new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 17

Redefining Temporal Modeling in Video Diffusion: The Vectorized Timestep Approach

Diffusion models have revolutionized image generation, and their extension to video generation has shown promise. However, current video diffusion models~(VDMs) rely on a scalar timestep variable applied at the clip level, which limits their ability to model complex temporal dependencies needed for various tasks like image-to-video generation. To address this limitation, we propose a frame-aware video diffusion model~(FVDM), which introduces a novel vectorized timestep variable~(VTV). Unlike conventional VDMs, our approach allows each frame to follow an independent noise schedule, enhancing the model's capacity to capture fine-grained temporal dependencies. FVDM's flexibility is demonstrated across multiple tasks, including standard video generation, image-to-video generation, video interpolation, and long video synthesis. Through a diverse set of VTV configurations, we achieve superior quality in generated videos, overcoming challenges such as catastrophic forgetting during fine-tuning and limited generalizability in zero-shot methods.Our empirical evaluations show that FVDM outperforms state-of-the-art methods in video generation quality, while also excelling in extended tasks. By addressing fundamental shortcomings in existing VDMs, FVDM sets a new paradigm in video synthesis, offering a robust framework with significant implications for generative modeling and multimedia applications.

  • 8 authors
·
Oct 4, 2024 2

PUSA V1.0: Surpassing Wan-I2V with $500 Training Cost by Vectorized Timestep Adaptation

The rapid advancement of video diffusion models has been hindered by fundamental limitations in temporal modeling, particularly the rigid synchronization of frame evolution imposed by conventional scalar timestep variables. While task-specific adaptations and autoregressive models have sought to address these challenges, they remain constrained by computational inefficiency, catastrophic forgetting, or narrow applicability. In this work, we present Pusa, a groundbreaking paradigm that leverages vectorized timestep adaptation (VTA) to enable fine-grained temporal control within a unified video diffusion framework. Besides, VTA is a non-destructive adaptation, which means it fully preserves the capabilities of the base model. By finetuning the SOTA Wan2.1-T2V-14B model with VTA, we achieve unprecedented efficiency -- surpassing the performance of Wan-I2V-14B with leq 1/200 of the training cost (\500 vs. \geq 100,000) and leq 1/2500 of the dataset size (4K vs. geq 10M samples). Pusa not only sets a new standard for image-to-video (I2V) generation, achieving a VBench-I2V total score of 87.32\% (vs. 86.86\% of Wan-I2V-14B), but also unlocks many zero-shot multi-task capabilities such as start-end frames and video extension -- all without task-specific training. Meanwhile, Pusa can still perform text-to-video generation. Mechanistic analyses reveal that our approach preserves the foundation model's generative priors while surgically injecting temporal dynamics, avoiding the combinatorial explosion inherent to vectorized timesteps. This work establishes a scalable, efficient, and versatile paradigm for next-generation video synthesis, democratizing high-fidelity video generation for research and industry alike. Code is open-sourced at https://github.com/Yaofang-Liu/Pusa-VidGen

  • 12 authors
·
Jul 21 1

TimeDRL: Disentangled Representation Learning for Multivariate Time-Series

Multivariate time-series data in numerous real-world applications (e.g., healthcare and industry) are informative but challenging due to the lack of labels and high dimensionality. Recent studies in self-supervised learning have shown their potential in learning rich representations without relying on labels, yet they fall short in learning disentangled embeddings and addressing issues of inductive bias (e.g., transformation-invariance). To tackle these challenges, we propose TimeDRL, a generic multivariate time-series representation learning framework with disentangled dual-level embeddings. TimeDRL is characterized by three novel features: (i) disentangled derivation of timestamp-level and instance-level embeddings from patched time-series data using a [CLS] token strategy; (ii) utilization of timestamp-predictive and instance-contrastive tasks for disentangled representation learning, with the former optimizing timestamp-level embeddings with predictive loss, and the latter optimizing instance-level embeddings with contrastive loss; and (iii) avoidance of augmentation methods to eliminate inductive biases, such as transformation-invariance from cropping and masking. Comprehensive experiments on 6 time-series forecasting datasets and 5 time-series classification datasets have shown that TimeDRL consistently surpasses existing representation learning approaches, achieving an average improvement of forecasting by 58.02% in MSE and classification by 1.48% in accuracy. Furthermore, extensive ablation studies confirmed the relative contribution of each component in TimeDRL's architecture, and semi-supervised learning evaluations demonstrated its effectiveness in real-world scenarios, even with limited labeled data. The code is available at https://github.com/blacksnail789521/TimeDRL.

  • 5 authors
·
Dec 7, 2023

Deep Stochastic Kinematic Models for Probabilistic Motion Forecasting in Traffic

In trajectory forecasting tasks for traffic, future output trajectories can be computed by advancing the ego vehicle's state with predicted actions according to a kinematics model. By unrolling predicted trajectories via time integration and models of kinematic dynamics, predicted trajectories should not only be kinematically feasible but also relate uncertainty from one timestep to the next. While current works in probabilistic prediction do incorporate kinematic priors for mean trajectory prediction, variance is often left as a learnable parameter, despite uncertainty in one time step being inextricably tied to uncertainty in the previous time step. In this paper, we show simple and differentiable analytical approximations describing the relationship between variance at one timestep and that at the next with the kinematic bicycle model. These approximations can be easily incorporated with negligible additional overhead into any existing trajectory forecasting framework utilizing probabilistic predictions, whether it is autoregressive or one-shot prediction. In our results, we find that encoding the relationship between variance across timesteps works especially well in unoptimal settings, such as with small or noisy datasets. We observe up to a 50% performance boost in partial dataset settings and up to an 8% performance boost in large-scale learning compared to previous kinematic prediction methods on SOTA trajectory forecasting architectures out-of-the-box, with no fine-tuning. In this paper, we show four analytical formulations of probabilistic kinematic priors which can be used for any Gaussian Mixture Model (GMM)-based deep learning models, quantify the error bound on linear approximations applied during trajectory unrolling, and show results to evaluate each formulation in trajectory forecasting.

  • 6 authors
·
Jun 3, 2024

Effectively Modeling Time Series with Simple Discrete State Spaces

Time series modeling is a well-established problem, which often requires that methods (1) expressively represent complicated dependencies, (2) forecast long horizons, and (3) efficiently train over long sequences. State-space models (SSMs) are classical models for time series, and prior works combine SSMs with deep learning layers for efficient sequence modeling. However, we find fundamental limitations with these prior approaches, proving their SSM representations cannot express autoregressive time series processes. We thus introduce SpaceTime, a new state-space time series architecture that improves all three criteria. For expressivity, we propose a new SSM parameterization based on the companion matrix -- a canonical representation for discrete-time processes -- which enables SpaceTime's SSM layers to learn desirable autoregressive processes. For long horizon forecasting, we introduce a "closed-loop" variation of the companion SSM, which enables SpaceTime to predict many future time-steps by generating its own layer-wise inputs. For efficient training and inference, we introduce an algorithm that reduces the memory and compute of a forward pass with the companion matrix. With sequence length ell and state-space size d, we go from O(d ell) na\"ively to O(d + ell). In experiments, our contributions lead to state-of-the-art results on extensive and diverse benchmarks, with best or second-best AUROC on 6 / 7 ECG and speech time series classification, and best MSE on 14 / 16 Informer forecasting tasks. Furthermore, we find SpaceTime (1) fits AR(p) processes that prior deep SSMs fail on, (2) forecasts notably more accurately on longer horizons than prior state-of-the-art, and (3) speeds up training on real-world ETTh1 data by 73% and 80% relative wall-clock time over Transformers and LSTMs.

  • 6 authors
·
Mar 16, 2023

AR-Diffusion: Asynchronous Video Generation with Auto-Regressive Diffusion

The task of video generation requires synthesizing visually realistic and temporally coherent video frames. Existing methods primarily use asynchronous auto-regressive models or synchronous diffusion models to address this challenge. However, asynchronous auto-regressive models often suffer from inconsistencies between training and inference, leading to issues such as error accumulation, while synchronous diffusion models are limited by their reliance on rigid sequence length. To address these issues, we introduce Auto-Regressive Diffusion (AR-Diffusion), a novel model that combines the strengths of auto-regressive and diffusion models for flexible, asynchronous video generation. Specifically, our approach leverages diffusion to gradually corrupt video frames in both training and inference, reducing the discrepancy between these phases. Inspired by auto-regressive generation, we incorporate a non-decreasing constraint on the corruption timesteps of individual frames, ensuring that earlier frames remain clearer than subsequent ones. This setup, together with temporal causal attention, enables flexible generation of videos with varying lengths while preserving temporal coherence. In addition, we design two specialized timestep schedulers: the FoPP scheduler for balanced timestep sampling during training, and the AD scheduler for flexible timestep differences during inference, supporting both synchronous and asynchronous generation. Extensive experiments demonstrate the superiority of our proposed method, which achieves competitive and state-of-the-art results across four challenging benchmarks.

