File size: 21,657 Bytes
dbcfd39
9bc16e9
dbcfd39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1346d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbcfd39
b8eaabe
 
 
dbcfd39
 
 
66240a5
dbcfd39
66240a5
 
dbcfd39
b8eaabe
ec1346d
 
dbcfd39
ec1346d
dbcfd39
66240a5
 
b8eaabe
66240a5
 
 
 
 
 
 
ec1346d
 
66240a5
ec1346d
66240a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbcfd39
 
 
 
 
66240a5
 
dbcfd39
 
 
 
 
 
 
 
 
 
 
 
b8eaabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4364204
 
 
b8eaabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4364204
 
 
 
b8eaabe
 
 
 
 
 
 
 
dbcfd39
b8eaabe
ec1346d
b8eaabe
 
 
 
 
 
ec1346d
 
 
 
 
 
 
 
dbcfd39
b8eaabe
 
 
 
 
 
 
4364204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8eaabe
 
 
 
 
 
 
 
4364204
 
b8eaabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4364204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8eaabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbcfd39
b8eaabe
ec1346d
 
b8eaabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbcfd39
 
 
66240a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import os
import re
import requests
import logging
from typing import Tuple, List, Dict


logger = logging.getLogger(__name__)


class SafetyGuard:
    """
    Wrapper around NVIDIA Llama Guard (meta/llama-guard-4-12b) hosted at
    https://integrate.api.nvidia.com/v1/chat/completions

    Exposes helpers to validate:
      - user input safety
      - model output safety (in context of the user question)
    """

    def __init__(self):
        self.api_key = os.getenv("NVIDIA_URI")
        if not self.api_key:
            raise ValueError("NVIDIA_URI environment variable not set for SafetyGuard")
        self.base_url = "https://integrate.api.nvidia.com/v1/chat/completions"
        self.model = "meta/llama-guard-4-12b"
        self.timeout_s = 30

    @staticmethod
    def _chunk_text(text: str, chunk_size: int = 2800, overlap: int = 200) -> List[str]:
        """Chunk long text to keep request payloads small enough for the guard.
        Uses character-based approximation with small overlap.
        """
        if not text:
            return [""]
        n = len(text)
        if n <= chunk_size:
            return [text]
        chunks: List[str] = []
        start = 0
        while start < n:
            end = min(start + chunk_size, n)
            chunks.append(text[start:end])
            if end == n:
                break
            start = max(0, end - overlap)
        return chunks

    def _call_guard(self, messages: List[Dict], max_tokens: int = 512) -> str:
        # Enhance messages with medical context if detected
        enhanced_messages = self._enhance_messages_with_context(messages)
        
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json",
            "Accept": "application/json",
        }
        # Try OpenAI-compatible schema first
        payload_chat = {
            "model": self.model,
            "messages": enhanced_messages,
            "temperature": 0.2,
            "top_p": 0.7,
            "max_tokens": max_tokens,
            "stream": False,
        }
        # Alternative schema (some NVIDIA deployments require message content objects)
        alt_messages = []
        for m in enhanced_messages:
            content = m.get("content", "")
            if isinstance(content, str):
                content = [{"type": "text", "text": content}]
            alt_messages.append({"role": m.get("role", "user"), "content": content})
        payload_alt = {
            "model": self.model,
            "messages": alt_messages,
            "temperature": 0.2,
            "top_p": 0.7,
            "max_tokens": max_tokens,
            "stream": False,
        }
        # Attempt primary, then fallback
        for payload in (payload_chat, payload_alt):
            try:
                resp = requests.post(self.base_url, headers=headers, json=payload, timeout=self.timeout_s)
                if resp.status_code >= 400:
                    # Log server message for debugging payload issues
                    try:
                        logger.error(f"[SafetyGuard] HTTP {resp.status_code}: {resp.text[:400]}")
                    except Exception:
                        pass
                    resp.raise_for_status()
                data = resp.json()
                content = (
                    data.get("choices", [{}])[0]
                        .get("message", {})
                        .get("content", "")
                        .strip()
                )
                if content:
                    return content
            except Exception as e:
                # Try next payload shape
                logger.error(f"[SafetyGuard] Guard API call failed: {e}")
                continue
        # All attempts failed
        return ""

