Spaces:
Paused
Paused
File size: 9,213 Bytes
adc21bf 8f3f345 c0f475e 8f3f345 c0f475e fffb44f 8f3f345 c0f475e dc57498 c0f475e 5dc6179 c0f475e 8f3f345 2c2e958 8f3f345 fa10854 8f3f345 dc57498 8f3f345 dc57498 8f3f345 dc57498 8f3f345 dc57498 8f3f345 dc57498 a7f1cad 2c2e958 fa10854 a7f1cad 8f3f345 a7f1cad c0f475e a7f1cad fa10854 5a46abc fa10854 2c2e958 a7f1cad c0f475e fa10854 5a46abc 2c2e958 fa10854 5a46abc fa10854 5a46abc fa10854 5a46abc fa10854 5a46abc c0f475e fa10854 c0f475e d45d065 c0f475e 2c2e958 fa10854 d45d065 c0f475e fa10854 c0f475e 2c2e958 c0f475e fa10854 c0f475e fa10854 c0f475e 2c2e958 c0f475e 2c2e958 c0f475e 5a46abc c0f475e fa10854 c0f475e 2c2e958 c0f475e fa10854 d45d065 2c2e958 c0f475e 8f3f345 2c2e958 c0f475e adc21bf d45d065 c0f475e fa10854 2c2e958 fa10854 c0f475e a7f1cad 2c2e958 a7f1cad 2c2e958 8f3f345 c0f475e a7f1cad c0f475e a7f1cad c0f475e 2c2e958 a7f1cad c0f475e 2c2e958 c0f475e 2c2e958 a7f1cad 2c2e958 a7f1cad 2c2e958 a7f1cad 2c2e958 a7f1cad fa10854 a7f1cad fa10854 a7f1cad fa10854 a7f1cad fa10854 2c2e958 a7f1cad c0f475e a7f1cad c0f475e 2c2e958 a7f1cad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import spaces
import os
import sys
import uuid
import shutil
import gradio as gr
import torch
from omegaconf import OmegaConf
from torchvision.io import write_video
from einops import rearrange
from huggingface_hub import snapshot_download
from pipeline import (
CausalDiffusionInferencePipeline,
CausalInferencePipeline,
)
from utils.dataset import TextDataset
from utils.misc import set_seed
from demo_utils.memory import get_cuda_free_memory_gb, DynamicSwapInstaller
# -------------------------------------------------------------------
# Download checkpoints once when the Space starts
# -------------------------------------------------------------------
snapshot_download(
repo_id="Wan-AI/Wan2.1-T2V-1.3B",
local_dir="./checkpoints/Wan2.1-T2V-1.3B",
)
snapshot_download(
repo_id="KlingTeam/VideoReward",
local_dir="./checkpoints/Videoreward",
)
snapshot_download(
repo_id="gdhe17/Self-Forcing",
local_dir="./checkpoints/ode_init.pt",
)
snapshot_download(
repo_id="JaydenLu666/Reward-Forcing-T2V-1.3B",
local_dir="./checkpoints/Reward-Forcing-T2V-1.3B",
)
# === Paths ===
CONFIG_PATH = "configs/reward_forcing.yaml"
CHECKPOINT_PATH = "checkpoints/Reward-Forcing-T2V-1.3B/rewardforcing.pt"
PROMPT_DIR = "prompts/gradio_inputs"
OUTPUT_ROOT = "videos"
os.makedirs(PROMPT_DIR, exist_ok=True)
os.makedirs(OUTPUT_ROOT, exist_ok=True)
def reward_forcing_inference(
prompt_txt_path: str,
num_output_frames: int,
use_ema: bool,
output_root: str,
progress: gr.Progress,
):
"""
Inline / simplified version of inference.py:
- single GPU
- text-to-video only
- one .txt file = N prompts, but returns only the first generated video
"""
logs = ""
# --------------------- Device & randomness ---------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
set_seed(0)
free_vram = get_cuda_free_memory_gb(device)
logs += f"Free VRAM {free_vram} GB\n"
low_memory = free_vram < 40
torch.set_grad_enabled(False)
# --------------------- Phase 1: model & config init ---------------------
progress(0.05, desc="Init: loading config")
logs += "Loading config...\n"
config = OmegaConf.load(CONFIG_PATH)
default_config = OmegaConf.load("configs/default_config.yaml")
config = OmegaConf.merge(default_config, config)
progress(0.15, desc="Init: creating pipeline")
logs += "Creating pipeline...\n"
if hasattr(config, "denoising_step_list"):
pipeline = CausalInferencePipeline(config, device=device)
else:
pipeline = CausalDiffusionInferencePipeline(config, device=device)
progress(0.35, desc="Init: loading checkpoint")
logs += "Loading checkpoint weights...\n"
state_dict = torch.load(CHECKPOINT_PATH, map_location="cpu")
pipeline.generator.load_state_dict(state_dict)
checkpoint_step = os.path.basename(os.path.dirname(CHECKPOINT_PATH))
checkpoint_step = checkpoint_step.split("_")[-1]
progress(0.55, desc="Init: moving model to device")
logs += "Moving model to device...\n"
pipeline = pipeline.to(dtype=torch.bfloat16)
if low_memory:
DynamicSwapInstaller.install_model(pipeline.text_encoder, device=device)
else:
pipeline.text_encoder.to(device=device)
pipeline.generator.to(device=device)
pipeline.vae.to(device=device)
# --------------------- Dataset setup ---------------------
progress(0.65, desc="Preparing dataset")
logs += "Preparing dataset (TextDataset)...\n"
dataset = TextDataset(prompt_path=prompt_txt_path, extended_prompt_path=None)
num_prompts = len(dataset)
logs += f"Number of prompts: {num_prompts}\n"