  • 10 authors
·
Mar 10

WaveStitch: Flexible and Fast Conditional Time Series Generation with Diffusion Models

Generating temporal data under conditions is crucial for forecasting, imputation, and generative tasks. Such data often has metadata and partially observed signals that jointly influence the generated values. However, existing methods face three key limitations: (1) they condition on either the metadata or observed values, but rarely both together; (2) they adopt either training-time approaches that fail to generalize to unseen scenarios, or inference-time approaches that ignore metadata; and (3) they suffer from trade-offs between generation speed and temporal coherence across time windows--choosing either slow but coherent autoregressive methods or fast but incoherent parallel ones. We propose WaveStitch, a novel diffusion-based method to overcome these hurdles through: (1) dual-sourced conditioning on both metadata and partially observed signals; (2) a hybrid training-inference architecture, incorporating metadata during training and observations at inference via gradient-based guidance; and (3) a novel pipeline-style paradigm that generates time windows in parallel while preserving coherence through an inference-time conditional loss and a stitching mechanism. Across diverse datasets, WaveStitch demonstrates adaptability to arbitrary patterns of observed signals, achieving 1.81x lower mean-squared-error compared to the state-of-the-art, and generates data up to 166.48x faster than autoregressive methods while maintaining coherence. Our code is available at: https://github.com/adis98/WaveStitch

  • 4 authors
·
Mar 8

Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem

Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.

  • 2 authors
·
Feb 18

TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis

Time series analysis is of immense importance in extensive applications, such as weather forecasting, anomaly detection, and action recognition. This paper focuses on temporal variation modeling, which is the common key problem of extensive analysis tasks. Previous methods attempt to accomplish this directly from the 1D time series, which is extremely challenging due to the intricate temporal patterns. Based on the observation of multi-periodicity in time series, we ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations. To tackle the limitations of 1D time series in representation capability, we extend the analysis of temporal variations into the 2D space by transforming the 1D time series into a set of 2D tensors based on multiple periods. This transformation can embed the intraperiod- and interperiod-variations into the columns and rows of the 2D tensors respectively, making the 2D-variations to be easily modeled by 2D kernels. Technically, we propose the TimesNet with TimesBlock as a task-general backbone for time series analysis. TimesBlock can discover the multi-periodicity adaptively and extract the complex temporal variations from transformed 2D tensors by a parameter-efficient inception block. Our proposed TimesNet achieves consistent state-of-the-art in five mainstream time series analysis tasks, including short- and long-term forecasting, imputation, classification, and anomaly detection. Code is available at this repository: https://github.com/thuml/TimesNet.

  • 6 authors
·
Oct 5, 2022

Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression

Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive 3.18times compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at https://github.com/xiaosu-zhu/McQuic.

  • 5 authors
·
Mar 21, 2022

Time Series Generation Under Data Scarcity: A Unified Generative Modeling Approach

Generative modeling of time series is a central challenge in time series analysis, particularly under data-scarce conditions. Despite recent advances in generative modeling, a comprehensive understanding of how state-of-the-art generative models perform under limited supervision remains lacking. In this work, we conduct the first large-scale study evaluating leading generative models in data-scarce settings, revealing a substantial performance gap between full-data and data-scarce regimes. To close this gap, we propose a unified diffusion-based generative framework that can synthesize high-fidelity time series across diverse domains using just a few examples. Our model is pre-trained on a large, heterogeneous collection of time series datasets, enabling it to learn generalizable temporal representations. It further incorporates architectural innovations such as dynamic convolutional layers for flexible channel adaptation and dataset token conditioning for domain-aware generation. Without requiring abundant supervision, our unified model achieves state-of-the-art performance in few-shot settings-outperforming domain-specific baselines across a wide range of subset sizes. Remarkably, it also surpasses all baselines even when tested on full datasets benchmarks, highlighting the strength of pre-training and cross-domain generalization. We hope this work encourages the community to revisit few-shot generative modeling as a key problem in time series research and pursue unified solutions that scale efficiently across domains. Code is available at https://github.com/azencot-group/ImagenFew.

  • 5 authors
·
May 26

TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare

Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success in Natural Language Processing and Computer Vision domains. However, the development of PTMs on healthcare time-series data is lagging behind.This underscores the limitations of the existing transformer-based architectures, particularly their scalability to handle large-scale time series and ability to capture long-term temporal dependencies. In this study, we present Timely Generative Pre-trained Transformer (TimelyGPT). TimelyGPT employs an extrapolatable position (xPos) embedding to encode trend and periodic patterns into time-series representations. It also integrates recurrent attention and temporal convolution modules to effectively capture global-local temporal dependencies. We evaluated TimelyGPT on two large-scale healthcare time series datasets corresponding to continuous biosignals and irregularly-sampled time series, respectively. Our experiments show that during pre-training, TimelyGPT excels in learning time-series representations from continuously monitored biosignals and irregularly-sampled time series data commonly observed in longitudinal electronic health records (EHRs). In forecasting continuous biosignals, TimelyGPT achieves accurate extrapolation up to 6,000 timesteps of body temperature during the sleep stage transition, given a short look-up window (i.e., prompt) containing only 2,000 timesteps. For irregularly-sampled time series, TimelyGPT with a proposed time-specific inference demonstrates high top recall scores in predicting future diagnoses using early diagnostic records, effectively handling irregular intervals between clinical records. Together, we envision TimelyGPT to be useful in a broad spectrum of health domains, including long-term patient health state forecasting and patient risk trajectory prediction.

  • 6 authors
·
Nov 29, 2023

Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models

Modeling multivariate time series is a well-established problem with a wide range of applications from healthcare to financial markets. Traditional State Space Models (SSMs) are classical approaches for univariate time series modeling due to their simplicity and expressive power to represent linear dependencies. They, however, have fundamentally limited expressive power to capture non-linear dependencies, are slow in practice, and fail to model the inter-variate information flow. Despite recent attempts to improve the expressive power of SSMs by using deep structured SSMs, the existing methods are either limited to univariate time series, fail to model complex patterns (e.g., seasonal patterns), fail to dynamically model the dependencies of variate and time dimensions, and/or are input-independent. We present Chimera that uses two input-dependent 2-D SSM heads with different discretization processes to learn long-term progression and seasonal patterns. To improve the efficiency of complex 2D recurrence, we present a fast training using a new 2-dimensional parallel selective scan. We further present and discuss 2-dimensional Mamba and Mamba-2 as the spacial cases of our 2D SSM. Our experimental evaluation shows the superior performance of Chimera on extensive and diverse benchmarks, including ECG and speech time series classification, long-term and short-term time series forecasting, and time series anomaly detection.

  • 3 authors
·
Jun 6, 2024 1

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency

Interpreting time series models is uniquely challenging because it requires identifying both the location of time series signals that drive model predictions and their matching to an interpretable temporal pattern. While explainers from other modalities can be applied to time series, their inductive biases do not transfer well to the inherently challenging interpretation of time series. We present TimeX, a time series consistency model for training explainers. TimeX trains an interpretable surrogate to mimic the behavior of a pretrained time series model. It addresses the issue of model faithfulness by introducing model behavior consistency, a novel formulation that preserves relations in the latent space induced by the pretrained model with relations in the latent space induced by TimeX. TimeX provides discrete attribution maps and, unlike existing interpretability methods, it learns a latent space of explanations that can be used in various ways, such as to provide landmarks to visually aggregate similar explanations and easily recognize temporal patterns. We evaluate TimeX on eight synthetic and real-world datasets and compare its performance against state-of-the-art interpretability methods. We also conduct case studies using physiological time series. Quantitative evaluations demonstrate that TimeX achieves the highest or second-highest performance in every metric compared to baselines across all datasets. Through case studies, we show that the novel components of TimeX show potential for training faithful, interpretable models that capture the behavior of pretrained time series models.

  • 6 authors
·
Jun 3, 2023 1

Classification of BCI-EEG based on augmented covariance matrix

Objective: Electroencephalography signals are recorded as a multidimensional dataset. We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification. Methods: From the autoregressive model can be derived the Yule-Walker equations, which show the emergence of a symmetric positive definite matrix: the augmented covariance matrix. The state-of the art for classifying covariance matrices is based on Riemannian Geometry. A fairly natural idea is therefore to extend the standard approach using these augmented covariance matrices. The methodology for creating the augmented covariance matrix shows a natural connection with the delay embedding theorem proposed by Takens for dynamical systems. Such an embedding method is based on the knowledge of two parameters: the delay and the embedding dimension, respectively related to the lag and the order of the autoregressive model. This approach provides new methods to compute the hyper-parameters in addition to standard grid search. Results: The augmented covariance matrix performed noticeably better than any state-of-the-art methods. We will test our approach on several datasets and several subjects using the MOABB framework, using both within-session and cross-session evaluation. Conclusion: The improvement in results is due to the fact that the augmented covariance matrix incorporates not only spatial but also temporal information, incorporating nonlinear components of the signal through an embedding procedure, which allows the leveraging of dynamical systems algorithms. Significance: These results extend the concepts and the results of the Riemannian distance based classification algorithm.