    @staticmethod
    def _parse_guard_reply(text: str) -> Tuple[bool, str]:
        """Parse guard reply; expect 'SAFE' or 'UNSAFE: <reason>' (case-insensitive)."""
        if not text:
            # Fail-open: treat as SAFE if guard unavailable to avoid false blocks
            return True, "guard_unavailable"
        t = text.strip()
        upper = t.upper()
        if upper.startswith("SAFE") and not upper.startswith("SAFEGUARD"):
            return True, ""
        if upper.startswith("UNSAFE"):
            # Extract reason after the first colon if present
            parts = t.split(":", 1)
            reason = parts[1].strip() if len(parts) > 1 else "policy violation"
            return False, reason
        # Fallback: treat unknown response as unsafe
        return False, t[:180]

    def _is_medical_query(self, query: str) -> bool:
        """Check if query is clearly medical in nature using comprehensive patterns."""
        if not query:
            return False
        
        query_lower = query.lower()
        
        # Medical keyword categories
        medical_categories = {
            'symptoms': [
                'symptom', 'pain', 'ache', 'hurt', 'sore', 'tender', 'stiff', 'numb',
                'headache', 'migraine', 'fever', 'cough', 'cold', 'flu', 'sneeze',
                'nausea', 'vomit', 'diarrhea', 'constipation', 'bloating', 'gas',
                'dizziness', 'vertigo', 'fatigue', 'weakness', 'tired', 'exhausted',
                'shortness of breath', 'wheezing', 'chest pain', 'heart palpitations',
                'joint pain', 'muscle pain', 'back pain', 'neck pain', 'stomach pain',
                'abdominal pain', 'pelvic pain', 'menstrual pain', 'cramps'
            ],
            'conditions': [
                'disease', 'condition', 'disorder', 'syndrome', 'illness', 'sickness',
                'infection', 'inflammation', 'allergy', 'asthma', 'diabetes', 'hypertension',
                'depression', 'anxiety', 'stress', 'panic', 'phobia', 'ocd', 'ptsd',
                'adhd', 'autism', 'dementia', 'alzheimer', 'parkinson', 'epilepsy',
                'cancer', 'tumor', 'cancerous', 'malignant', 'benign', 'metastasis',
                'heart disease', 'stroke', 'heart attack', 'coronary', 'arrhythmia',
                'pneumonia', 'bronchitis', 'copd', 'emphysema', 'tuberculosis',
                'migraine', 'headache', 'chronic migraine', 'cluster headache',
                'tension headache', 'sinus headache', 'cure', 'treat', 'treatment'
            ],
            'treatments': [
                'treatment', 'therapy', 'medication', 'medicine', 'drug', 'pill', 'tablet',
                'injection', 'vaccine', 'immunization', 'surgery', 'operation', 'procedure',
                'chemotherapy', 'radiation', 'physical therapy', 'occupational therapy',
                'psychotherapy', 'counseling', 'rehabilitation', 'recovery', 'healing',
                'prescription', 'dosage', 'side effects', 'contraindications'
            ],
            'body_parts': [
                'head', 'brain', 'eye', 'ear', 'nose', 'mouth', 'throat', 'neck',
                'chest', 'heart', 'lung', 'liver', 'kidney', 'stomach', 'intestine',
                'back', 'spine', 'joint', 'muscle', 'bone', 'skin', 'hair', 'nail',
                'arm', 'leg', 'hand', 'foot', 'finger', 'toe', 'pelvis', 'genital'
            ],
            'medical_context': [
                'doctor', 'physician', 'nurse', 'specialist', 'surgeon', 'dentist',
                'medical', 'health', 'healthcare', 'hospital', 'clinic', 'emergency',
                'ambulance', 'paramedic', 'pharmacy', 'pharmacist', 'lab', 'test',
                'diagnosis', 'prognosis', 'examination', 'checkup', 'screening',
                'patient', 'case', 'history', 'medical history', 'family history'
            ],
            'life_stages': [
                'pregnancy', 'pregnant', 'baby', 'infant', 'newborn', 'child', 'pediatric',
                'teenager', 'adolescent', 'adult', 'elderly', 'senior', 'geriatric',
                'menopause', 'puberty', 'aging', 'birth', 'delivery', 'miscarriage'
            ],
            'vital_signs': [
                'blood pressure', 'heart rate', 'pulse', 'temperature', 'fever',
                'respiratory rate', 'oxygen saturation', 'weight', 'height', 'bmi',
                'blood sugar', 'glucose', 'cholesterol', 'hemoglobin', 'white blood cell'
            ]
        }
        
