 |
+
})
|
| 670 |
+
|
| 671 |
+
# Compute per-sentence aggregated probabilities and labels (weighted by chunk presence)
|
| 672 |
+
sentence_analysis: List[Dict[str, Any]] = []
|
| 673 |
+
for si in range(len(sentences)):
|
| 674 |
+
# Find chunks covering this sentence
|
| 675 |
+
covering_probs: List[float] = []
|
| 676 |
+
covering_labels: List[int] = []
|
| 677 |
+
for (prob, label), (cs, ce) in zip(chunk_predictions, chunk_sentence_ranges):
|
| 678 |
+
if cs <= si <= ce:
|
| 679 |
+
covering_probs.append(prob)
|
| 680 |
+
covering_labels.append(label)
|
| 681 |
+
if covering_probs:
|
| 682 |
+
avg_prob = float(np.mean(covering_probs))
|
| 683 |
+
# Use weighted/average probability as primary signal, but also
|
| 684 |
+
# consider chunk label majority with a safety threshold.
|
| 685 |
+
# Tighten AI labeling by requiring a higher probability threshold
|
| 686 |
+
# to reduce false positives from noisy chunks.
|
| 687 |
+
label_frac = float(np.mean(covering_labels)) if covering_labels else 0.0
|
| 688 |
+
AI_PROB_THRESHOLD = 0.55
|
| 689 |
+
# If average probability is confidently AI, mark as AI.
|
| 690 |
+
if avg_prob >= AI_PROB_THRESHOLD:
|
| 691 |
+
sentence_label = 'ai'
|
| 692 |
+
# Otherwise, if majority of covering chunks are labeled AI and
|
| 693 |
+
# probability is at least 0.5, mark as AI (minority case).
|
| 694 |
+
elif label_frac > 0.5 and avg_prob >= 0.5:
|
| 695 |
+
sentence_label = 'ai'
|
| 696 |
+
else:
|
| 697 |
+
sentence_label = 'human'
|
| 698 |
else:
|
| 699 |
+
# No covering chunks: use nearest-chunk fallback (prefer previous chunk,
|
| 700 |
+
# otherwise next chunk). This avoids falling back to the global overall_prob
|
| 701 |
+
# which can make trailing sentences inherit the global label.
|
| 702 |
+
nearest_prob = None
|
| 703 |
+
nearest_label = None
|
| 704 |
+
# find previous chunk index (the last chunk that ends before this sentence)
|
| 705 |
+
prev_idx = None
|
| 706 |
+
for idx, (cs, ce) in enumerate(chunk_sentence_ranges):
|
| 707 |
+
if ce < si:
|
| 708 |
+
prev_idx = idx
|
| 709 |
+
if prev_idx is not None:
|
| 710 |
+
nearest_prob, nearest_label = chunk_predictions[prev_idx]
|
| 711 |
+
else:
|
| 712 |
+
# find next chunk index (the first chunk that starts after this sentence)
|
| 713 |
+
next_idx = None
|
| 714 |
+
for idx, (cs, ce) in enumerate(chunk_sentence_ranges):
|
| 715 |
+
if cs > si:
|
| 716 |
+
next_idx = idx
|
| 717 |
+
break
|
| 718 |
+
if next_idx is not None:
|
| 719 |
+
nearest_prob, nearest_label = chunk_predictions[next_idx]
|
| 720 |
+
|
| 721 |
+
if nearest_prob is not None:
|
| 722 |
+
avg_prob = float(nearest_prob)
|
| 723 |
+
sentence_label = 'ai' if nearest_label == 1 else 'human'
|
| 724 |
+
else:
|
| 725 |
+
# Fallback to overall prediction if there are truly no chunks
|
| 726 |
+
avg_prob = overall_prob
|
| 727 |
+
sentence_label = 'ai' if overall_label == 1 else 'human'
|
| 728 |
+
|
| 729 |
+
start_c, end_c = sentence_offsets[si] if si < len(sentence_offsets) else (0, 0)
|
| 730 |
+
sentence_analysis.append({
|