  • 2 authors
·
Feb 9, 2023

Instruction-based Time Series Editing

In time series editing, we aim to modify some properties of a given time series without altering others. For example, when analyzing a hospital patient's blood pressure, we may add a sudden early drop and observe how it impacts their future while preserving other conditions. Existing diffusion-based editors rely on rigid, predefined attribute vectors as conditions and produce all-or-nothing edits through sampling. This attribute- and sampling-based approach limits flexibility in condition format and lacks customizable control over editing strength. To overcome these limitations, we introduce Instruction-based Time Series Editing, where users specify intended edits using natural language. This allows users to express a wider range of edits in a more accessible format. We then introduce InstructTime, the first instruction-based time series editor. InstructTime takes in time series and instructions, embeds them into a shared multi-modal representation space, then decodes their embeddings to generate edited time series. By learning a structured multi-modal representation space, we can easily interpolate between embeddings to achieve varying degrees of edit. To handle local and global edits together, we propose multi-resolution encoders. In our experiments, we use synthetic and real datasets and find that InstructTime is a state-of-the-art time series editor: InstructTime achieves high-quality edits with controllable strength, can generalize to unseen instructions, and can be easily adapted to unseen conditions through few-shot learning.

  • 5 authors
·
Aug 2

How to Train Your HiPPO: State Space Models with Generalized Orthogonal Basis Projections

Linear time-invariant state space models (SSM) are a classical model from engineering and statistics, that have recently been shown to be very promising in machine learning through the Structured State Space sequence model (S4). A core component of S4 involves initializing the SSM state matrix to a particular matrix called a HiPPO matrix, which was empirically important for S4's ability to handle long sequences. However, the specific matrix that S4 uses was actually derived in previous work for a particular time-varying dynamical system, and the use of this matrix as a time-invariant SSM had no known mathematical interpretation. Consequently, the theoretical mechanism by which S4 models long-range dependencies actually remains unexplained. We derive a more general and intuitive formulation of the HiPPO framework, which provides a simple mathematical interpretation of S4 as a decomposition onto exponentially-warped Legendre polynomials, explaining its ability to capture long dependencies. Our generalization introduces a theoretically rich class of SSMs that also lets us derive more intuitive S4 variants for other bases such as the Fourier basis, and explains other aspects of training S4, such as how to initialize the important timescale parameter. These insights improve S4's performance to 86% on the Long Range Arena benchmark, with 96% on the most difficult Path-X task.

  • 5 authors
·
Jun 23, 2022

Clearer Frames, Anytime: Resolving Velocity Ambiguity in Video Frame Interpolation

Existing video frame interpolation (VFI) methods blindly predict where each object is at a specific timestep t ("time indexing"), which struggles to predict precise object movements. Given two images of a baseball, there are infinitely many possible trajectories: accelerating or decelerating, straight or curved. This often results in blurry frames as the method averages out these possibilities. Instead of forcing the network to learn this complicated time-to-location mapping implicitly together with predicting the frames, we provide the network with an explicit hint on how far the object has traveled between start and end frames, a novel approach termed "distance indexing". This method offers a clearer learning goal for models, reducing the uncertainty tied to object speeds. We further observed that, even with this extra guidance, objects can still be blurry especially when they are equally far from both input frames (i.e., halfway in-between), due to the directional ambiguity in long-range motion. To solve this, we propose an iterative reference-based estimation strategy that breaks down a long-range prediction into several short-range steps. When integrating our plug-and-play strategies into state-of-the-art learning-based models, they exhibit markedly sharper outputs and superior perceptual quality in arbitrary time interpolations, using a uniform distance indexing map in the same format as time indexing. Additionally, distance indexing can be specified pixel-wise, which enables temporal manipulation of each object independently, offering a novel tool for video editing tasks like re-timing.

  • 6 authors
·
Nov 14, 2023 1

TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables

Deep models have demonstrated remarkable performance in time series forecasting. However, due to the partially-observed nature of real-world applications, solely focusing on the target of interest, so-called endogenous variables, is usually insufficient to guarantee accurate forecasting. Notably, a system is often recorded into multiple variables, where the exogenous variables can provide valuable external information for endogenous variables. Thus, unlike well-established multivariate or univariate forecasting paradigms that either treat all the variables equally or ignore exogenous information, this paper focuses on a more practical setting: time series forecasting with exogenous variables. We propose a novel approach, TimeXer, to ingest external information to enhance the forecasting of endogenous variables. With deftly designed embedding layers, TimeXer empowers the canonical Transformer with the ability to reconcile endogenous and exogenous information, where patch-wise self-attention and variate-wise cross-attention are used simultaneously. Moreover, global endogenous tokens are learned to effectively bridge the causal information underlying exogenous series into endogenous temporal patches. Experimentally, TimeXer achieves consistent state-of-the-art performance on twelve real-world forecasting benchmarks and exhibits notable generality and scalability. Code is available at this repository: https://github.com/thuml/TimeXer.

  • 9 authors
·
Feb 29, 2024

Is Mamba Effective for Time Series Forecasting?

In the realm of time series forecasting (TSF), it is imperative for models to adeptly discern and distill hidden patterns within historical time series data to forecast future states. Transformer-based models exhibit formidable efficacy in TSF, primarily attributed to their advantage in apprehending these patterns. However, the quadratic complexity of the Transformer leads to low computational efficiency and high costs, which somewhat hinders the deployment of the TSF model in real-world scenarios. Recently, Mamba, a selective state space model, has gained traction due to its ability to process dependencies in sequences while maintaining near-linear complexity. For TSF tasks, these characteristics enable Mamba to comprehend hidden patterns as the Transformer and reduce computational overhead compared to the Transformer. Therefore, we propose a Mamba-based model named Simple-Mamba (S-Mamba) for TSF. Specifically, we tokenize the time points of each variate autonomously via a linear layer. A bidirectional Mamba layer is utilized to extract inter-variate correlations and a Feed-Forward Network is set to learn temporal dependencies. Finally, the generation of forecast outcomes through a linear mapping layer. Experiments on thirteen public datasets prove that S-Mamba maintains low computational overhead and achieves leading performance. Furthermore, we conduct extensive experiments to explore Mamba's potential in TSF tasks. Our code is available at https://github.com/wzhwzhwzh0921/S-D-Mamba.

  • 8 authors
·
Mar 17, 2024

Multi-resolution Networks For Flexible Irregular Time Series Modeling (Multi-FIT)

Missing values, irregularly collected samples, and multi-resolution signals commonly occur in multivariate time series data, making predictive tasks difficult. These challenges are especially prevalent in the healthcare domain, where patients' vital signs and electronic records are collected at different frequencies and have occasionally missing information due to the imperfections in equipment or patient circumstances. Researchers have handled each of these issues differently, often handling missing data through mean value imputation and then using sequence models over the multivariate signals while ignoring the different resolution of signals. We propose a unified model named Multi-resolution Flexible Irregular Time series Network (Multi-FIT). The building block for Multi-FIT is the FIT network. The FIT network creates an informative dense representation at each time step using signal information such as last observed value, time difference since the last observed time stamp and overall mean for the signal. Vertical FIT (FIT-V) is a variant of FIT which also models the relationship between different temporal signals while creating the informative dense representations for the signal. The multi-FIT model uses multiple FIT networks for sets of signals with different resolutions, further facilitating the construction of flexible representations. Our model has three main contributions: a.) it does not impute values but rather creates informative representations to provide flexibility to the model for creating task-specific representations b.) it models the relationship between different signals in the form of support signals c.) it models different resolutions in parallel before merging them for the final prediction task. The FIT, FIT-V and Multi-FIT networks improve upon the state-of-the-art models for three predictive tasks, including the forecasting of patient survival.

  • 7 authors
·
Apr 30, 2019

Modeling Inter-Dependence Between Time and Mark in Multivariate Temporal Point Processes

Temporal Point Processes (TPP) are probabilistic generative frameworks. They model discrete event sequences localized in continuous time. Generally, real-life events reveal descriptive information, known as marks. Marked TPPs model time and marks of the event together for practical relevance. Conditioned on past events, marked TPPs aim to learn the joint distribution of the time and the mark of the next event. For simplicity, conditionally independent TPP models assume time and marks are independent given event history. They factorize the conditional joint distribution of time and mark into the product of individual conditional distributions. This structural limitation in the design of TPP models hurt the predictive performance on entangled time and mark interactions. In this work, we model the conditional inter-dependence of time and mark to overcome the limitations of conditionally independent models. We construct a multivariate TPP conditioning the time distribution on the current event mark in addition to past events. Besides the conventional intensity-based models for conditional joint distribution, we also draw on flexible intensity-free TPP models from the literature. The proposed TPP models outperform conditionally independent and dependent models in standard prediction tasks. Our experimentation on various datasets with multiple evaluation metrics highlights the merit of the proposed approach.

