- Beyond Symmetries : Anomalies in Transverse Ward--Takahashi Identities Anomalies in transverse Ward--Takahashi identities are studied, allowing discussion of the feasibility of anomalies arising in general non-symmetry Ward--Takahashi identities. We adopt the popular Fujikawa's method and rigorous dimensional renormalization to verify the existence of transverse anomalies to one-loop order and any loop order, respectively. The arbitrariness of coefficients of transverse anomalies is revealed, and a way out is also proposed after relating transverse anomalies to Schwinger terms and comparing symmetry and non-symmetry anomalies. Papers that claim the non-existence of transverse anomalies are reviewed to find anomalies hidden in their approaches. The role played by transverse anomalies is discussed. 2 authors · Dec 31, 2019
1 Examining the Source of Defects from a Mechanical Perspective for 3D Anomaly Detection In this paper, we explore a novel approach to 3D anomaly detection (AD) that goes beyond merely identifying anomalies based on structural characteristics. Our primary perspective is that most anomalies arise from unpredictable defective forces originating from both internal and external sources. To address these anomalies, we seek out opposing forces that can help correct them. Therefore, we introduce the Mechanics Complementary Model-based Framework for the 3D-AD task (MC4AD), which generates internal and external corrective forces for each point. We first propose a Diverse Anomaly-Generation (DA-Gen) module designed to simulate various types of anomalies. Next, we present the Corrective Force Prediction Network (CFP-Net), which uses complementary representations for point-level analysis to simulate the different contributions from internal and external corrective forces. To ensure the corrective forces are constrained effectively, we have developed a combined loss function that includes a new symmetric loss and an overall loss. Notably, we implement a Hierarchical Quality Control (HQC) strategy based on a three-way decision process and contribute a dataset titled Anomaly-IntraVariance, which incorporates intraclass variance to evaluate our model. As a result, the proposed MC4AD has been proven effective through theory and experimentation. The experimental results demonstrate that our approach yields nine state-of-the-art performances, achieving optimal results with minimal parameters and the fastest inference speed across five existing datasets, in addition to the proposed Anomaly-IntraVariance dataset. The source is available at https://github.com/hzzzzzhappy/MC4AD 6 authors · May 9, 2025
- Topological Obstructions to Autoencoding Autoencoders have been proposed as a powerful tool for model-independent anomaly detection in high-energy physics. The operating principle is that events which do not belong to the space of training data will be reconstructed poorly, thus flagging them as anomalies. We point out that in a variety of examples of interest, the connection between large reconstruction error and anomalies is not so clear. In particular, for data sets with nontrivial topology, there will always be points that erroneously seem anomalous due to global issues. Conversely, neural networks typically have an inductive bias or prior to locally interpolate such that undersampled or rare events may be reconstructed with small error, despite actually being the desired anomalies. Taken together, these facts are in tension with the simple picture of the autoencoder as an anomaly detector. Using a series of illustrative low-dimensional examples, we show explicitly how the intrinsic and extrinsic topology of the dataset affects the behavior of an autoencoder and how this topology is manifested in the latent space representation during training. We ground this analysis in the discussion of a mock "bump hunt" in which the autoencoder fails to identify an anomalous "signal" for reasons tied to the intrinsic topology of n-particle phase space. 4 authors · Feb 16, 2021
- Higgs Effect Without Lunch Reduction in effective spacetime dimensionality can occur in field-theory models more general than the widely studied dimensional reductions based on technically consistent truncations. Situations where wavefunction factors depend nontrivially on coordinates transverse to the effective lower dimension can give rise to unusual patterns of gauge symmetry breaking. Leading-order gauge modes can be left massless, but naturally occurring Stueckelberg modes can couple importantly at quartic order and higher, thus generating a "covert" pattern of gauge symmetry breaking. Such a situation is illustrated in a five-dimensional model of scalar electrodynamics in which one spatial dimension is taken to be an interval with Dirichlet/Robin boundary conditions on opposing ends. This simple model illuminates a mechanism which also has been found in gravitational braneworld scenarios. 3 authors · Jan 31, 2022
- A Multimessenger Strategy for Downselecting the Orientations of Galactic Close White Dwarf Binaries The planned space-based gravitational wave detector, LISA, will provide a fundamentally new means of studying the orbital alignment of close white dwarf binaries. However, due to the inherent symmetry of their gravitational wave signals, a fourfold degeneracy arises in the transverse projections of their angular momentum vectors. In this paper, we demonstrate that by incorporating timing information from electromagnetic observations, such as radial velocity modulations and light curves, this degeneracy can be reduced to twofold. 1 authors · Jul 1, 2025
