Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +135 -177
src/streamlit_app.py
CHANGED
|
@@ -13,36 +13,34 @@ st.set_page_config(
|
|
| 13 |
layout="wide"
|
| 14 |
)
|
| 15 |
|
| 16 |
-
# --- KEYWORD DATABASE (
|
| 17 |
-
# This dictionary helps the AI explicitly understand symbols associated with parties.
|
| 18 |
POLITICAL_CONTEXT = {
|
| 19 |
"BNP": {
|
| 20 |
-
"keywords": "ধানের শীষ, জিন্দাবাদ, জিয়ার সৈনিক, দেশনেত্রী, তারেক, Sheaf of Paddy",
|
| 21 |
-
"rival_keywords": "নৌকা, ভোট চোর, হাসিনা,
|
| 22 |
},
|
| 23 |
"Awami League": {
|
| 24 |
-
"keywords": "নৌকা, জয় বাংলা, মুজিব, হাসিনা, শেখের বেটি, Boat",
|
| 25 |
-
"rival_keywords": "ধানের শীষ, চোর, বিএনপি,
|
| 26 |
},
|
| 27 |
"Jamaat-e-Islami": {
|
| 28 |
-
"keywords": "দাড়িপাল্লা, আল্লাহ, নারায়ে তাকবির, দ্বীন, ইসলাম, Mamunul",
|
| 29 |
-
"rival_keywords": "নাস্তিক, লীগ,
|
| 30 |
},
|
| 31 |
"General/Interim Govt": {
|
| 32 |
-
"keywords": "ইউনূস, ছাত্র সমাজ, সংস্কার, জেনারেশন জেড,
|
| 33 |
-
"rival_keywords": "স্বৈরাচার, ফ্যাসিস্ট,
|
| 34 |
}
|
| 35 |
}
|
| 36 |
|
| 37 |
# --- MODEL LOADER ---
|
| 38 |
@st.cache_resource
|
| 39 |
def load_model():
|
|
|
|
| 40 |
model_id = "hishab/titulm-llama-3.2-3b-v2.0"
|
| 41 |
try:
|
| 42 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 43 |
-
#
|
| 44 |
-
# For Hugging Face Spaces (CPU), we use float32 or float16.
|
| 45 |
-
# For GPU, float16 is best.
|
| 46 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 47 |
|
| 48 |
model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -55,228 +53,188 @@ def load_model():
|
|
| 55 |
"text-generation",
|
| 56 |
model=model,
|
| 57 |
tokenizer=tokenizer,
|
| 58 |
-
max_new_tokens=150,
|
| 59 |
do_sample=True,
|
| 60 |
-
temperature=0.2, #
|
| 61 |
top_p=0.9
|
| 62 |
)
|
| 63 |
return pipe
|
| 64 |
except Exception as e:
|
| 65 |
return None
|
| 66 |
|
| 67 |
-
#
|
| 68 |
with st.sidebar:
|
| 69 |
-
st.
|
| 70 |
-
st.title("AI Settings")
|
| 71 |
if torch.cuda.is_available():
|
| 72 |
-
st.success("
|
| 73 |
else:
|
| 74 |
-
st.warning("
|
| 75 |
|
| 76 |
-
with st.spinner("
|
| 77 |
llm = load_model()
|
| 78 |
|
| 79 |
if not llm:
|
| 80 |
-
st.error("Model
|
| 81 |
st.stop()
|
|
|
|
|
|
|
| 82 |
|
| 83 |
# --- HELPER FUNCTIONS ---
|
| 84 |
def clean_json_output(text):
|
| 85 |
"""Robustly extract JSON from the LLM's chatter."""
|
| 86 |
-
# Look for the last occurrence of { and the matching }
|
| 87 |
try:
|
| 88 |
-
#
|
| 89 |
matches = re.findall(r'\{.*?\}', text, re.DOTALL)
|
| 90 |
if matches:
|
| 91 |
-
# Get the last match as it's usually the actual answer after the reasoning
|
| 92 |
return json.loads(matches[-1])
|
| 93 |
-
|
| 94 |
-
return None
|
| 95 |
except:
|
| 96 |
return None
|
| 97 |
|
| 98 |
-
# --- PROMPT GENERATORS ---
|
| 99 |
-
|
| 100 |
-
def generate_news_prompt(news_text, target):
|
| 101 |
-
return [
|
| 102 |
-
{"role": "system", "content": f"""You are a Political Analyst for Bangladesh.
