Update README
Browse files
README.md
CHANGED
|
@@ -33,28 +33,86 @@ model-index:
|
|
| 33 |
type: F1 score (Macro)
|
| 34 |
value: 0.970818
|
| 35 |
---
|
| 36 |
-
# Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
-
|
| 48 |
-
- **Language:** Chinese (Zh)
|
| 49 |
-
- **Finetuned from model:** [google-bert/bert-base-chinese](https://huggingface.co/google-bert/bert-base-chinese)
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
|
|
|
| 54 |
|
| 55 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
|
| 59 |
```python
|
| 60 |
import torch
|
|
@@ -76,7 +134,9 @@ with torch.no_grad():
|
|
| 76 |
print(predictions)
|
| 77 |
```
|
| 78 |
|
| 79 |
-
##
|
|
|
|
|
|
|
| 80 |
|
| 81 |
- **Hardware Type:** NVIDIA Quadro RTX8000
|
| 82 |
- **Library:** PyTorch
|
|
|
|
| 33 |
type: F1 score (Macro)
|
| 34 |
value: 0.970818
|
| 35 |
---
|
| 36 |
+
# Model Details of TVL_GeneralLayerClassifier
|
| 37 |
+
|
| 38 |
+
## Base Model
|
| 39 |
+
This model is fine-tuned from [google-bert/bert-base-chinese](https://huggingface.co/google-bert/bert-base-chinese).
|
| 40 |
+
|
| 41 |
+
## Model Architecture
|
| 42 |
+
- **Type**: BERT-based text classification model
|
| 43 |
+
- **Hidden Size**: 768
|
| 44 |
+
- **Number of Layers**: 12
|
| 45 |
+
- **Number of Attention Heads**: 12
|
| 46 |
+
- **Intermediate Size**: 3072
|
| 47 |
+
- **Max Sequence Length**: 512
|
| 48 |
+
- **Vocabulary Size**: 21,128
|
| 49 |
+
|
| 50 |
+
## Key Components
|
| 51 |
+
1. **Embeddings**
|
| 52 |
+
- Word Embeddings
|
| 53 |
+
- Position Embeddings
|
| 54 |
+
- Token Type Embeddings
|
| 55 |
+
- Layer Normalization
|
| 56 |
+
|
| 57 |
+
2. **Encoder**
|
| 58 |
+
- 12 layers of:
|
| 59 |
+
- Self-Attention Mechanism
|
| 60 |
+
- Intermediate Dense Layer
|
| 61 |
+
- Output Dense Layer
|
| 62 |
+
- Layer Normalization
|
| 63 |
+
|
| 64 |
+
3. **Pooler**
|
| 65 |
+
- Dense layer for sentence representation
|
| 66 |
+
|
| 67 |
+
4. **Classifier**
|
| 68 |
+
- Output layer with 4 classes
|
| 69 |
+
|
| 70 |
+
## Training Hyperparameters
|
| 71 |
|
| 72 |
+
The model was trained using the following hyperparameters:
|
| 73 |
|
| 74 |
+
```
|
| 75 |
+
Learning rate: 1e-05
|
| 76 |
+
Batch size: 32
|
| 77 |
+
Number of epochs: 10
|
| 78 |
+
Optimizer: Adam
|
| 79 |
+
Loss function: torch.nn.BCEWithLogitsLoss()
|
| 80 |
+
```
|
| 81 |
|
| 82 |
+
## Training Infrastructure
|
| 83 |
|
| 84 |
+
- **Hardware Type:** NVIDIA Quadro RTX8000
|
| 85 |
+
- **Library:** PyTorch
|
| 86 |
+
- **Hours used:** 2hr 56mins
|
| 87 |
+
|
| 88 |
+
## Model Parameters
|
| 89 |
+
- Total parameters: ~102M (estimated)
|
| 90 |
+
- All parameters are in 32-bit floating point (F32) format
|
| 91 |
+
|
| 92 |
+
## Input Processing
|
| 93 |
+
- Uses BERT tokenization
|
| 94 |
+
- Supports sequences up to 512 tokens
|
| 95 |
|
| 96 |
+
## Output
|
| 97 |
+
- 4-class multi-label classification
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
## Performance Metrics
|
| 100 |
+
- Accuracy score: 0.952902
|
| 101 |
+
- F1 score (Micro): 0.968717
|
| 102 |
+
- F1 score (Macro): 0.970818
|
| 103 |
|
| 104 |
+
## Training Dataset
|
| 105 |
+
This model was trained on the [scfengv/TVL-general-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-general-layer-dataset).
|
| 106 |
|
| 107 |
+
## Testing Dataset
|
| 108 |
+
|
| 109 |
+
- [scfengv/TVL-general-layer-dataset](https://huggingface.co/datasets/scfengv/TVL-general-layer-dataset)
|
| 110 |
+
- validation
|
| 111 |
+
- Remove Emoji
|
| 112 |
+
- Emoji2Desc
|
| 113 |
+
- Remove Punctuation
|
| 114 |
|
| 115 |
+
## Usage
|
| 116 |
|
| 117 |
```python
|
| 118 |
import torch
|
|
|
|
| 134 |
print(predictions)
|
| 135 |
```
|
| 136 |
|
| 137 |
+
## Additional Notes
|
| 138 |
+
- This model is specifically designed for TVL general layer classification tasks.
|
| 139 |
+
- It's based on the Chinese BERT model, indicating it's optimized for Chinese text.
|
| 140 |
|
| 141 |
- **Hardware Type:** NVIDIA Quadro RTX8000
|
| 142 |
- **Library:** PyTorch
|