  • 4 authors
·
Oct 27, 2022

Alleviating Exposure Bias in Diffusion Models through Sampling with Shifted Time Steps

Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the synthesis of high-quality images. However, their inference process characteristically requires numerous, potentially hundreds, of iterative steps, which could exaggerate the problem of exposure bias due to the training and inference discrepancy. Previous work has attempted to mitigate this issue by perturbing inputs during training, which consequently mandates the retraining of the DPM. In this work, we conduct a systematic study of exposure bias in DPM and, intriguingly, we find that the exposure bias could be alleviated with a novel sampling method that we propose, without retraining the model. We empirically and theoretically show that, during inference, for each backward time step t and corresponding state x_t, there might exist another time step t_s which exhibits superior coupling with x_t. Based on this finding, we introduce a sampling method named Time-Shift Sampler. Our framework can be seamlessly integrated to existing sampling algorithms, such as DDPM, DDIM and other high-order solvers, inducing merely minimal additional computations. Experimental results show our method brings significant and consistent improvements in FID scores on different datasets and sampling methods. For example, integrating Time-Shift Sampler to F-PNDM yields a FID=3.88, achieving 44.49\% improvements as compared to F-PNDM, on CIFAR-10 with 10 sampling steps, which is more performant than the vanilla DDIM with 100 sampling steps. Our code is available at https://github.com/Mingxiao-Li/TS-DPM.

  • 5 authors
·
May 24, 2023

MIRA: Medical Time Series Foundation Model for Real-World Health Data

A unified foundation model for medical time series -- pretrained on open access and ethics board-approved medical corpora -- offers the potential to reduce annotation burdens, minimize model customization, and enable robust transfer across clinical institutions, modalities, and tasks, particularly in data-scarce or privacy-constrained environments. However, existing generalist time series foundation models struggle to handle medical time series data due to their inherent challenges, including irregular intervals, heterogeneous sampling rates, and frequent missing values. To address these challenges, we introduce MIRA, a unified foundation model specifically designed for medical time series forecasting. MIRA incorporates a Continuous-Time Rotary Positional Encoding that enables fine-grained modeling of variable time intervals, a frequency-specific mixture-of-experts layer that routes computation across latent frequency regimes to further promote temporal specialization, and a Continuous Dynamics Extrapolation Block based on Neural ODE that models the continuous trajectory of latent states, enabling accurate forecasting at arbitrary target timestamps. Pretrained on a large-scale and diverse medical corpus comprising over 454 billion time points collect from publicly available datasets, MIRA achieves reductions in forecasting errors by an average of 10% and 7% in out-of-distribution and in-distribution scenarios, respectively, when compared to other zero-shot and fine-tuned baselines. We also introduce a comprehensive benchmark spanning multiple downstream clinical tasks, establishing a foundation for future research in medical time series modeling.

  • 11 authors
·
Jun 9

Monash University, UEA, UCR Time Series Extrinsic Regression Archive

Time series research has gathered lots of interests in the last decade, especially for Time Series Classification (TSC) and Time Series Forecasting (TSF). Research in TSC has greatly benefited from the University of California Riverside and University of East Anglia (UCR/UEA) Time Series Archives. On the other hand, the advancement in Time Series Forecasting relies on time series forecasting competitions such as the Makridakis competitions, NN3 and NN5 Neural Network competitions, and a few Kaggle competitions. Each year, thousands of papers proposing new algorithms for TSC and TSF have utilized these benchmarking archives. These algorithms are designed for these specific problems, but may not be useful for tasks such as predicting the heart rate of a person using photoplethysmogram (PPG) and accelerometer data. We refer to this problem as Time Series Extrinsic Regression (TSER), where we are interested in a more general methodology of predicting a single continuous value, from univariate or multivariate time series. This prediction can be from the same time series or not directly related to the predictor time series and does not necessarily need to be a future value or depend heavily on recent values. To the best of our knowledge, research into TSER has received much less attention in the time series research community and there are no models developed for general time series extrinsic regression problems. Most models are developed for a specific problem. Therefore, we aim to motivate and support the research into TSER by introducing the first TSER benchmarking archive. This archive contains 19 datasets from different domains, with varying number of dimensions, unequal length dimensions, and missing values. In this paper, we introduce the datasets in this archive and did an initial benchmark on existing models.

  • 4 authors
·
Jun 19, 2020

Physics-informed Reduced Order Modeling of Time-dependent PDEs via Differentiable Solvers

Reduced-order modeling (ROM) of time-dependent and parameterized differential equations aims to accelerate the simulation of complex high-dimensional systems by learning a compact latent manifold representation that captures the characteristics of the solution fields and their time-dependent dynamics. Although high-fidelity numerical solvers generate the training datasets, they have thus far been excluded from the training process, causing the learned latent dynamics to drift away from the discretized governing physics. This mismatch often limits generalization and forecasting capabilities. In this work, we propose Physics-informed ROM (Φ-ROM) by incorporating differentiable PDE solvers into the training procedure. Specifically, the latent space dynamics and its dependence on PDE parameters are shaped directly by the governing physics encoded in the solver, ensuring a strong correspondence between the full and reduced systems. Our model outperforms state-of-the-art data-driven ROMs and other physics-informed strategies by accurately generalizing to new dynamics arising from unseen parameters, enabling long-term forecasting beyond the training horizon, maintaining continuity in both time and space, and reducing the data cost. Furthermore, Φ-ROM learns to recover and forecast the solution fields even when trained or evaluated with sparse and irregular observations of the fields, providing a flexible framework for field reconstruction and data assimilation. We demonstrate the framework's robustness across various PDE solvers and highlight its broad applicability by providing an open-source JAX implementation that is readily extensible to other PDE systems and differentiable solvers, available at https://phi-rom.github.io.

  • 4 authors
·
May 20

A Third-Order Gaussian Process Trajectory Representation Framework with Closed-Form Kinematics for Continuous-Time Motion Estimation

In this paper, we propose a third-order, i.e., white-noise-on-jerk, Gaussian Process (GP) Trajectory Representation (TR) framework for continuous-time (CT) motion estimation (ME) tasks. Our framework features a unified trajectory representation that encapsulates the kinematic models of both SO(3)timesR^3 and SE(3) pose representations. This encapsulation strategy allows users to use the same implementation of measurement-based factors for either choice of pose representation, which facilitates experimentation and comparison to achieve the best model for the ME task. In addition, unique to our framework, we derive the kinematic models with the closed-form temporal derivatives of the local variable of SO(3) and SE(3), which so far has only been approximated based on the Taylor expansion in the literature. Our experiments show that these kinematic models can improve the estimation accuracy in high-speed scenarios. All analytical Jacobians of the interpolated states with respect to the support states of the trajectory representation, as well as the motion prior factors, are also provided for accelerated Gauss-Newton (GN) optimization. Our experiments demonstrate the efficacy and efficiency of the framework in various motion estimation tasks such as localization, calibration, and odometry, facilitating fast prototyping for ME researchers. We release the source code for the benefit of the community. Our project is available at https://github.com/brytsknguyen/gptr.

  • 8 authors
·
Oct 30, 2024

TiVy: Time Series Visual Summary for Scalable Visualization

Visualizing multiple time series presents fundamental tradeoffs between scalability and visual clarity. Time series capture the behavior of many large-scale real-world processes, from stock market trends to urban activities. Users often gain insights by visualizing them as line charts, juxtaposing or superposing multiple time series to compare them and identify trends and patterns. However, existing representations struggle with scalability: when covering long time spans, leading to visual clutter from too many small multiples or overlapping lines. We propose TiVy, a new algorithm that summarizes time series using sequential patterns. It transforms the series into a set of symbolic sequences based on subsequence visual similarity using Dynamic Time Warping (DTW), then constructs a disjoint grouping of similar subsequences based on the frequent sequential patterns. The grouping result, a visual summary of time series, provides uncluttered superposition with fewer small multiples. Unlike common clustering techniques, TiVy extracts similar subsequences (of varying lengths) aligned in time. We also present an interactive time series visualization that renders large-scale time series in real-time. Our experimental evaluation shows that our algorithm (1) extracts clear and accurate patterns when visualizing time series data, (2) achieves a significant speed-up (1000X) compared to a straightforward DTW clustering. We also demonstrate the efficiency of our approach to explore hidden structures in massive time series data in two usage scenarios.

  • 5 authors
·
Jul 25

TTS-VAR: A Test-Time Scaling Framework for Visual Auto-Regressive Generation

Scaling visual generation models is essential for real-world content creation, yet requires substantial training and computational expenses. Alternatively, test-time scaling has garnered growing attention due to resource efficiency and promising performance. In this work, we present TTS-VAR, the first general test-time scaling framework for visual auto-regressive (VAR) models, modeling the generation process as a path searching problem. To dynamically balance computational efficiency with exploration capacity, we first introduce an adaptive descending batch size schedule throughout the causal generation process. Besides, inspired by VAR's hierarchical coarse-to-fine multi-scale generation, our framework integrates two key components: (i) At coarse scales, we observe that generated tokens are hard for evaluation, possibly leading to erroneous acceptance of inferior samples or rejection of superior samples. Noticing that the coarse scales contain sufficient structural information, we propose clustering-based diversity search. It preserves structural variety through semantic feature clustering, enabling later selection on samples with higher potential. (ii) In fine scales, resampling-based potential selection prioritizes promising candidates using potential scores, which are defined as reward functions incorporating multi-scale generation history. Experiments on the powerful VAR model Infinity show a notable 8.7% GenEval score improvement (from 0.69 to 0.75). Key insights reveal that early-stage structural features effectively influence final quality, and resampling efficacy varies across generation scales. Code is available at https://github.com/ali-vilab/TTS-VAR.