|
| 103 |
-
Task: Analyze if the news is FAVOURABLE or UNFAVORABLE for: {target}.
|
| 104 |
-
|
| 105 |
-
DEFINITIONS:
|
| 106 |
-
- FAVOURABLE: Positive news, legal wins, return to power, praise.
|
| 107 |
-
- UNFAVORABLE: Negative news, arrest, criticism, loss.
|
| 108 |
-
- NEUTRAL: Factual news with no clear bias.
|
| 109 |
-
|
| 110 |
-
Response Format: JSON only -> {{"label": "FAVOURABLE"|"UNFAVORABLE"|"NEUTRAL", "reasoning": "Bangla sentence"}}
|
| 111 |
-
"""},
|
| 112 |
-
{"role": "user", "content": f"News: {news_text}"}
|
| 113 |
-
]
|
| 114 |
-
|
| 115 |
def generate_comment_prompt(comment_text, target, party, keywords, rival_keywords):
|
| 116 |
return [
|
| 117 |
{"role": "system", "content": f"""You are an Expert Bangla Sentiment Analyzer.
|
| 118 |
Task: Analyze the sentiment of the comment TOWARDS the target: {target} ({party}).
|
| 119 |
|
| 120 |
-
RULES:
|
| 121 |
-
1.
|
| 122 |
-
2.
|
| 123 |
-
3.
|
|
|
|
| 124 |
|
| 125 |
Examples:
|
| 126 |
-
-
|
| 127 |
-
-
|
|
|
|
| 128 |
|
| 129 |
-
Response Format: JSON only -> {{"label": "POSITIVE"|"NEGATIVE"|"NEUTRAL", "reasoning": "Short
|
| 130 |
"""},
|
| 131 |
{"role": "user", "content": f"Comment: {comment_text}"}
|
| 132 |
]
|
| 133 |
|
| 134 |
# --- MAIN UI ---
|
| 135 |
-
|
| 136 |
st.title("🇧🇩 Smart Political Sentiment Analyzer")
|
| 137 |
-
st.markdown("Context-Aware Analysis for
|
| 138 |
|
| 139 |
-
#
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
# =======================
|
| 145 |
-
with tab_news:
|
| 146 |
-
st.header("Is this news Good or Bad for the Candidate?")
|
| 147 |
-
|
| 148 |
-
col1, col2 = st.columns(2)
|
| 149 |
-
with col1:
|
| 150 |
-
target_name_news = st.text_input("Candidate Name (Who is this about?)", "তারেক রহমান")
|
| 151 |
-
with col2:
|
| 152 |
-
news_input_method = st.radio("Input Method", ["Paste Text", "Upload CSV"])
|
| 153 |
-
|
| 154 |
-
if news_input_method == "Paste Text":
|
| 155 |
-
news_text = st.text_area("Paste News Headline:", height=100)
|
| 156 |
-
if st.button("Analyze News Impact", type="primary"):
|
| 157 |
-
if news_text:
|
| 158 |
-
with st.spinner("Analyzing impact..."):
|
| 159 |
-
prompt = generate_news_prompt(news_text, target_name_news)
|
| 160 |
-
res = llm(prompt)
|
| 161 |
-
output_text = res[0]['generated_text'][-1]['content']
|
| 162 |
-
data = clean_json_output(output_text)
|
| 163 |
-
|
| 164 |
-
if data:
|
| 165 |
-
st.subheader(f"Result: {data.get('label', 'ERROR')}")
|
| 166 |
-
st.write(f"**Reasoning:** {data.get('reasoning', '')}")
|
| 167 |
-
else:
|
| 168 |
-
st.error("Could not parse AI response.")
