Spaces:
Running
Running
| import gradio as gr | |
| from transformers import pipeline | |
| # Load the new summarization model | |
| summarizer = pipeline("summarization", model="falconsai/text_summarization") | |
| def summarize_text(text): | |
| max_len = min(0.3 * len(text.split()), 200) # 30% of input length or 200 max | |
| min_len = min(0.1 * len(text.split()), 50) # 10% of input length or 50 min | |
| summary = summarizer(text, max_length=int(max_len), min_length=int(min_len), do_sample=False) | |
| return summary[0]['summary_text'] | |
| # Create Gradio Interface | |
| iface = gr.Interface( | |
| fn=summarize_text, | |
| inputs=gr.Textbox(lines=5, placeholder="Enter text to summarize"), | |
| outputs="text", | |
| title="AI Summarizer", | |
| description="Enter a long paragraph, and the AI will summarize it for you.", | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| iface.launch() | |