| 731 |
+
'sentence_index': si,
|
| 732 |
+
'start_char': start_c,
|
| 733 |
+
'end_char': end_c,
|
| 734 |
+
'text': sentences[si],
|
| 735 |
+
'avg_probability': avg_prob,
|
| 736 |
+
'label': sentence_label
|
| 737 |
+
})
|
| 738 |
+
|
| 739 |
+
# Merge adjacent sentences with same label into non-overlapping spans for easy frontend rendering
|
| 740 |
+
merged_spans: List[Dict[str, Any]] = []
|
| 741 |
+
if sentence_analysis:
|
| 742 |
+
cur = sentence_analysis[0]
|
| 743 |
+
cur_start = cur['start_char']
|
| 744 |
+
cur_end = cur['end_char']
|
| 745 |
+
cur_label = cur['label']
|
| 746 |
+
cur_probs = [cur['avg_probability']]
|
| 747 |
+
|
| 748 |
+
for s in sentence_analysis[1:]:
|
| 749 |
+
if s['label'] == cur_label:
|
| 750 |
+
# extend current span
|
| 751 |
+
cur_end = s['end_char']
|
| 752 |
+
cur_probs.append(s['avg_probability'])
|
| 753 |
+
else:
|
| 754 |
+
merged_spans.append({
|
| 755 |
+
'start_char': cur_start,
|
| 756 |
+
'end_char': cur_end,
|
| 757 |
+
'label': cur_label,
|
| 758 |
+
'avg_probability': float(np.mean(cur_probs))
|
| 759 |
+
})
|
| 760 |
+
# start a new span
|
| 761 |
+
cur_start = s['start_char']
|
| 762 |
+
cur_end = s['end_char']
|
| 763 |
+
cur_label = s['label']
|
| 764 |
+
cur_probs = [s['avg_probability']]
|
| 765 |
+
|
| 766 |
+
# append final span
|
| 767 |
+
merged_spans.append({
|
| 768 |
+
'start_char': cur_start,
|
| 769 |
+
'end_char': cur_end,
|
| 770 |
+
'label': cur_label,
|
| 771 |
+
'avg_probability': float(np.mean(cur_probs))
|
| 772 |
+
})
|
| 773 |
+
|
| 774 |
return {
|
| 775 |
'prediction': final_prediction,
|
| 776 |
'confidence': confidence,
|
|
|
|
| 783 |
'modified_probability': modified_prob,
|
| 784 |
'chunk_probabilities': chunk_probabilities,
|
| 785 |
'chunk_analysis': chunk_predictions,
|
| 786 |
+
'raw_chunks': raw_chunks,
|
| 787 |
+
'sentence_analysis': sentence_analysis,
|
| 788 |
+
'merged_spans': merged_spans,
|
| 789 |
'chunk_size': chunk_size,
|
| 790 |
'overlap': overlap
|
| 791 |
}
|
| 792 |
+
|
| 793 |
+
|
| 794 |
|
| 795 |
def detect_ai(self, text: str) -> Dict[str, Any]:
|
| 796 |
"""
|
|
|
|
| 838 |
|
| 839 |
elif prediction == "AI":
|
| 840 |
explanation = f"This text is classified as AI-Generated with {certainty}."
|
| 841 |
+
explanation += " The text is typically associated with AI-generated writing based on patterns, including uniform structure or predictable phrasing."
|
| 842 |
if pol_var <= 0.10:
|
| 843 |
+
explanation += " Very low emotional variation which is common in more structured or machine-generated texts."
|
| 844 |
elif pol_var <= 0.35:
|
| 845 |
+
explanation += " Low emotional variation which may align with AI patterns but can also occur in formal human writing."
|
| 846 |
elif pol_var <= 0.60:
|
| 847 |
+
explanation += " Moderate emotional variation which is less typical for AI but still possible depending on the prompt or model."
|
| 848 |
else:
|
| 849 |
+
explanation += " High emotional variation which is uncommon in AI outputs but may occur in certain complex or narrative prompts."