|
| 169 |
-
st.code(output_text)
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
if st.button("Analyze Batch News"):
|
| 178 |
-
results = []
|
| 179 |
-
prog_bar = st.progress(0)
|
| 180 |
-
|
| 181 |
-
for i, row in df_news.iterrows():
|
| 182 |
-
prompt = generate_news_prompt(str(row[text_col]), target_name_news)
|
| 183 |
-
res = llm(prompt)
|
| 184 |
-
data = clean_json_output(res[0]['generated_text'][-1]['content'])
|
| 185 |
-
|
| 186 |
-
results.append({
|
| 187 |
-
"News": row[text_col],
|
| 188 |
-
"Impact": data['label'] if data else "ERROR",
|
| 189 |
-
"Reasoning": data['reasoning'] if data else ""
|
| 190 |
-
})
|
| 191 |
-
prog_bar.progress((i+1)/len(df_news))
|
| 192 |
-
|
| 193 |
-
res_df = pd.DataFrame(results)
|
| 194 |
-
st.dataframe(res_df)
|
| 195 |
-
|
| 196 |
-
# Chart
|
| 197 |
-
fig = px.pie(res_df, names="Impact", title=f"Media Sentiment for {target_name_news}")
|
| 198 |
-
st.plotly_chart(fig)
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
# 1. ESTABLISH CONTEXT
|
| 208 |
-
c1, c2 = st.columns(2)
|
| 209 |
-
with c1:
|
| 210 |
-
target_entity_cmt = st.text_input("Target Person (e.g., Khaleda Zia)", "Khaleda Zia")
|
| 211 |
-
with c2:
|
| 212 |
-
party_context = st.selectbox("Political Affiliation (Defines Symbols)", list(POLITICAL_CONTEXT.keys()))
|
| 213 |
-
|
| 214 |
-
# Get keywords based on selection
|
| 215 |
-
selected_keywords = POLITICAL_CONTEXT[party_context]["keywords"]
|
| 216 |
-
selected_rivals = POLITICAL_CONTEXT[party_context]["rival_keywords"]
|
| 217 |
-
|
| 218 |
-
st.caption(f"**AI Context Memory:** Positive Keywords = [{selected_keywords}] | Negative Keywords = [{selected_rivals}]")
|
| 219 |
-
|
| 220 |
-
# 2. INPUT
|
| 221 |
-
uploaded_comments = st.file_uploader("Upload Comments CSV", type=["csv"], key="cmt_up")
|
| 222 |
-
|
| 223 |
-
if uploaded_comments:
|
| 224 |
-
df_cmt = pd.read_csv(uploaded_comments)
|
| 225 |
-
st.write("Preview:", df_cmt.head(3))
|
| 226 |
-
comment_col = st.selectbox("Which column contains the comments?", df_cmt.columns)
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
-
total = len(
|
| 233 |
-
|
| 234 |
-
|
|
|
|
| 235 |
|
| 236 |
-
#
|
| 237 |
-
if len(
|
| 238 |
continue
|
| 239 |
-
|
| 240 |
-
prompt = generate_comment_prompt(txt, target_entity_cmt, party_context, selected_keywords, selected_rivals)
|
| 241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
try:
|
| 243 |
out = llm(prompt)
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
label = json_dat.get("label", "NEUTRAL") if json_dat else "ERROR"
|
| 248 |
-
reason = json_dat.get("reasoning", "Parse Fail") if json_dat else raw_str
|
| 249 |
|
|
|
|
|
|
|
| 250 |
except Exception as e:
|
| 251 |
label = "ERROR"
|
| 252 |
reason = str(e)
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
| 256 |
"Sentiment": label,
|
| 257 |
-
"
|
| 258 |
})
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
-
#
|
| 262 |
-
|
| 263 |
-
st.
|
|
|
|
| 264 |
|
| 265 |
-
#
|
| 266 |
-
|
| 267 |
-
with row1:
|
| 268 |
-
st.dataframe(res_df_cmt)
|
| 269 |
-
with row2:
|
| 270 |
-
# Custom colors for politics
|
| 271 |
-
color_map = {
|
| 272 |
-
"POSITIVE": "#00CC96", # Green
|
| 273 |
-
"NEGATIVE": "#EF553B", # Red
|
| 274 |
-
"NEUTRAL": "#636EFA", # Blue
|
| 275 |
-
"ERROR": "#000000"
|
| 276 |
-
}
|
| 277 |
-