        # Check for medical keywords
        for category, keywords in medical_categories.items():
            if any(keyword in query_lower for keyword in keywords):
                return True
        
        # Check for medical question patterns
        medical_patterns = [
            r'\b(what|how|why|when|where)\s+(causes?|treats?|prevents?|symptoms?|signs?)\b',
            r'\b(is|are)\s+(.*?)\s+(dangerous|serious|harmful|safe|normal)\b',
            r'\b(should|can|may|might)\s+(i|you|we)\s+(take|use|do|avoid)\b',
            r'\b(diagnosis|diagnosed|symptoms|treatment|medicine|drug)\b',
            r'\b(medical|health|doctor|physician|hospital|clinic)\b',
            r'\b(pain|hurt|ache|sore|fever|cough|headache)\b',
            r'\b(which\s+medication|best\s+medication|how\s+to\s+cure|without\s+medications)\b',
            r'\b(chronic\s+migraine|migraine\s+treatment|migraine\s+cure)\b',
            r'\b(cure|treat|heal|relief|remedy|solution)\b'
        ]
        
        for pattern in medical_patterns:
            if re.search(pattern, query_lower):
                return True
        
        return False

    def check_user_query(self, user_query: str) -> Tuple[bool, str]:
        """Validate the user query is safe to process with medical context awareness."""
        text = user_query or ""
        
        # For medical queries, be more permissive
        if self._is_medical_query(text):
            logger.info("[SafetyGuard] Medical query detected, skipping strict validation")
            return True, "medical_query"
        
        # If too long, validate each chunk; any UNSAFE makes overall UNSAFE
        for part in self._chunk_text(text):
            messages = [{"role": "user", "content": part}]
            reply = self._call_guard(messages, max_tokens=64)
            ok, reason = self._parse_guard_reply(reply)
            if not ok:
                return False, reason
        return True, ""

    def _detect_harmful_content(self, text: str) -> Tuple[bool, str]:
        """Detect harmful content using sophisticated pattern matching."""
        if not text:
            return True, ""
        
        text_lower = text.lower()
        
        # First check if this is clearly medical content - be more permissive
        if self._is_medical_query(text):
            # For medical content, only check for truly dangerous patterns
            dangerous_medical_patterns = {
                'suicide_self_harm': [
                    r'\b(kill\s+yourself|suicide|end\s+your\s+life|take\s+your\s+life)\b',
                    r'\b(self\s*harm|self\s*injury|cut\s+yourself|hurt\s+yourself)\b',
                    r'\b(overdose|poison\s+yourself|hang\s+yourself)\b'
                ],
                'dangerous_medical_advice': [
                    r'\b(overdose\s+on|take\s+too\s+much|excessive\s+dosage)\b',
                    r'\b(mix\s+drugs|combine\s+medications|contraindicated)\b',
                    r'\b(stop\s+taking\s+prescribed|discontinue\s+medication)\b',
                    r'\b(don\'t\s+call\s+911|avoid\s+emergency\s+room|ignore\s+severe\s+symptoms)\b'
                ],
                'illegal_drugs': [
                    r'\b(cocaine|heroin|methamphetamine|ecstasy|lsd|marijuana\s+abuse)\b',
                    r'\b(prescription\s+abuse|drug\s+dealing|illegal\s+substances)\b'
                ]
            }
            
            # Check only dangerous medical patterns
            for category, patterns in dangerous_medical_patterns.items():
                for pattern in patterns:
                    if re.search(pattern, text_lower):
                        return False, f"contains {category}: {pattern}"
            