from torch.utils.data import DataLoader, SequentialSampler
sampler = SequentialSampler(dataset)
dataloader = DataLoader(
dataset, batch_size=1, sampler=sampler, num_workers=0, drop_last=False
)
# --------------------- Clean output folder ---------------------
progress(0.7, desc="Cleaning output folder")
output_folder = os.path.join(
output_root, f"rewardforcing-{num_output_frames}f", checkpoint_step
)
shutil.rmtree(output_folder, ignore_errors=True)
os.makedirs(output_folder, exist_ok=True)
logs += f"Output directory: {output_folder}\n"
# --------------------- Phase 2: inference loop ---------------------
for i, batch_data in progress.tqdm(
enumerate(dataloader),
total=num_prompts,
desc="Video generation",
unit="prompt",
):
idx = batch_data["idx"].item()
# Unpack dataset batch
if isinstance(batch_data, dict):
batch = batch_data
elif isinstance(batch_data, list):
batch = batch_data[0]
else:
batch = batch_data
all_video = []
# TEXT-TO-VIDEO only
prompt = batch["prompts"][0]
extended_prompt = batch.get("extended_prompts", [None])[0]
prompts = [extended_prompt] if extended_prompt else [prompt]
initial_latent = None
sampled_noise = torch.randn(
[1, num_output_frames, 16, 60, 104],
device=device,
dtype=torch.bfloat16,
)
logs += f"Generating for prompt: {prompt[:80]}...\n"
# WAN2 inference
video, latents = pipeline.inference(
noise=sampled_noise,
text_prompts=prompts,
return_latents=True,
initial_latent=initial_latent,
low_memory=low_memory,
)
current_video = rearrange(video, "b t c h w -> b t h w c").cpu()
all_video.append(current_video)
video = 255.0 * torch.cat(all_video, dim=1)
pipeline.vae.model.clear_cache()
if idx < num_prompts:
model = "regular" if not use_ema else "ema"
safe_name = prompt[:50].replace("/", "_").replace("\\", "_")
output_path = os.path.join(output_folder, f"{safe_name}.mp4")
write_video(output_path, video[0], fps=16)
logs += f"Saved video: {output_path}\n"
progress(1.0, desc="Done")
return output_path, logs
logs += "[WARN] No video generated.\n"
return None, logs
@spaces.GPU(duration=200)
def gradio_generate(
prompt: str, duration: str, use_ema: bool, progress=gr.Progress(track_tqdm=True)
):
"""
Triggered by Gradio:
- writes prompt to a .txt file
- performs inference
- returns video + logs
"""
if not prompt or not prompt.strip():
raise gr.Error("Please enter a text prompt π")
# Duration β number of frames
num_output_frames = 21 if duration == "5s (21 frames)" else 120
os.makedirs(PROMPT_DIR, exist_ok=True)
prompt_id = uuid.uuid4().hex[:8]
prompt_path = os.path.join(PROMPT_DIR, f"prompt_{prompt_id}.txt")
with open(prompt_path, "w", encoding="utf-8") as f:
f.write(prompt.strip() + "\n")
video_path, logs = reward_forcing_inference(
prompt_txt_path=prompt_path,
num_output_frames=num_output_frames,
use_ema=use_ema,
output_root=OUTPUT_ROOT,
progress=progress,
)
if video_path is None or not os.path.exists(video_path):
raise gr.Error("No video generated. Check logs for details.")
return video_path, logs
# -------------------------------------------------------------------
# Gradio UI β updated title + intro text
# -------------------------------------------------------------------
with gr.Blocks(title="Reward Forcing β Text-to-Video Demo") as demo:
gr.Markdown(
"""
# π¬ Reward Forcing β Text-to-Video Demo
Generate short videos from text prompts using a model trained with the **Reward Forcing** method.
Reward Forcing is a recent research technique that improves how well a video model follows a written description
by guiding training with learned reward signals. You can learn more here:
https://reward-forcing.github.io
π Type a prompt, click **Generate**, and the video will appear below.
Longer and more detailed prompts usually produce better results.
> β³ The first run may take a little longer while the model loads β generation is faster afterwards.
"""
)
with gr.Row():
prompt_in = gr.Textbox(
label="Prompt",
placeholder="A cinematic shot of late-summer wheat fields moving in the wind...",
lines=4,
)
with gr.Row():
duration = gr.Radio(
["5s (21 frames)", "30s (120 frames)"],
value="5s (21 frames)",
label="Duration",
)
use_ema = gr.Checkbox(value=True, label="Use EMA weights (--use_ema)")
generate_btn = gr.Button("π Generate Video", variant="primary")
with gr.Row():
video_out = gr.Video(label="Generated Video")
logs_out = gr.Textbox(label="Logs", lines=12, interactive=False)
generate_btn.click(
fn=gradio_generate,
inputs=[prompt_in, duration, use_ema],
outputs=[video_out, logs_out],
)
demo.queue()
if __name__ == "__main__":
demo.launch() |