  • 7 authors
·
Jul 24 2

Time-IMM: A Dataset and Benchmark for Irregular Multimodal Multivariate Time Series

Time series data in real-world applications such as healthcare, climate modeling, and finance are often irregular, multimodal, and messy, with varying sampling rates, asynchronous modalities, and pervasive missingness. However, existing benchmarks typically assume clean, regularly sampled, unimodal data, creating a significant gap between research and real-world deployment. We introduce Time-IMM, a dataset specifically designed to capture cause-driven irregularity in multimodal multivariate time series. Time-IMM represents nine distinct types of time series irregularity, categorized into trigger-based, constraint-based, and artifact-based mechanisms. Complementing the dataset, we introduce IMM-TSF, a benchmark library for forecasting on irregular multimodal time series, enabling asynchronous integration and realistic evaluation. IMM-TSF includes specialized fusion modules, including a timestamp-to-text fusion module and a multimodality fusion module, which support both recency-aware averaging and attention-based integration strategies. Empirical results demonstrate that explicitly modeling multimodality on irregular time series data leads to substantial gains in forecasting performance. Time-IMM and IMM-TSF provide a foundation for advancing time series analysis under real-world conditions. The dataset is publicly available at https://github.com/blacksnail789521/Time-IMM, and the benchmark library can be accessed at https://github.com/blacksnail789521/IMM-TSF. Project page: https://blacksnail789521.github.io/time-imm-project-page/

Chronos-2: From Univariate to Universal Forecasting

Pretrained time series models have enabled inference-only forecasting systems that produce accurate predictions without task-specific training. However, existing approaches largely focus on univariate forecasting, limiting their applicability in real-world scenarios where multivariate data and covariates play a crucial role. We present Chronos-2, a pretrained model capable of handling univariate, multivariate, and covariate-informed forecasting tasks in a zero-shot manner. Chronos-2 employs a group attention mechanism that facilitates in-context learning (ICL) through efficient information sharing across multiple time series within a group, which may represent sets of related series, variates of a multivariate series, or targets and covariates in a forecasting task. These general capabilities are achieved through training on synthetic datasets that impose diverse multivariate structures on univariate series. Chronos-2 delivers state-of-the-art performance across three comprehensive benchmarks: fev-bench, GIFT-Eval, and Chronos Benchmark II. On fev-bench, which emphasizes multivariate and covariate-informed forecasting, Chronos-2's universal ICL capabilities lead to substantial improvements over existing models. On tasks involving covariates, it consistently outperforms baselines by a wide margin. Case studies in the energy and retail domains further highlight its practical advantages. The in-context learning capabilities of Chronos-2 establish it as a general-purpose forecasting model that can be used "as is" in real-world forecasting pipelines.

amazon Amazon
·
Oct 17 3

Taking ROCKET on an Efficiency Mission: Multivariate Time Series Classification with LightWaveS

Nowadays, with the rising number of sensors in sectors such as healthcare and industry, the problem of multivariate time series classification (MTSC) is getting increasingly relevant and is a prime target for machine and deep learning approaches. Their expanding adoption in real-world environments is causing a shift in focus from the pursuit of ever-higher prediction accuracy with complex models towards practical, deployable solutions that balance accuracy and parameters such as prediction speed. An MTSC model that has attracted attention recently is ROCKET, based on random convolutional kernels, both because of its very fast training process and its state-of-the-art accuracy. However, the large number of features it utilizes may be detrimental to inference time. Examining its theoretical background and limitations enables us to address potential drawbacks and present LightWaveS: a framework for accurate MTSC, which is fast both during training and inference. Specifically, utilizing wavelet scattering transformation and distributed feature selection, we manage to create a solution that employs just 2.5% of the ROCKET features, while achieving accuracy comparable to recent MTSC models. LightWaveS also scales well across multiple compute nodes and with the number of input channels during training. In addition, it can significantly reduce the input size and provide insight to an MTSC problem by keeping only the most useful channels. We present three versions of our algorithm and their results on distributed training time and scalability, accuracy, and inference speedup. We show that we achieve speedup ranging from 9x to 53x compared to ROCKET during inference on an edge device, on datasets with comparable accuracy.

  • 4 authors
·
Apr 4, 2022

OLinear: A Linear Model for Time Series Forecasting in Orthogonally Transformed Domain

This paper presents OLinear, a linear-based multivariate time series forecasting model that operates in an orthogonally transformed domain. Recent forecasting models typically adopt the temporal forecast (TF) paradigm, which directly encode and decode time series in the time domain. However, the entangled step-wise dependencies in series data can hinder the performance of TF. To address this, some forecasters conduct encoding and decoding in the transformed domain using fixed, dataset-independent bases (e.g., sine and cosine signals in the Fourier transform). In contrast, we utilize OrthoTrans, a data-adaptive transformation based on an orthogonal matrix that diagonalizes the series' temporal Pearson correlation matrix. This approach enables more effective encoding and decoding in the decorrelated feature domain and can serve as a plug-in module to enhance existing forecasters. To enhance the representation learning for multivariate time series, we introduce a customized linear layer, NormLin, which employs a normalized weight matrix to capture multivariate dependencies. Empirically, the NormLin module shows a surprising performance advantage over multi-head self-attention, while requiring nearly half the FLOPs. Extensive experiments on 24 benchmarks and 140 forecasting tasks demonstrate that OLinear consistently achieves state-of-the-art performance with high efficiency. Notably, as a plug-in replacement for self-attention, the NormLin module consistently enhances Transformer-based forecasters. The code and datasets are available at https://anonymous.4open.science/r/OLinear

  • 8 authors
·
May 12

Ca2-VDM: Efficient Autoregressive Video Diffusion Model with Causal Generation and Cache Sharing

With the advance of diffusion models, today's video generation has achieved impressive quality. To extend the generation length and facilitate real-world applications, a majority of video diffusion models (VDMs) generate videos in an autoregressive manner, i.e., generating subsequent clips conditioned on the last frame(s) of the previous clip. However, existing autoregressive VDMs are highly inefficient and redundant: The model must re-compute all the conditional frames that are overlapped between adjacent clips. This issue is exacerbated when the conditional frames are extended autoregressively to provide the model with long-term context. In such cases, the computational demands increase significantly (i.e., with a quadratic complexity w.r.t. the autoregression step). In this paper, we propose Ca2-VDM, an efficient autoregressive VDM with Causal generation and Cache sharing. For causal generation, it introduces unidirectional feature computation, which ensures that the cache of conditional frames can be precomputed in previous autoregression steps and reused in every subsequent step, eliminating redundant computations. For cache sharing, it shares the cache across all denoising steps to avoid the huge cache storage cost. Extensive experiments demonstrated that our Ca2-VDM achieves state-of-the-art quantitative and qualitative video generation results and significantly improves the generation speed. Code is available at https://github.com/Dawn-LX/CausalCache-VDM

  • 6 authors
·
Nov 25, 2024

EasyTPP: Towards Open Benchmarking Temporal Point Processes

Continuous-time event sequences play a vital role in real-world domains such as healthcare, finance, online shopping, social networks, and so on. To model such data, temporal point processes (TPPs) have emerged as the most natural and competitive models, making a significant impact in both academic and application communities. Despite the emergence of many powerful models in recent years, there hasn't been a central benchmark for these models and future research endeavors. This lack of standardization impedes researchers and practitioners from comparing methods and reproducing results, potentially slowing down progress in this field. In this paper, we present EasyTPP, the first central repository of research assets (e.g., data, models, evaluation programs, documentations) in the area of event sequence modeling. Our EasyTPP makes several unique contributions to this area: a unified interface of using existing datasets and adding new datasets; a wide range of evaluation programs that are easy to use and extend as well as facilitate reproducible research; implementations of popular neural TPPs, together with a rich library of modules by composing which one could quickly build complex models. All the data and implementation can be found at https://github.com/ant-research/EasyTemporalPointProcess. We will actively maintain this benchmark and welcome contributions from other researchers and practitioners. Our benchmark will help promote reproducible research in this field, thus accelerating research progress as well as making more significant real-world impacts.