            # Allow medical content through
            return True, "medical_content"
        
        # For non-medical content, use stricter patterns
        critical_patterns = {
            'suicide_self_harm': [
                r'\b(kill\s+yourself|suicide|end\s+your\s+life|take\s+your\s+life)\b',
                r'\b(self\s*harm|self\s*injury|cut\s+yourself|hurt\s+yourself)\b',
                r'\b(overdose|poison\s+yourself|hang\s+yourself)\b'
            ],
            'violence': [
                r'\b(kill\s+someone|murder|assassinate|violence|harm\s+others)\b',
                r'\b(bomb|explosive|weapon|gun|knife)\b',
                r'\b(attack\s+(someone|people|others|innocent))\b'  # More specific attack pattern
            ],
            'illegal_drugs': [
                r'\b(cocaine|heroin|methamphetamine|ecstasy|lsd|marijuana\s+abuse)\b',
                r'\b(prescription\s+abuse|drug\s+dealing|illegal\s+substances)\b'
            ],
            'dangerous_medical': [
                r'\b(overdose\s+on|take\s+too\s+much|excessive\s+dosage)\b',
                r'\b(mix\s+drugs|combine\s+medications|contraindicated)\b',
                r'\b(stop\s+taking\s+prescribed|discontinue\s+medication)\b'
            ]
        }
        
        # Check critical patterns
        for category, patterns in critical_patterns.items():
            for pattern in patterns:
                if re.search(pattern, text_lower):
                    return False, f"contains {category}: {pattern}"
        
        # Context-aware medical safety checks
        medical_safety_patterns = {
            'dosage_warnings': [
                r'\b(take\s+more\s+than\s+prescribed|exceed\s+recommended\s+dose)\b',
                r'\b(double\s+up\s+on\s+medication|take\s+extra\s+pills)\b'
            ],
            'emergency_advice': [
                r'\b(don\'t\s+call\s+911|avoid\s+emergency\s+room|ignore\s+severe\s+symptoms)\b',
                r'\b(self\s*treat\s+emergency|handle\s+at\s+home\s+when\s+critical)\b'
            ]
        }
        
        # Check medical safety patterns
        for category, patterns in medical_safety_patterns.items():
            for pattern in patterns:
                if re.search(pattern, text_lower):
                    return False, f"contains dangerous medical advice: {pattern}"
        
        return True, ""

    def _enhance_messages_with_context(self, messages: List[Dict]) -> List[Dict]:
        """Enhance messages with medical context awareness for better guard performance."""
        if not messages:
            return messages
        
        # Check if any message contains medical content
        has_medical_content = any(
            self._is_medical_query(msg.get("content", "")) for msg in messages
        )
        
        if has_medical_content:
            # Add medical context to the system prompt
            enhanced_messages = []
            for i, msg in enumerate(messages):
                if i == 0 and msg.get("role") == "user":
                    # Add medical context to first user message
                    original_content = msg.get("content", "")
                    enhanced_content = f"""MEDICAL CONTEXT: This is a medical consultation. The user is asking about health-related topics.

ORIGINAL MESSAGE: {original_content}

Please evaluate this message for safety, keeping in mind that:
- Medical questions and health concerns are legitimate
- General medical information sharing is acceptable
- Only block content that is clearly harmful, dangerous, or illegal
- Medical advice should be educational, not prescriptive"""
                    
                    enhanced_messages.append({
                        "role": msg["role"],
                        "content": enhanced_content
                    })
                else:
                    enhanced_messages.append(msg)
            return enhanced_messages
        
        return messages

    def _assess_risk_level(self, text: str) -> Tuple[str, float]:
        """Assess the risk level of content using multiple indicators."""
        if not text:
            return "low", 0.0
        
        text_lower = text.lower()
        