fig = px.pie(res_df_cmt, names="Sentiment", title="Public Sentiment", color="Sentiment", color_discrete_map=color_map)
|
| 278 |
-
st.plotly_chart(fig)
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
layout="wide"
|
| 14 |
)
|
| 15 |
|
| 16 |
+
# --- ADVANCED KEYWORD DATABASE (Tuned for your CSV Data) ---
|
|
|
|
| 17 |
POLITICAL_CONTEXT = {
|
| 18 |
"BNP": {
|
| 19 |
+
"keywords": "ধানের শীষ, জিন্দাবাদ, জিয়ার সৈনিক, দেশনেত্রী, তারেক, Sheaf of Paddy, BNP, 71 chetona",
|
| 20 |
+
"rival_keywords": "নৌকা, ভোট চোর, হাসিনা, লীগ, চাঁদাবাজ, চান্দা, দুর্নীতি, terrorist, arson"
|
| 21 |
},
|
| 22 |
"Awami League": {
|
| 23 |
+
"keywords": "নৌকা, জয় বাংলা, মুজিব, হাসিনা, শেখের বেটি, Boat, development, 71 er chetona",
|
| 24 |
+
"rival_keywords": "ধানের শীষ, চোর, বিএনপি, জামায়াত, rajakar, killer, dictator, fascist"
|
| 25 |
},
|
| 26 |
"Jamaat-e-Islami": {
|
| 27 |
+
"keywords": "দাড়িপাল্লা, আল্লাহ, নারায়ে তাকবির, দ্বীন, ইসলাম, Mamunul, Jammat, Shibir, Islamic",
|
| 28 |
+
"rival_keywords": "নাস্তিক, লীগ, শাহবাগ, rajakar, war criminal, terrorist, jongi"
|
| 29 |
},
|
| 30 |
"General/Interim Govt": {
|
| 31 |
+
"keywords": "ইউনূস, ছাত্র সমাজ, সংস্কার, জেনারেশন জেড, ইনসাফ, Yunus, Student Power",
|
| 32 |
+
"rival_keywords": "স্বৈরাচার, ফ্যাসিস্ট, হাসিনা, anarchy, instability"
|
| 33 |
}
|
| 34 |
}
|
| 35 |
|
| 36 |
# --- MODEL LOADER ---
|
| 37 |
@st.cache_resource
|
| 38 |
def load_model():
|
| 39 |
+
# Using the Llama-3.2-3B model which fits on Free Tier (CPU) or GPU
|
| 40 |
model_id = "hishab/titulm-llama-3.2-3b-v2.0"
|
| 41 |
try:
|
| 42 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 43 |
+
# Auto-detect device: use float32 for CPU stability, float16 for GPU speed
|
|
|
|
|
|
|
| 44 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 45 |
|
| 46 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 53 |
"text-generation",
|
| 54 |
model=model,
|
| 55 |
tokenizer=tokenizer,
|
| 56 |
+
max_new_tokens=150,
|
| 57 |
do_sample=True,
|
| 58 |
+
temperature=0.2, # Low temp = Logic focused
|
| 59 |
top_p=0.9
|
| 60 |
)
|
| 61 |
return pipe
|
| 62 |
except Exception as e:
|
| 63 |
return None
|
| 64 |
|
| 65 |
+
# Sidebar Status
|
| 66 |
with st.sidebar:
|
| 67 |
+
st.title("⚙️ System Status")
|
|
|
|
| 68 |
if torch.cuda.is_available():
|
| 69 |
+
st.success("🟢 GPU Active (Fast Mode)")
|
| 70 |
else:
|
| 71 |
+
st.warning("🟠 CPU Mode (Standard Speed)")
|
| 72 |
|
| 73 |
+
with st.spinner("Initializing AI Engine..."):
|
| 74 |
llm = load_model()
|
| 75 |
|
| 76 |
if not llm:
|
| 77 |
+
st.error("❌ Model Failed to Load. Check HuggingFace Logs.")
|
| 78 |
st.stop()
|
| 79 |
+
else:
|
| 80 |
+
st.success("✅ AI Brain Ready")
|
| 81 |
|
| 82 |
# --- HELPER FUNCTIONS ---
|
| 83 |
def clean_json_output(text):
|
| 84 |
"""Robustly extract JSON from the LLM's chatter."""
|
|
|
|
| 85 |
try:
|
| 86 |
+
# Find the last JSON-like structure
|
| 87 |
matches = re.findall(r'\{.*?\}', text, re.DOTALL)
|
| 88 |
if matches:
|
|
|
|
| 89 |
return json.loads(matches[-1])
|
| 90 |
+
return None
|
|
|
|
| 91 |
except:
|
| 92 |
return None
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
def generate_comment_prompt(comment_text, target, party, keywords, rival_keywords):
|
| 95 |
return [
|
| 96 |
{"role": "system", "content": f"""You are an Expert Bangla Sentiment Analyzer.
|
| 97 |
Task: Analyze the sentiment of the comment TOWARDS the target: {target} ({party}).