  • 12 authors
·
Jul 16, 2023

TLB-VFI: Temporal-Aware Latent Brownian Bridge Diffusion for Video Frame Interpolation

Video Frame Interpolation (VFI) aims to predict the intermediate frame I_n (we use n to denote time in videos to avoid notation overload with the timestep t in diffusion models) based on two consecutive neighboring frames I_0 and I_1. Recent approaches apply diffusion models (both image-based and video-based) in this task and achieve strong performance. However, image-based diffusion models are unable to extract temporal information and are relatively inefficient compared to non-diffusion methods. Video-based diffusion models can extract temporal information, but they are too large in terms of training scale, model size, and inference time. To mitigate the above issues, we propose Temporal-Aware Latent Brownian Bridge Diffusion for Video Frame Interpolation (TLB-VFI), an efficient video-based diffusion model. By extracting rich temporal information from video inputs through our proposed 3D-wavelet gating and temporal-aware autoencoder, our method achieves 20% improvement in FID on the most challenging datasets over recent SOTA of image-based diffusion models. Meanwhile, due to the existence of rich temporal information, our method achieves strong performance while having 3times fewer parameters. Such a parameter reduction results in 2.3x speed up. By incorporating optical flow guidance, our method requires 9000x less training data and achieves over 20x fewer parameters than video-based diffusion models. Codes and results are available at our project page: https://zonglinl.github.io/tlbvfi_page.

  • 2 authors
·
Jul 7 1

Towards Accurate Image Coding: Improved Autoregressive Image Generation with Dynamic Vector Quantization

Existing vector quantization (VQ) based autoregressive models follow a two-stage generation paradigm that first learns a codebook to encode images as discrete codes, and then completes generation based on the learned codebook. However, they encode fixed-size image regions into fixed-length codes and ignore their naturally different information densities, which results in insufficiency in important regions and redundancy in unimportant ones, and finally degrades the generation quality and speed. Moreover, the fixed-length coding leads to an unnatural raster-scan autoregressive generation. To address the problem, we propose a novel two-stage framework: (1) Dynamic-Quantization VAE (DQ-VAE) which encodes image regions into variable-length codes based on their information densities for an accurate and compact code representation. (2) DQ-Transformer which thereby generates images autoregressively from coarse-grained (smooth regions with fewer codes) to fine-grained (details regions with more codes) by modeling the position and content of codes in each granularity alternately, through a novel stacked-transformer architecture and shared-content, non-shared position input layers designs. Comprehensive experiments on various generation tasks validate our superiorities in both effectiveness and efficiency. Code will be released at https://github.com/CrossmodalGroup/DynamicVectorQuantization.

  • 4 authors
·
May 19, 2023

Image-Free Timestep Distillation via Continuous-Time Consistency with Trajectory-Sampled Pairs

Timestep distillation is an effective approach for improving the generation efficiency of diffusion models. The Consistency Model (CM), as a trajectory-based framework, demonstrates significant potential due to its strong theoretical foundation and high-quality few-step generation. Nevertheless, current continuous-time consistency distillation methods still rely heavily on training data and computational resources, hindering their deployment in resource-constrained scenarios and limiting their scalability to diverse domains. To address this issue, we propose Trajectory-Backward Consistency Model (TBCM), which eliminates the dependence on external training data by extracting latent representations directly from the teacher model's generation trajectory. Unlike conventional methods that require VAE encoding and large-scale datasets, our self-contained distillation paradigm significantly improves both efficiency and simplicity. Moreover, the trajectory-extracted samples naturally bridge the distribution gap between training and inference, thereby enabling more effective knowledge transfer. Empirically, TBCM achieves 6.52 FID and 28.08 CLIP scores on MJHQ-30k under one-step generation, while reducing training time by approximately 40% compared to Sana-Sprint and saving a substantial amount of GPU memory, demonstrating superior efficiency without sacrificing quality. We further reveal the diffusion-generation space discrepancy in continuous-time consistency distillation and analyze how sampling strategies affect distillation performance, offering insights for future distillation research. GitHub Link: https://github.com/hustvl/TBCM.

  • 8 authors
·
Nov 25 2

Implicit Gaussian process representation of vector fields over arbitrary latent manifolds

Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.

  • 9 authors
·
Sep 28, 2023

CoRA: Covariate-Aware Adaptation of Time Series Foundation Models

Time Series Foundation Models (TSFMs) have shown significant impact through their model capacity, scalability, and zero-shot generalization. However, due to the heterogeneity of inter-variate dependencies and the backbone scalability on large-scale multivariate datasets, most TSFMs are typically pre-trained on univariate time series. This limitation renders them oblivious to crucial information from diverse covariates in real-world forecasting tasks. To further enhance the performance of TSFMs, we propose a general covariate-aware adaptation (CoRA) framework for TSFMs. It leverages pre-trained backbones of foundation models while effectively incorporating exogenous covariates from various modalities, including time series, language, and images, to improve the quality of predictions. Technically, CoRA maintains the equivalence of initialization and parameter consistency during adaptation. With preserved backbones of foundation models as frozen feature extractors, the outcome embeddings from foundation models are empirically demonstrated more informative than raw data. Further, CoRA employs a novel Granger Causality Embedding (GCE) to automatically evaluate covariates regarding their causal predictability with respect to the target variate. We incorporate these weighted embeddings with a zero-initialized condition-injection mechanism, avoiding catastrophic forgetting of pre-trained foundation models and gradually integrates exogenous information. Extensive experiments show that CoRA of TSFMs surpasses state-of-the-art covariate-aware deep forecasters with full or few-shot training samples, achieving 31.1% MSE reduction on covariate-aware forecasting. Compared to other adaptation methods, CoRA exhibits strong compatibility with various advanced TSFMs and extends the scope of covariates to other modalities, presenting a practical paradigm for the application of TSFMs.

  • 8 authors
·
Oct 14

Implicit Neural Spatial Representations for Time-dependent PDEs

Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/

  • 5 authors
·
Sep 30, 2022

FlowState: Sampling Rate Invariant Time Series Forecasting

Foundation models (FMs) have transformed natural language processing, but their success has not yet translated to time series forecasting. Existing time series foundation models (TSFMs), often based on transformer variants, struggle with generalization across varying context and target lengths, lack adaptability to different sampling rates, and are computationally inefficient. We introduce FlowState, a novel TSFM architecture that addresses these challenges through two key innovations: a state space model (SSM) based encoder and a functional basis decoder. This design enables continuous-time modeling and dynamic time-scale adjustment, allowing FlowState to inherently generalize across all possible temporal resolutions, and dynamically adjust the forecasting horizons. In contrast to other state-of-the-art TSFMs, which require training data across all possible sampling rates to memorize patterns at each scale, FlowState inherently adapts its internal dynamics to the input scale, enabling smaller models, reduced data requirements, and improved efficiency. We further propose an efficient pretraining strategy that improves robustness and accelerates training. Despite being the smallest model, FlowState outperforms all other models and is state-of-the-art for the GIFT-ZS and the Chronos-ZS benchmarks. Ablation studies confirm the effectiveness of its components, and we demonstrate its unique ability to adapt online to varying input sampling rates.

  • 4 authors
·
Aug 7

M-VAR: Decoupled Scale-wise Autoregressive Modeling for High-Quality Image Generation

There exists recent work in computer vision, named VAR, that proposes a new autoregressive paradigm for image generation. Diverging from the vanilla next-token prediction, VAR structurally reformulates the image generation into a coarse to fine next-scale prediction. In this paper, we show that this scale-wise autoregressive framework can be effectively decoupled into intra-scale modeling, which captures local spatial dependencies within each scale, and inter-scale modeling, which models cross-scale relationships progressively from coarse-to-fine scales. This decoupling structure allows to rebuild VAR in a more computationally efficient manner. Specifically, for intra-scale modeling -- crucial for generating high-fidelity images -- we retain the original bidirectional self-attention design to ensure comprehensive modeling; for inter-scale modeling, which semantically connects different scales but is computationally intensive, we apply linear-complexity mechanisms like Mamba to substantially reduce computational overhead. We term this new framework M-VAR. Extensive experiments demonstrate that our method outperforms existing models in both image quality and generation speed. For example, our 1.5B model, with fewer parameters and faster inference speed, outperforms the largest VAR-d30-2B. Moreover, our largest model M-VAR-d32 impressively registers 1.78 FID on ImageNet 256times256 and outperforms the prior-art autoregressive models LlamaGen/VAR by 0.4/0.19 and popular diffusion models LDM/DiT by 1.82/0.49, respectively. Code is avaiable at https://github.com/OliverRensu/MVAR.

  • 6 authors
·
Nov 15, 2024

Pay Attention to Evolution: Time Series Forecasting with Deep Graph-Evolution Learning

Time-series forecasting is one of the most active research topics in artificial intelligence. Applications in real-world time series should consider two factors for achieving reliable predictions: modeling dynamic dependencies among multiple variables and adjusting the model's intrinsic hyperparameters. A still open gap in that literature is that statistical and ensemble learning approaches systematically present lower predictive performance than deep learning methods. They generally disregard the data sequence aspect entangled with multivariate data represented in more than one time series. Conversely, this work presents a novel neural network architecture for time-series forecasting that combines the power of graph evolution with deep recurrent learning on distinct data distributions; we named our method Recurrent Graph Evolution Neural Network (ReGENN). The idea is to infer multiple multivariate relationships between co-occurring time-series by assuming that the temporal data depends not only on inner variables and intra-temporal relationships (i.e., observations from itself) but also on outer variables and inter-temporal relationships (i.e., observations from other-selves). An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones, showing sound improvement of up to 64.87% over the competing algorithms. Furthermore, we present an analysis of the intermediate weights arising from ReGENN, showing that by looking at inter and intra-temporal relationships simultaneously, time-series forecasting is majorly improved if paying attention to how multiple multivariate data synchronously evolve.

