""" OCR Application with Multiple Models including DeepSeek OCR Fixed version with @spaces.GPU decorator for Hugging Face Spaces """ import os import time import torch import spaces from threading import Thread from PIL import Image from transformers import ( AutoProcessor, AutoModelForCausalLM, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer ) from qwen_vl_utils import process_vision_info # Try importing Qwen3VL if available try: from transformers import Qwen3VLForConditionalGeneration except ImportError: Qwen3VLForConditionalGeneration = None MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 2048 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"Initial Device: {device}") print(f"CUDA Available: {torch.cuda.is_available()}") # Load Chandra-OCR try: MODEL_ID_V = "datalab-to/chandra" processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True) if Qwen3VLForConditionalGeneration: model_v = Qwen3VLForConditionalGeneration.from_pretrained( MODEL_ID_V, trust_remote_code=True, torch_dtype=torch.float16 ).eval() print("✓ Chandra-OCR loaded") else: model_v = None print("✗ Chandra-OCR: Qwen3VL not available") except Exception as e: model_v = None processor_v = None print(f"✗ Chandra-OCR: Failed to load - {str(e)}") # Load Nanonets-OCR2-3B try: MODEL_ID_X = "nanonets/Nanonets-OCR2-3B" processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.float16 ).eval() print("✓ Nanonets-OCR2-3B loaded") except Exception as e: model_x = None processor_x = None print(f"✗ Nanonets-OCR2-3B: Failed to load - {str(e)}") # Load Dots.OCR - will be moved to GPU when needed try: MODEL_PATH_D = "strangervisionhf/dots.ocr-base-fix" processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True) model_d = AutoModelForCausalLM.from_pretrained( MODEL_PATH_D, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, trust_remote_code=True ).eval() print("✓ Dots.OCR loaded") except Exception as e: model_d = None processor_d = None print(f"✗ Dots.OCR: Failed to load - {str(e)}") # Load olmOCR-2-7B-1025 try: MODEL_ID_M = "allenai/olmOCR-2-7B-1025" processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16 ).eval() print("✓ olmOCR-2-7B-1025 loaded") except Exception as e: model_m = None processor_m = None print(f"✗ olmOCR-2-7B-1025: Failed to load - {str(e)}") # Load DeepSeek-OCR try: MODEL_ID_DS = "deepseek-ai/deepseek-ocr" processor_ds = AutoProcessor.from_pretrained(MODEL_ID_DS, trust_remote_code=True) model_ds = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_DS, trust_remote_code=True, torch_dtype=torch.float16 ).eval() print("✓ DeepSeek-OCR loaded") except Exception as e: model_ds = None processor_ds = None print(f"✗ DeepSeek-OCR: Failed to load - {str(e)}") @spaces.GPU def generate_image(model_name: str, text: str, image: Image.Image, max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float): """ Generates responses using the selected model for image input. Yields raw text and Markdown-formatted text. This function is decorated with @spaces.GPU to ensure it runs on GPU when available in Hugging Face Spaces. Args: model_name: Name of the OCR model to use text: Prompt text for the model image: PIL Image object to process max_new_tokens: Maximum number of tokens to generate temperature: Sampling temperature top_p: Nucleus sampling parameter top_k: Top-k sampling parameter repetition_penalty: Penalty for repeating tokens Yields: tuple: (raw_text, markdown_text) """ # Device will be cuda when @spaces.GPU decorator activates device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Select model and processor based on model_name if model_name == "olmOCR-2-7B-1025": if model_m is None: yield "olmOCR-2-7B-1025 is not available.", "olmOCR-2-7B-1025 is not available." return processor = processor_m model = model_m.to(device) elif model_name == "Nanonets-OCR2-3B": if model_x is None: yield "Nanonets-OCR2-3B is not available.", "Nanonets-OCR2-3B is not available." return processor = processor_x model = model_x.to(device) elif model_name == "Chandra-OCR": if model_v is None: yield "Chandra-OCR is not available.", "Chandra-OCR is not available." return processor = processor_v model = model_v.to(device) elif model_name == "Dots.OCR": if model_d is None: yield "Dots.OCR is not available.", "Dots.OCR is not available." return processor = processor_d model = model_d.to(device) elif model_name == "DeepSeek-OCR": if model_ds is None: yield "DeepSeek-OCR is not available.", "DeepSeek-OCR is not available." return processor = processor_ds model = model_ds.to(device) else: yield "Invalid model selected.", "Invalid model selected." return if image is None: yield "Please upload an image.", "Please upload an image." return try: # Prepare messages in chat format messages = [{ "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": text}, ] }] # Apply chat template prompt_full = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Process inputs inputs = processor( text=[prompt_full], images=[image], return_tensors="pt", padding=True ).to(device) # Setup streaming generation streamer = TextIteratorStreamer( processor, skip_prompt=True, skip_special_tokens=True ) generation_kwargs = { **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, } # Start generation in separate thread thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # Stream the results buffer = "" for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer, buffer # Ensure thread completes thread.join() except Exception as e: error_msg = f"Error during generation: {str(e)}" yield error_msg, error_msg # Example usage for Gradio interface if __name__ == "__main__": import gradio as gr # Determine available models available_models = [] if model_m is not None: available_models.append("olmOCR-2-7B-1025") if model_x is not None: available_models.append("Nanonets-OCR2-3B") if model_v is not None: available_models.append("Chandra-OCR") if model_d is not None: available_models.append("Dots.OCR") if model_ds is not None: available_models.append("DeepSeek-OCR") if not available_models: print("ERROR: No models were loaded successfully!") exit(1) print(f"\n✓ Available models: {', '.join(available_models)}") with gr.Blocks(title="Multi-Model OCR") as demo: gr.Markdown("# 🔍 Multi-Model OCR Application") gr.Markdown("Upload an image and select a model to extract text. Models run on GPU via Hugging Face Spaces.") with gr.Row(): with gr.Column(): model_selector = gr.Dropdown( choices=available_models, value=available_models[0] if available_models else None, label="Select OCR Model" ) image_input = gr.Image(type="pil", label="Upload Image") text_input = gr.Textbox( value="Extract all text from this image.", label="Prompt", lines=2 ) with gr.Accordion("Advanced Settings", open=False): max_tokens = gr.Slider( minimum=1, maximum=MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS, step=1, label="Max New Tokens" ) temperature = gr.Slider( minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature" ) top_p = gr.Slider( minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="Top P" ) top_k = gr.Slider( minimum=1, maximum=100, value=50, step=1, label="Top K" ) repetition_penalty = gr.Slider( minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty" ) submit_btn = gr.Button("Extract Text", variant="primary") with gr.Column(): output_text = gr.Textbox(label="Extracted Text", lines=20) output_markdown = gr.Markdown(label="Formatted Output") gr.Markdown(""" ### Available Models: - **olmOCR-2-7B-1025**: Allen AI's OCR model - **Nanonets-OCR2-3B**: Nanonets OCR model - **Chandra-OCR**: Datalab OCR model - **Dots.OCR**: Stranger Vision OCR model - **DeepSeek-OCR**: DeepSeek AI's OCR model """) submit_btn.click( fn=generate_image, inputs=[ model_selector, text_input, image_input, max_tokens, temperature, top_p, top_k, repetition_penalty ], outputs=[output_text, output_markdown] ) demo.launch()