|
| 850 |
else: # Human
|
| 851 |
explanation = f"This text is classified as Human-Authored with {certainty}."
|
| 852 |
+
explanation += " The text shows patterns frequently observed in human writing, such as natural variations and flexible sentence structures."
|
| 853 |
if pol_var > 0.60:
|
| 854 |
+
explanation += " High emotional variation which often reflects expressive or opinionated writing."
|
| 855 |
elif pol_var >= 0.36:
|
| 856 |
+
explanation += " Moderate emotional variation which shows natural shifts in tone."
|
| 857 |
elif pol_var >= 0.11:
|
| 858 |
+
explanation += " Low emotional variation which may indicate formal or academic writing."
|
| 859 |
else:
|
| 860 |
explanation += " Very low emotional variation indicates consistent tone with focused perspective."
|
| 861 |
|
|
|
|
| 873 |
"avg_polarity": avg_pol,
|
| 874 |
"polarity_variance": pol_var
|
| 875 |
},
|
| 876 |
+
|
| 877 |
"mixed_analysis": {
|
| 878 |
"is_mixed": chunk_result["is_mixed"],
|
| 879 |
"mixed_ratio": chunk_result.get("mixed_ratio", 0),
|
|
|
|
| 882 |
"total_chunks": chunk_result.get("total_chunks", 0),
|
| 883 |
"overall_probability": chunk_result["overall_probability"],
|
| 884 |
"modified_probability": chunk_result["modified_probability"]
|
| 885 |
+
},
|
| 886 |
+
"raw_chunks": chunk_result.get("raw_chunks", []),
|
| 887 |
+
"sentence_analysis": chunk_result.get("sentence_analysis", []),
|
| 888 |
+
"merged_spans": chunk_result.get("merged_spans", []),
|
| 889 |
+
"modelProcessingTime": time.perf_counter()
|
| 890 |
}
|
| 891 |
+
|
| 892 |
|
| 893 |
def analyze_text(self, text: str) -> Dict[str, Any]:
|
| 894 |
+
start_time = time.perf_counter()
|
| 895 |
"""
|
| 896 |
Comprehensive text analysis combining AI detection with sentiment features
|
| 897 |
|
|
|
|
| 901 |
Returns:
|
| 902 |
Complete analysis results with model-based sentiment features
|
| 903 |
"""
|
| 904 |
+
# Validate input text length (80-2000 words)
|
| 905 |
total_words = len(text.split())
|
| 906 |
if total_words < 80:
|
| 907 |
raise ValueError(f"Text too short for analysis ({total_words} words, minimum 80 words required)")
|
| 908 |
+
elif total_words > 2000:
|
| 909 |
+
raise ValueError(f"Text too long for analysis ({total_words} words, maximum 2000 words allowed)")
|
| 910 |
|
| 911 |
# Get AI detection results (includes sentiment features from model)
|
| 912 |
ai_detection = self.detect_ai(text)
|
| 913 |
+
mixed_analysis = ai_detection.get("mixed_analysis") or {}
|
| 914 |
+
modified_prob = mixed_analysis.get("modified_probability")
|
| 915 |
+
overall_prob = mixed_analysis.get("overall_probability")
|
| 916 |
+
|
| 917 |
+
primary_probability = None
|
| 918 |
+
for candidate in (modified_prob, overall_prob, ai_detection.get("probability")):
|
| 919 |
+
if isinstance(candidate, (int, float)):
|
| 920 |
+
primary_probability = float(candidate)
|
| 921 |
+
break
|
| 922 |
+
|
| 923 |
+
if primary_probability is None:
|
| 924 |
+
primary_probability = 0.0
|
| 925 |
+
|
| 926 |
+
ai_prob = max(0.0, min(1.0, primary_probability))
|
| 927 |
+
human_prob = 1.0 - ai_prob
|
| 928 |
+
probability_breakdown = {
|
| 929 |
+
"ai": ai_prob,
|
| 930 |
+
"human": human_prob
|
| 931 |
+