|
| 98 |
|
| 99 |
+
CRITICAL RULES:
|
| 100 |
+
1. Support for {party} or '{keywords}' = POSITIVE.
|
| 101 |
+
2. Attacks on {party}, calling them '{rival_keywords}' = NEGATIVE.
|
| 102 |
+
3. Support for RIVAL parties = NEGATIVE.
|
| 103 |
+
4. Mixed: "Hate X, Love {party}" = POSITIVE. "Love X, Hate {party}" = NEGATIVE.
|
| 104 |
|
| 105 |
Examples:
|
| 106 |
+
- Input: "Jammat shibir boycott ❌ Bnp 🥰" (Target: BNP) -> POSITIVE (Loves BNP)
|
| 107 |
+
- Input: "Jammat shibir boycott ❌ Bnp 🥰" (Target: Jamaat) -> NEGATIVE (Hates Jamaat)
|
| 108 |
+
- Input: "Chadabaz BNP" (Target: BNP) -> NEGATIVE
|
| 109 |
|
| 110 |
+
Response Format: JSON only -> {{"label": "POSITIVE"|"NEGATIVE"|"NEUTRAL", "reasoning": "Short explanation"}}
|
| 111 |
"""},
|
| 112 |
{"role": "user", "content": f"Comment: {comment_text}"}
|
| 113 |
]
|
| 114 |
|
| 115 |
# --- MAIN UI ---
|
|
|
|
| 116 |
st.title("🇧🇩 Smart Political Sentiment Analyzer")
|
| 117 |
+
st.markdown("Context-Aware Analysis for Bangla & Banglish Comments")
|
| 118 |
|
| 119 |
+
# 1. SETUP CONTEXT
|
| 120 |
+
st.subheader("1. Analysis Configuration")
|
| 121 |
+
col1, col2 = st.columns(2)
|
| 122 |
+
with col1:
|
| 123 |
+
target_entity = st.text_input("Target Candidate/Party Name", "BNP")
|
| 124 |
+
with col2:
|
| 125 |
+
party_context = st.selectbox("Political Affiliation (Logic Mapping)", list(POLITICAL_CONTEXT.keys()))
|
| 126 |
|
| 127 |
+
selected_keywords = POLITICAL_CONTEXT[party_context]["keywords"]
|
| 128 |
+
selected_rivals = POLITICAL_CONTEXT[party_context]["rival_keywords"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
st.info(f"**AI Logic:** Detecting Support for *{target_entity}* using keywords: [{selected_keywords}] and flagging attacks like: [{selected_rivals}]")
|
| 131 |
+
|
| 132 |
+
# 2. UPLOAD DATA
|
| 133 |
+
st.subheader("2. Upload Data")
|
| 134 |
+
uploaded_file = st.file_uploader("Upload CSV File (Must have 'Comment' column)", type=["csv"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
if uploaded_file:
|
| 137 |
+
try:
|
| 138 |
+
df = pd.read_csv(uploaded_file)
|
| 139 |
+
st.success(f"Loaded {len(df)} comments successfully!")
|
| 140 |
+
|
| 141 |
+
# Data Cleanup & Preview
|
| 142 |
+
st.dataframe(df.head(3))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
# Column Auto-Detection
|
| 145 |
+
cols = df.columns.tolist()
|
| 146 |
+
comment_col = next((c for c in cols if 'comment' in c.lower()), cols[0])
|
| 147 |
+
date_col = next((c for c in cols if 'date' in c.lower()), None)
|
| 148 |
+
|
| 149 |
+
col_sel1, col_sel2 = st.columns(2)
|
| 150 |
+
with col_sel1:
|
| 151 |
+
comment_col = st.selectbox("Select Comment Column", cols, index=cols.index(comment_col))
|
| 152 |
+
with col_sel2:
|
| 153 |
+
if date_col:
|
| 154 |
+
date_col = st.selectbox("Select Date Column (Optional)", cols, index=cols.index(date_col))
|
| 155 |
+
else:
|
| 156 |
+
st.write("No Date column detected.")
