Spaces:
Runtime error
Runtime error
| import torch | |
| import json | |
| from PIL import Image | |
| def load_image(image_path): | |
| image = Image.open(image_path).convert('RGB') | |
| return image | |
| def denormalize(images, device="cuda:0"): | |
| mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).to(device) | |
| std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).to(device) | |
| new_images = (images - mean[None, :, None, None])/ std[None, :, None, None] | |
| return new_images | |
| def normalize(images, device="cuda:0"): | |
| mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).to(device) | |
| std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).to(device) | |
| new_images = (images * std[None, :, None, None])+ mean[None, :, None, None] | |
| return new_images | |
| def data_read(text_file,mode,K=1000): | |
| dataset = [] | |
| for obj in json.load(open(text_file, 'r')): | |
| if obj['difficult_direct_answer']==False: | |
| dataset.append([obj['image_id'],obj['question'],obj['choices'],obj['correct_choice_idx'],obj['direct_answers']]) | |
| print(dataset[:2]) | |
| return dataset[:K] |