  • 6 authors
·
Aug 28, 2020

Chaos as an interpretable benchmark for forecasting and data-driven modelling

The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.

  • 1 authors
·
Oct 11, 2021

TiM4Rec: An Efficient Sequential Recommendation Model Based on Time-Aware Structured State Space Duality Model

The Sequential Recommendation modeling paradigm is shifting from Transformer to Mamba architecture, which comprises two generations: Mamba1, based on the State Space Model (SSM), and Mamba2, based on State Space Duality (SSD). Although SSD offers superior computational efficiency compared to SSM, it suffers performance degradation in sequential recommendation tasks, especially in low-dimensional scenarios that are critical for these tasks. Considering that time-aware enhancement methods are commonly employed to mitigate performance loss, our analysis reveals that the performance decline of SSD can similarly be fundamentally compensated by leveraging mechanisms in time-aware methods. Thus, we propose integrating time-awareness into the SSD framework to address these performance issues. However, integrating current time-aware methods, modeled after TiSASRec, into SSD faces the following challenges: 1) the complexity of integrating these transformer-based mechanisms with the SSD architecture, and 2) the computational inefficiency caused by the need for dimensionality expansion of time-difference modeling. To overcome these challenges, we introduce a novel Time-aware Structured Masked Matrix that efficiently incorporates time-aware capabilities into SSD. Building on this, we propose Time-Aware Mamba for Recommendation (TiM4Rec), which mitigates performance degradation in low-dimensional SSD contexts while preserving computational efficiency. This marks the inaugural application of a time-aware enhancement method specifically tailored for the Mamba architecture within the domain of sequential recommendation. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our approach. The code for our model is accessible at https://github.com/AlwaysFHao/TiM4Rec.

  • 7 authors
·
Sep 24, 2024

From Reusing to Forecasting: Accelerating Diffusion Models with TaylorSeers

Diffusion Transformers (DiT) have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. To solve this problem, feature caching has been proposed to accelerate diffusion models by caching the features in the previous timesteps and then reusing them in the following timesteps. However, at timesteps with significant intervals, the feature similarity in diffusion models decreases substantially, leading to a pronounced increase in errors introduced by feature caching, significantly harming the generation quality. To solve this problem, we propose TaylorSeer, which firstly shows that features of diffusion models at future timesteps can be predicted based on their values at previous timesteps. Based on the fact that features change slowly and continuously across timesteps, TaylorSeer employs a differential method to approximate the higher-order derivatives of features and predict features in future timesteps with Taylor series expansion. Extensive experiments demonstrate its significant effectiveness in both image and video synthesis, especially in high acceleration ratios. For instance, it achieves an almost lossless acceleration of 4.99times on FLUX and 5.00times on HunyuanVideo without additional training. On DiT, it achieves 3.41 lower FID compared with previous SOTA at 4.53times acceleration. %Our code is provided in the supplementary materials and will be made publicly available on GitHub. Our codes have been released in Github:https://github.com/Shenyi-Z/TaylorSeer

  • 5 authors
·
Mar 10

KARMA: A Multilevel Decomposition Hybrid Mamba Framework for Multivariate Long-Term Time Series Forecasting

Multivariate long-term and efficient time series forecasting is a key requirement for a variety of practical applications, and there are complex interleaving time dynamics in time series data that require decomposition modeling. Traditional time series decomposition methods are single and rely on fixed rules, which are insufficient for mining the potential information of the series and adapting to the dynamic characteristics of complex series. On the other hand, the Transformer-based models for time series forecasting struggle to effectively model long sequences and intricate dynamic relationships due to their high computational complexity. To overcome these limitations, we introduce KARMA, with an Adaptive Time Channel Decomposition module (ATCD) to dynamically extract trend and seasonal components. It further integrates a Hybrid Frequency-Time Decomposition module (HFTD) to further decompose Series into frequency-domain and time-domain. These components are coupled with multi-scale Mamba-based KarmaBlock to efficiently process global and local information in a coordinated manner. Experiments on eight real-world datasets from diverse domains well demonstrated that KARMA significantly outperforms mainstream baseline methods in both predictive accuracy and computational efficiency. Code and full results are available at this repository: https://github.com/yedadasd/KARMA

  • 7 authors
·
Jun 10

Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks

Molecular dynamics (MD) simulations play a crucial role in scientific research. Yet their computational cost often limits the timescales and system sizes that can be explored. Most data-driven efforts have been focused on reducing the computational cost of accurate interatomic forces required for solving the equations of motion. Despite their success, however, these machine learning interatomic potentials (MLIPs) are still bound to small time-steps. In this work, we introduce TrajCast, a transferable and data-efficient framework based on autoregressive equivariant message passing networks that directly updates atomic positions and velocities lifting the constraints imposed by traditional numerical integration. We benchmark our framework across various systems, including a small molecule, crystalline material, and bulk liquid, demonstrating excellent agreement with reference MD simulations for structural, dynamical, and energetic properties. Depending on the system, TrajCast allows for forecast intervals up to 30times larger than traditional MD time-steps, generating over 15 ns of trajectory data per day for a solid with more than 4,000 atoms. By enabling efficient large-scale simulations over extended timescales, TrajCast can accelerate materials discovery and explore physical phenomena beyond the reach of traditional simulations and experiments. An open-source implementation of TrajCast is accessible under https://github.com/IBM/trajcast.

  • 6 authors
·
Mar 31

A Survey of Reasoning and Agentic Systems in Time Series with Large Language Models

Time series reasoning treats time as a first-class axis and incorporates intermediate evidence directly into the answer. This survey defines the problem and organizes the literature by reasoning topology with three families: direct reasoning in one step, linear chain reasoning with explicit intermediates, and branch-structured reasoning that explores, revises, and aggregates. The topology is crossed with the main objectives of the field, including traditional time series analysis, explanation and understanding, causal inference and decision making, and time series generation, while a compact tag set spans these axes and captures decomposition and verification, ensembling, tool use, knowledge access, multimodality, agent loops, and LLM alignment regimes. Methods and systems are reviewed across domains, showing what each topology enables and where it breaks down in faithfulness or robustness, along with curated datasets, benchmarks, and resources that support study and deployment (https://github.com/blacksnail789521/Time-Series-Reasoning-Survey). Evaluation practices that keep evidence visible and temporally aligned are highlighted, and guidance is distilled on matching topology to uncertainty, grounding with observable artifacts, planning for shift and streaming, and treating cost and latency as design budgets. We emphasize that reasoning structures must balance capacity for grounding and self-correction against computational cost and reproducibility, while future progress will likely depend on benchmarks that tie reasoning quality to utility and on closed-loop testbeds that trade off cost and risk under shift-aware, streaming, and long-horizon settings. Taken together, these directions mark a shift from narrow accuracy toward reliability at scale, enabling systems that not only analyze but also understand, explain, and act on dynamic worlds with traceable evidence and credible outcomes.

  • 11 authors
·
Sep 15

Denoising Task Difficulty-based Curriculum for Training Diffusion Models

Diffusion-based generative models have emerged as powerful tools in the realm of generative modeling. Despite extensive research on denoising across various timesteps and noise levels, a conflict persists regarding the relative difficulties of the denoising tasks. While various studies argue that lower timesteps present more challenging tasks, others contend that higher timesteps are more difficult. To address this conflict, our study undertakes a comprehensive examination of task difficulties, focusing on convergence behavior and changes in relative entropy between consecutive probability distributions across timesteps. Our observational study reveals that denoising at earlier timesteps poses challenges characterized by slower convergence and higher relative entropy, indicating increased task difficulty at these lower timesteps. Building on these observations, we introduce an easy-to-hard learning scheme, drawing from curriculum learning, to enhance the training process of diffusion models. By organizing timesteps or noise levels into clusters and training models with ascending orders of difficulty, we facilitate an order-aware training regime, progressing from easier to harder denoising tasks, thereby deviating from the conventional approach of training diffusion models simultaneously across all timesteps. Our approach leads to improved performance and faster convergence by leveraging benefits of curriculum learning, while maintaining orthogonality with existing improvements in diffusion training techniques. We validate these advantages through comprehensive experiments in image generation tasks, including unconditional, class-conditional, and text-to-image generation.