|
| 157 |
+
|
| 158 |
+
# 3. RUN ANALYSIS
|
| 159 |
+
if st.button("🚀 Start AI Analysis", type="primary"):
|
| 160 |
+
results = []
|
| 161 |
+
progress_bar = st.progress(0)
|
| 162 |
+
status_text = st.empty()
|
| 163 |
|
| 164 |
+
total = len(df)
|
| 165 |
+
|
| 166 |
+
for i, row in df.iterrows():
|
| 167 |
+
text = str(row[comment_col])
|
| 168 |
|
| 169 |
+
# Basic filtering
|
| 170 |
+
if len(text) < 2 or text.lower() == "nan":
|
| 171 |
continue
|
|
|
|
|
|
|
| 172 |
|
| 173 |
+
# Construct Prompt
|
| 174 |
+
prompt = generate_comment_prompt(text, target_entity, party_context, selected_keywords, selected_rivals)
|
| 175 |
+
|
| 176 |
+
# Run Inference
|
| 177 |
try:
|
| 178 |
out = llm(prompt)
|
| 179 |
+
raw_res = out[0]['generated_text'][-1]['content']
|
| 180 |
+
data = clean_json_output(raw_res)
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
label = data.get("label", "NEUTRAL") if data else "ERROR"
|
| 183 |
+
reason = data.get("reasoning", "Parse Error") if data else raw_res
|
| 184 |
except Exception as e:
|
| 185 |
label = "ERROR"
|
| 186 |
reason = str(e)
|
| 187 |
|
| 188 |
+
# Store Result
|
| 189 |
+
results.append({
|
| 190 |
+
"Date": row[date_col] if date_col else None,
|
| 191 |
+
"Comment": text,
|
| 192 |
"Sentiment": label,
|
| 193 |
+
"Reasoning": reason
|
| 194 |
})
|
| 195 |
+
|
| 196 |
+
# Update UI
|
| 197 |
+
progress_bar.progress((i + 1) / total)
|
| 198 |
+
status_text.text(f"Processing {i+1}/{total}: {label}")
|
| 199 |
|
| 200 |
+
# 4. VISUALIZATION
|
| 201 |
+
res_df = pd.DataFrame(results)
|
| 202 |
+
st.divider()
|
| 203 |
+
st.header("📊 Analysis Results")
|
| 204 |
|
| 205 |
+
# Layout: Pie Chart + Time Series
|
| 206 |
+
row1_1, row1_2 = st.columns([1, 2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
+
with row1_1:
|
| 209 |
+
color_map = {"POSITIVE": "#00CC96", "NEGATIVE": "#EF553B", "NEUTRAL": "#636EFA", "ERROR": "grey"}
|
| 210 |
+
fig_pie = px.pie(res_df, names="Sentiment", title="Overall Sentiment", color="Sentiment", color_discrete_map=color_map)
|
| 211 |
+
st.plotly_chart(fig_pie, use_container_width=True)
|
| 212 |
+
|
| 213 |
+
# Sentiment Score Calculation
|
| 214 |
+
pos_count = len(res_df[res_df['Sentiment']=='POSITIVE'])
|
| 215 |
+
neg_count = len(res_df[res_df['Sentiment']=='NEGATIVE'])
|
| 216 |
+
total_valid = pos_count + neg_count + 1 # avoid div/0
|
| 217 |
+
favourability = (pos_count / total_valid) * 100
|
| 218 |
+
st.metric("Favourability Score", f"{favourability:.1f}%")
|
| 219 |
+
|
| 220 |
+
with row1_2:
|
| 221 |
+
if date_col:
|
| 222 |
+
try:
|
| 223 |
+
# Convert Date and Aggregate
|
| 224 |
+
res_df['Date'] = pd.to_datetime(res_df['Date'], errors='coerce')
|
| 225 |
+
time_df = res_df.groupby([pd.Grouper(key='Date', freq='D'), 'Sentiment']).size().reset_index(name='Count')
|
| 226 |
+
|
| 227 |
+
fig_line = px.line(time_df, x='Date', y='Count', color='Sentiment',
|
| 228 |
+
title="Sentiment Trends Over Time",
|
| 229 |
+
color_discrete_map=color_map, markers=True)
|
| 230 |
+
st.plotly_chart(fig_line, use_container_width=True)
|
| 231 |
+
except Exception as e:
|
| 232 |
+
st.warning("Could not create timeline chart (Date format issue).")
|
| 233 |
+
|
| 234 |
+
# Data Table & Download
|
| 235 |
+
st.dataframe(res_df)
|
| 236 |
+
csv = res_df.to_csv(index=False).encode('utf-8')
|
| 237 |
+
st.download_button("📥 Download Analysis Report", csv, "political_sentiment_report.csv", "text/csv")
|
| 238 |
+
|
| 239 |
+
except Exception as e:
|
| 240 |
+
st.error(f"Error reading CSV: {e}")
|