        # If this is medical content, be more lenient
        if self._is_medical_query(text):
            # For medical content, only flag truly dangerous patterns
            dangerous_medical_indicators = {
                'high': [
                    'suicide', 'kill yourself', 'end your life', 'self harm',
                    'overdose', 'poison yourself', 'illegal drugs', 'violence'
                ],
                'medium': [
                    'prescription abuse', 'excessive dosage', 'mix drugs',
                    'stop taking prescribed', 'ignore severe symptoms'
                ]
            }
            
            risk_score = 0.0
            for level, indicators in dangerous_medical_indicators.items():
                for indicator in indicators:
                    if indicator in text_lower:
                        if level == 'high':
                            risk_score += 3.0
                        elif level == 'medium':
                            risk_score += 1.5
            
            # Normalize score for medical content (more lenient)
            risk_score = min(risk_score / 15.0, 1.0)
            
            if risk_score >= 0.6:
                return "high", risk_score
            elif risk_score >= 0.2:
                return "medium", risk_score
            else:
                return "low", risk_score
        
        # For non-medical content, use original risk assessment
        risk_indicators = {
            'high': [
                'suicide', 'kill yourself', 'end your life', 'self harm',
                'overdose', 'poison', 'illegal drugs', 'violence', 'harm others'
            ],
            'medium': [
                'prescription abuse', 'excessive dosage', 'mix drugs',
                'stop medication', 'ignore symptoms', 'avoid doctor'
            ],
            'low': [
                'pain', 'headache', 'fever', 'cough', 'treatment',
                'medicine', 'doctor', 'hospital', 'symptoms'
            ]
        }
        
        risk_score = 0.0
        for level, indicators in risk_indicators.items():
            for indicator in indicators:
                if indicator in text_lower:
                    if level == 'high':
                        risk_score += 3.0
                    elif level == 'medium':
                        risk_score += 1.5
                    else:
                        risk_score += 0.5
        
        # Normalize score
        risk_score = min(risk_score / 10.0, 1.0)
        
        if risk_score >= 0.7:
            return "high", risk_score
        elif risk_score >= 0.3:
            return "medium", risk_score
        else:
            return "low", risk_score

    def check_model_answer(self, user_query: str, model_answer: str) -> Tuple[bool, str]:
        """Validate the model's answer is safe with medical context awareness."""
        uq = user_query or ""
        ans = model_answer or ""
        
        # Assess risk level first
        risk_level, risk_score = self._assess_risk_level(ans)
        logger.info(f"[SafetyGuard] Risk assessment: {risk_level} (score: {risk_score:.2f})")
        
        # Always check for harmful content first
        is_safe, reason = self._detect_harmful_content(ans)
        if not is_safe:
            return False, reason
        
        # For high-risk content, always use strict validation
        if risk_level == "high":
            logger.warning("[SafetyGuard] High-risk content detected, using strict validation")
            user_parts = self._chunk_text(uq, chunk_size=2000)
            user_context = user_parts[0] if user_parts else ""
            for ans_part in self._chunk_text(ans):
                messages = [
                    {"role": "user", "content": user_context},
                    {"role": "assistant", "content": ans_part},
                ]
                reply = self._call_guard(messages, max_tokens=96)
                ok, reason = self._parse_guard_reply(reply)
                if not ok:
                    return False, reason
            return True, "high_risk_validated"
        
        # For medical queries and answers, use relaxed validation
        if self._is_medical_query(uq) or self._is_medical_query(ans):
            logger.info("[SafetyGuard] Medical content detected, using relaxed validation")
            return True, "medical_content"
        
        # For medium-risk non-medical content, use guard validation
        if risk_level == "medium":
            logger.info("[SafetyGuard] Medium-risk content detected, using guard validation")
            user_parts = self._chunk_text(uq, chunk_size=2000)
            user_context = user_parts[0] if user_parts else ""
            for ans_part in self._chunk_text(ans):
                messages = [
                    {"role": "user", "content": user_context},
                    {"role": "assistant", "content": ans_part},
                ]
                reply = self._call_guard(messages, max_tokens=96)
                ok, reason = self._parse_guard_reply(reply)
                if not ok:
                    return False, reason
            return True, "medium_risk_validated"
        
        # For low-risk content, allow through
        logger.info("[SafetyGuard] Low-risk content detected, allowing through")
        return True, "low_risk"


# Global instance (optional convenience)
safety_guard = SafetyGuard()