Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
title = "Protien Sequence Classification 🧬."
|
| 6 |
+
description = "Predicts the subcellular location of the protein sequence between two classes: Cytoplasm and Membrane"
|
| 7 |
+
article = 'Created from finetuning ESM2_150M'
|
| 8 |
+
|
| 9 |
+
model = AutoModelForSequenceClassification.from_pretrained('./Model')
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained('facebook/esm2_t30_150M_UR50D')
|
| 11 |
+
|
| 12 |
+
example_list = [['MKIIILLGFLGATLSAPLIPQRLMSASNSNELLLNLNNGQLLPLQLQGPLNSWIPPFSGILQQQQQAQIPGLSQFSLSALDQFAGLLPNQIPLTGEASFAQGAQAGQVDPLQLQTPPQTQPGPSHVMPYVFSFKMPQEQGQMFQYYPVYMVLPWEQPQQTVPRSPQQTRQQQYEEQIPFYAQFGYIPQLAEPAISGGQQQLAFDPQLGTAPEIAVMSTGEEIPYLQKEAINFRHDSAGVFMPSTSPKPSTTNVFTSAVDQTITPELPEEKDKTDSLREP'],
|
| 13 |
+
['MSSGNYQQSEALSKPTFSEEQASALVESVFGLKVSKVRPLPSYDDQNFHVYVSKTKDGPTEYVLKISNTKASKNPDLIEVQNHIIMFLKAAGFPTASVCHTKGDNTASLVSVDSGSEIKSYLVRLLTYLPGRPIAELPVSPQLLYEIGKLAAKLDKTLQRFHHPKLSSLHRENFIWNLKNVPLLEKYLYALGQNRNREIVEHVIHLFKEEVMTKLSHFRECINHGDLNDHNILIESSKSASGNAEYQVSGILDFGDMSYGYYVFEVAITIMYMMIESKSPIQVGGHVLAGFESITPLTAVEKGALFLLVCSRFCQSLVMAAYSCQLYPENKDYLMVTAKTGWKHLQQMFDMGQKAVEEIWFETAKSYESGISM'],
|
| 14 |
+
['MMNNTDFLMLNNPWNKLCLVSMDFCFPLDFVSNLFWIFASKFIIVTGQIKADFKRTSWEAKAEGSLEPGRLKLQLASIVPLYSSLVTAGPASKIIILKRTSLPTVSPSNERAYLLPVSFTDLAHVFYLSYFSINAKSNSFSLDIIIALGIPHNTQAHFNH'],
|
| 15 |
+
['MNKHNLRLVQLASELILIEIIPKLFLSQVTTISHIKREKIPPNHRKGILCMFPWQCVVYVFSNFVWLVIHRFSNGFIQFLGEPYRLMTASGTHGRIKFMVDIPIIKNTQVLRIPVLKDPKMLSKKH']]
|
| 16 |
+
|
| 17 |
+
def predict(ProtienSequence):
|
| 18 |
+
input = tokenizer(ProtienSequence, return_tensors='pt')
|
| 19 |
+
with torch.inference_mode():
|
| 20 |
+
outputs = model(**input)
|
| 21 |
+
output = outputs.logits.argmax(axis=1)[0].numpy() == 0
|
| 22 |
+
print(output)
|
| 23 |
+
if output:
|
| 24 |
+
return str('Cytoplasm')
|
| 25 |
+
else:
|
| 26 |
+
return str('Membrane')
|
| 27 |
+
|
| 28 |
+
iface = gr.Interface(fn=predict,
|
| 29 |
+
inputs='text',
|
| 30 |
+
outputs=gr.Text(label='Subcellular location'),
|
| 31 |
+
title=title,
|
| 32 |
+
description=description,
|
| 33 |
+
article=article,
|
| 34 |
+
examples=example_list)
|
| 35 |
+
iface.launch()
|