}
|
| 932 |
model_sentiment = ai_detection.get("sentiment_features", {})
|
| 933 |
|
| 934 |
# Perform basic text analysis
|
|
|
|
| 944 |
# Determine complexity based on AI probability and text metrics
|
| 945 |
is_ai = ai_detection["classification"] == "ai"
|
| 946 |
is_mixed = ai_detection["classification"] == "mixed"
|
|
|
|
| 947 |
|
| 948 |
# Handle different prediction types
|
| 949 |
if is_mixed:
|
|
|
|
| 966 |
insights = []
|
| 967 |
|
| 968 |
if is_mixed and ai_detection["confidence"] > 60:
|
|
|
|
| 969 |
insights.append({
|
| 970 |
"type": "observation",
|
| 971 |
"title": "Mixed Content Detected",
|
|
|
|
| 982 |
insights.append({
|
| 983 |
"type": "observation",
|
| 984 |
"title": "AI-Generated Content Detected",
|
| 985 |
+
"description": f"This text shows strong indicators associated with AI-generated writing ({ai_detection['confidence']:.1f}% confidence).",
|
| 986 |
+
"suggestion": "Consider adding personal insights, varied sentence structures, or unique perspectives to achieve a more unique voice."
|
| 987 |
})
|
| 988 |
elif not is_ai and ai_detection["confidence"] > 75:
|
| 989 |
insights.append({
|
| 990 |
"type": "strength",
|
| 991 |
"title": "Human Writing Characteristics",
|
| 992 |
+
"description": f"The text shows several features commonly found in human-authored writing ({ai_detection['confidence']:.1f}% confidence)."
|
| 993 |
})
|
| 994 |
|
| 995 |
# Sentence variety analysis
|
|
|
|
| 1000 |
insights.append({
|
| 1001 |
"type": "improvement",
|
| 1002 |
"title": "Sentence Variety",
|
| 1003 |
+
"description": "Sentences have similar lengths, which this pattern may indicate AI generation.",
|
| 1004 |
+
"suggestion": "Consider varying sentence length to create a more natural flow."
|
| 1005 |
})
|
| 1006 |
else:
|
| 1007 |
insights.append({
|
|
|
|
| 1026 |
# Construct full analysis response with model sentiment features
|
| 1027 |
polarity_variance = model_sentiment.get("polarity_variance", 0)
|
| 1028 |
|
| 1029 |
+
end_time = time.perf_counter()
|
| 1030 |
+
processing_seconds = round(end_time - start_time, 3) # exact seconds (millisecond precision)
|
| 1031 |
+
|
| 1032 |
+
logger.info(f"Model processing time for analyze_text: {processing_seconds:.3f}s")
|
| 1033 |
+
|
| 1034 |
return {
|
| 1035 |
"advancedSentiment": {
|
| 1036 |
"emotions": emotions,
|
|
|
|
| 1069 |
},
|
| 1070 |
"aiOrHuman": ai_detection["classification"],
|
| 1071 |
"aiOrHumanConfidence": ai_detection["confidence"],
|
| 1072 |
+
"aiOrHumanExplanation": ai_detection["explanation"],
|
| 1073 |
+
"mixedAnalysis": mixed_analysis,
|
| 1074 |
+
"probabilityBreakdown": probability_breakdown,
|
| 1075 |
+
"rawChunks": ai_detection.get("raw_chunks", []),
|
| 1076 |
+
"sentenceAnalysis": ai_detection.get("sentence_analysis", []),
|
| 1077 |
+
"mergedSpans": ai_detection.get("merged_spans", []),
|
| 1078 |
+
"modelProcessingTime": processing_seconds
|
| 1079 |
}
|
| 1080 |
|
| 1081 |
def get_model_info(self) -> Dict[str, Any]:
|
|
|
|
| 1096 |
],
|
| 1097 |
"description": "Two-branch model for detecting AI-Generated vs Human-Authored text using DeBERTa semantic embeddings combined with sentiment features"
|
| 1098 |
}
|
| 1099 |
+
|
| 1100 |
+
#
|