  • 4 authors
·
Mar 15, 2024

Probabilistic Imputation for Time-series Classification with Missing Data

Multivariate time series data for real-world applications typically contain a significant amount of missing values. The dominant approach for classification with such missing values is to impute them heuristically with specific values (zero, mean, values of adjacent time-steps) or learnable parameters. However, these simple strategies do not take the data generative process into account, and more importantly, do not effectively capture the uncertainty in prediction due to the multiple possibilities for the missing values. In this paper, we propose a novel probabilistic framework for classification with multivariate time series data with missing values. Our model consists of two parts; a deep generative model for missing value imputation and a classifier. Extending the existing deep generative models to better capture structures of time-series data, our deep generative model part is trained to impute the missing values in multiple plausible ways, effectively modeling the uncertainty of the imputation. The classifier part takes the time series data along with the imputed missing values and classifies signals, and is trained to capture the predictive uncertainty due to the multiple possibilities of imputations. Importantly, we show that na\"ively combining the generative model and the classifier could result in trivial solutions where the generative model does not produce meaningful imputations. To resolve this, we present a novel regularization technique that can promote the model to produce useful imputation values that help classification. Through extensive experiments on real-world time series data with missing values, we demonstrate the effectiveness of our method.

  • 6 authors
·
Aug 13, 2023

Temporal Feature Matters: A Framework for Diffusion Model Quantization

The Diffusion models, widely used for image generation, face significant challenges related to their broad applicability due to prolonged inference times and high memory demands. Efficient Post-Training Quantization (PTQ) is crucial to address these issues. However, unlike traditional models, diffusion models critically rely on the time-step for the multi-round denoising. Typically, each time-step is encoded into a hypersensitive temporal feature by several modules. Despite this, existing PTQ methods do not optimize these modules individually. Instead, they employ unsuitable reconstruction objectives and complex calibration methods, leading to significant disturbances in the temporal feature and denoising trajectory, as well as reduced compression efficiency. To address these challenges, we introduce a novel quantization framework that includes three strategies: 1) TIB-based Maintenance: Based on our innovative Temporal Information Block (TIB) definition, Temporal Information-aware Reconstruction (TIAR) and Finite Set Calibration (FSC) are developed to efficiently align original temporal features. 2) Cache-based Maintenance: Instead of indirect and complex optimization for the related modules, pre-computing and caching quantized counterparts of temporal features are developed to minimize errors. 3) Disturbance-aware Selection: Employ temporal feature errors to guide a fine-grained selection between the two maintenance strategies for further disturbance reduction. This framework preserves most of the temporal information and ensures high-quality end-to-end generation. Extensive testing on various datasets, diffusion models and hardware confirms our superior performance and acceleration..

  • 7 authors
·
Jul 28, 2024

iTransformer: Inverted Transformers Are Effective for Time Series Forecasting

The recent boom of linear forecasting models questions the ongoing passion for architectural modifications of Transformer-based forecasters. These forecasters leverage Transformers to model the global dependencies over temporal tokens of time series, with each token formed by multiple variates of the same timestamp. However, Transformers are challenged in forecasting series with larger lookback windows due to performance degradation and computation explosion. Besides, the embedding for each temporal token fuses multiple variates that represent potential delayed events and distinct physical measurements, which may fail in learning variate-centric representations and result in meaningless attention maps. In this work, we reflect on the competent duties of Transformer components and repurpose the Transformer architecture without any modification to the basic components. We propose iTransformer that simply applies the attention and feed-forward network on the inverted dimensions. Specifically, the time points of individual series are embedded into variate tokens which are utilized by the attention mechanism to capture multivariate correlations; meanwhile, the feed-forward network is applied for each variate token to learn nonlinear representations. The iTransformer model achieves state-of-the-art on challenging real-world datasets, which further empowers the Transformer family with promoted performance, generalization ability across different variates, and better utilization of arbitrary lookback windows, making it a nice alternative as the fundamental backbone of time series forecasting. Code is available at this repository: https://github.com/thuml/iTransformer.

  • 7 authors
·
Oct 10, 2023

Robust Layerwise Scaling Rules by Proper Weight Decay Tuning

Empirical scaling laws prescribe how to allocate parameters, data, and compute, while maximal-update parameterization (muP) enables learning-rate transfer across widths by equalizing early-time update magnitudes. However, in modern scale-invariant architectures, training quickly enters an optimizer-governed steady state where normalization layers create backward scale sensitivity and the effective learning rate becomes width dependent, degrading muP transfer. We address this by introducing a weight-decay scaling rule for AdamW that preserves sublayer gain across widths. Empirically, the singular-value spectrum of each matrix parameter scales in norm as eta/lambda with an approximately invariant shape; under width scaling d, we observe that the top singular value scales approximately as eta/lambdacdot d^{0.75}. Combining this observation with the muP learning-rate rule eta_2propto d^{-1} for matrix-like parameters implies an empirical weight-decay scaling rule lambda_2propto d that approximately keeps sublayer gains width invariant. Together with vector-like parameters trained at eta_1=Theta_d(1) and lambda_1=0, this yields zero-shot transfer of both learning rate and weight decay from proxy to target widths, removing per-width sweeps. We validate the rule on LLaMA-style Transformers and in a minimal synthetic setting, and we provide a simple diagnostic, matching top singular values, to check sublayer-gain invariance. Our results extend muP beyond the near-init regime by explicitly controlling steady-state scales set by the optimizer, offering a practical recipe for width-robust hyperparameter transfer under AdamW.

PFGM++: Unlocking the Potential of Physics-Inspired Generative Models

We introduce a new family of physics-inspired generative models termed PFGM++ that unifies diffusion models and Poisson Flow Generative Models (PFGM). These models realize generative trajectories for N dimensional data by embedding paths in N{+}D dimensional space while still controlling the progression with a simple scalar norm of the D additional variables. The new models reduce to PFGM when D{=}1 and to diffusion models when D{to}infty. The flexibility of choosing D allows us to trade off robustness against rigidity as increasing D results in more concentrated coupling between the data and the additional variable norms. We dispense with the biased large batch field targets used in PFGM and instead provide an unbiased perturbation-based objective similar to diffusion models. To explore different choices of D, we provide a direct alignment method for transferring well-tuned hyperparameters from diffusion models (D{to} infty) to any finite D values. Our experiments show that models with finite D can be superior to previous state-of-the-art diffusion models on CIFAR-10/FFHQ 64{times}64 datasets, with FID scores of 1.91/2.43 when D{=}2048/128. In class-conditional setting, D{=}2048 yields current state-of-the-art FID of 1.74 on CIFAR-10. In addition, we demonstrate that models with smaller D exhibit improved robustness against modeling errors. Code is available at https://github.com/Newbeeer/pfgmpp

  • 6 authors
·
Feb 8, 2023

MPTSNet: Integrating Multiscale Periodic Local Patterns and Global Dependencies for Multivariate Time Series Classification

Multivariate Time Series Classification (MTSC) is crucial in extensive practical applications, such as environmental monitoring, medical EEG analysis, and action recognition. Real-world time series datasets typically exhibit complex dynamics. To capture this complexity, RNN-based, CNN-based, Transformer-based, and hybrid models have been proposed. Unfortunately, current deep learning-based methods often neglect the simultaneous construction of local features and global dependencies at different time scales, lacking sufficient feature extraction capabilities to achieve satisfactory classification accuracy. To address these challenges, we propose a novel Multiscale Periodic Time Series Network (MPTSNet), which integrates multiscale local patterns and global correlations to fully exploit the inherent information in time series. Recognizing the multi-periodicity and complex variable correlations in time series, we use the Fourier transform to extract primary periods, enabling us to decompose data into multiscale periodic segments. Leveraging the inherent strengths of CNN and attention mechanism, we introduce the PeriodicBlock, which adaptively captures local patterns and global dependencies while offering enhanced interpretability through attention integration across different periodic scales. The experiments on UEA benchmark datasets demonstrate that the proposed MPTSNet outperforms 21 existing advanced baselines in the MTSC tasks.

  • 3 authors
·
Mar 7

Generative Regression Based Watch Time Prediction for Short-Video Recommendation

Watch time prediction (WTP) has emerged as a pivotal task in short video recommendation systems, designed to quantify user engagement through continuous interaction modeling. Predicting users' watch times on videos often encounters fundamental challenges, including wide value ranges and imbalanced data distributions, which can lead to significant estimation bias when directly applying regression techniques. Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task. While these methods demonstrate partial effectiveness, they exhibit notable limitations: (1) the discretization process frequently relies on bucket partitioning, inherently reducing prediction flexibility and accuracy and (2) the interdependencies among different partition intervals remain underutilized, missing opportunities for effective error correction. Inspired by language modeling paradigms, we propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task. Our approach employs structural discretization to enable nearly lossless value reconstruction while maintaining prediction fidelity. Through carefully designed vocabulary construction and label encoding schemes, each watch time is bijectively mapped to a token sequence. To mitigate the training-inference discrepancy caused by teacher-forcing, we introduce a curriculum learning with embedding mixup strategy that gradually transitions from guided to free-generation modes. We evaluate our method against state-of-the-art approaches on two public datasets and one industrial dataset. We also perform online A/B testing on the Kuaishou App to confirm the real-world effectiveness. The results conclusively show that GR outperforms existing techniques significantly.

  • 9 authors
·
Dec 28, 2024