import gradio as gr # UI 框架 :contentReference[oaicite:10]{index=10} import pandas as pd # 表格处理 :contentReference[oaicite:11]{index=11} import numpy as np import plotly.graph_objects as go # 用于瀑布图和折线图 :contentReference[oaicite:12]{index=12} def calculate_schedule( principal: float, deposit: float, annual_rate: float, compounding: str, deposit_freq: str, inflation_rate: float, inflation_freq: str, display_freq: str, years: int, stop_deposit_year: int ): """ - compounding: 复利频率 (Annual/Monthly/Daily) - deposit_freq: 定投频率 (Annual/Monthly/Daily) - inflation_rate & inflation_freq: 定投膨胀率与频率 - stop_deposit_year: 第几年后停止定投 - display_freq: 结果展示频率 (Yearly/Monthly/Daily) """ # 频率映射 freq_map = {"Annual": 1, "Monthly": 12, "Daily": 365} m_comp = freq_map[compounding] m_dep = freq_map[deposit_freq] m_inf = freq_map[inflation_freq] total_days = years * 365 comp_interval = 365 // m_comp dep_interval = 365 // m_dep stop_day = stop_deposit_year * 365 balance = principal total_invested = principal deposit_count = 0 schedule = [] for day in range(1, total_days + 1): # 复利增长:每日或周期性触发 :contentReference[oaicite:13]{index=13} if compounding == "Daily": balance *= 1 + (annual_rate / 100) / 365 elif day % comp_interval == 0: balance *= 1 + (annual_rate / 100) / m_comp # 定投执行:仅在 stop_day 之前且周期点加入膨胀后金额 :contentReference[oaicite:14]{index=14} if day <= stop_day and day % dep_interval == 0: deposit_count += 1 amount = deposit * (1 + (inflation_rate/100)/m_inf) ** (deposit_count - 1) balance += amount total_invested += amount # 根据展示粒度记录 record = False if display_freq == "Daily": record = True period = day elif display_freq == "Monthly" and day % (365 // 12) == 0: record = True period = day // (365 // 12) elif display_freq == "Yearly" and day % 365 == 0: record = True period = day // 365 if record: fv = balance schedule.append({ display_freq: period, "Future Value (RMB)": fv, "Total Invested (RMB)": total_invested, "Interest Earned (RMB)": fv - total_invested, }) # 构造 DataFrame 并保留两位小数 :contentReference[oaicite:15]{index=15} df = pd.DataFrame(schedule).round(2) df["Interest Increment (RMB)"] = df["Interest Earned (RMB)"] \ .diff().fillna(0).round(2) # 折线图:Future Value :contentReference[oaicite:16]{index=16} fig_line = go.Figure(go.Scatter( x=df[display_freq], y=df["Future Value (RMB)"], mode='lines+markers', name='Future Value' )) fig_line.update_layout( title=f"Compound Growth over Time ({display_freq})", xaxis_title=display_freq, yaxis_title="Future Value (RMB)", template="plotly_white" # 专业配色 :contentReference[oaicite:17]{index=17} ) # 瀑布图:Interest Increment :contentReference[oaicite:18]{index=18} fig_waterfall = go.Figure(go.Waterfall( x=df[display_freq], y=df["Interest Increment (RMB)"], measure=["relative"] * len(df), name="Interest Increment" )) fig_waterfall.update_layout( title=f"Interest Increment per {display_freq}", xaxis_title=display_freq, yaxis_title="Interest Increment (RMB)", template="plotly_white" ) return df, fig_line, fig_waterfall with gr.Blocks() as demo: gr.Markdown("## 复利计算器\n填写参数后点击“计算”查看结果") with gr.Row(): principal = gr.Number(label="初始本金 (RMB)", value=20000) deposit = gr.Number(label="每次定投 (RMB)", value=5000) annual_rate = gr.Number(label="年化收益率 (%)", value=10.22) with gr.Row(): compounding = gr.Radio(choices=["Annual","Monthly","Daily"], label="复利频率", value="Monthly") deposit_freq = gr.Radio(choices=["Annual","Monthly","Daily"], label="定投频率", value="Monthly") inflation_rate = gr.Number(label="定投膨胀率 (%)", value=0.0) inflation_freq = gr.Radio(choices=["Annual","Monthly","Daily"], label="膨胀频率", value="Annual") with gr.Row(): display_freq = gr.Radio(choices=["Yearly","Monthly","Daily"], label="结果展示频率", value="Yearly") years = gr.Slider(1, 50, value=41, label="计算年限 (年)") stop_deposit_year = gr.Slider(0, 50, value=41, label="何年后停止定投 (年)") compute_btn = gr.Button("计算", variant="primary") # 按钮触发 :contentReference[oaicite:19]{index=19} result_table = gr.Dataframe(interactive=False) result_plot = gr.Plot() interest_plot = gr.Plot() compute_btn.click( fn=calculate_schedule, inputs=[ principal, deposit, annual_rate, compounding, deposit_freq, inflation_rate, inflation_freq, display_freq, years, stop_deposit_year ], outputs=[result_table, result_plot, interest_plot] ) demo.launch()