- Bosonisation Cohomology: Spin Structure Summation in Every Dimension Gauging fermion parity and summing over spin structures are subtly distinct operations. We introduce 'bosonisation cohomology' groups H_B^{d+2}(X) to capture this difference, for theories in spacetime dimension d equipped with maps to some X. Non-trivial classes in H_B^{d+2}(X) contain theories for which (-1)^F is anomaly-free, but spin structure summation is anomalous. We formulate a sequence of cobordism groups whose failure to be exact is measured by H_B^{d+2}(X), and from here we compute it for X=pt. The result is non-trivial only in dimensions din 4Z+2, being due to the presence of gravitational anomalies. The first few are H_B^4=Z_2, probed by a theory of 8 Majorana-Weyl fermions in d=2, then H_B^8=Z_8, H_B^{12}=Z_{16}times Z_2. We rigorously derive a general formula extending this to every spacetime dimension. Along the way, we compile many general facts about (fermionic and bosonic) anomaly polynomials, and about spin and pin^- (co)bordism generators, that we hope might serve as a useful reference for physicists working with these objects. We briefly discuss some physics applications, including how the H_B^{12} class is trivialised in supergravity. Despite the name, and notation, we make no claim that H_B^bullet(X) actually defines a cohomology theory (in the Eilenberg-Steenrod sense). 2 authors · Nov 17, 2025
- Cosmic Multipoles in Galaxy Surveys Part I: How Inferences Depend on Source Counts and Masks We present a new approach to constructing and fitting dipoles and higher-order multipoles in synthetic galaxy samples over the sky. Within our Bayesian paradigm, we illustrate that this technique is robust to masked skies, allowing us to make credible inferences about the relative contributions of each multipole. We also show that dipoles can be recovered in surveys with small footprints, determining the requisite source counts required for concrete estimation of the dipole parameters. This work is motivated by recent probes of the cosmic dipole in galaxy catalogues. Namely, the kinematic dipole of the Cosmic Microwave Background, as arising from the motion of our heliocentric frame at approx 370 km,s^{-1}, implies that an analogous dipole should be observed in the number counts of galaxies in flux-density-limited samples. Recent studies have reported a dipole aligning with the kinematic dipole but with an anomalously large amplitude. Accordingly, our new technique will be important as forthcoming galaxy surveys are made available and for revisiting previous data. 3 authors · Dec 17, 2024
- Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the heliosphere. Recent observations by Parker Solar Probe (PSP) have revealed the presence of patches of switchbacks on the scale of hours to days, separated by 'quieter' radial fields. We aim to further diagnose the origin of these patches using measurements of proton temperature anisotropy that can illuminate possible links to formation processes in the solar corona. We fitted 3D bi-Maxwellian functions to the core of proton velocity distributions measured by the SPAN-Ai instrument onboard PSP to obtain the proton parallel, T_{p,|}, and perpendicular, T_{p,perp}, temperature. We show that the presence of patches is highlighted by a transverse deflection in the flow and magnetic field away from the radial direction. These deflections are correlated with enhancements in T_{p,|}, while T_{p,perp} remains relatively constant. Patches sometimes exhibit small proton and electron density enhancements. We interpret that patches are not simply a group of switchbacks, but rather switchbacks are embedded within a larger-scale structure identified by enhanced T_{p,|} that is distinct from the surrounding solar wind. We suggest that these observations are consistent with formation by reconnection-associated mechanisms in the corona. 19 authors · Oct 20, 2020
- Machine learning-driven Anomaly Detection and Forecasting for Euclid Space Telescope Operations State-of-the-art space science missions increasingly rely on automation due to spacecraft complexity and the costs of human oversight. The high volume of data, including scientific and telemetry data, makes manual inspection challenging. Machine learning offers significant potential to meet these demands. The Euclid space telescope, in its survey phase since February 2024, exemplifies this shift. Euclid's success depends on accurate monitoring and interpretation of housekeeping telemetry and science-derived data. Thousands of telemetry parameters, monitored as time series, may or may not impact the quality of scientific data. These parameters have complex interdependencies, often due to physical relationships (e.g., proximity of temperature sensors). Optimising science operations requires careful anomaly detection and identification of hidden parameter states. Moreover, understanding the interactions between known anomalies and physical quantities is crucial yet complex, as related parameters may display anomalies with varied timing and intensity. We address these challenges by analysing temperature anomalies in Euclid's telemetry from February to August 2024, focusing on eleven temperature parameters and 35 covariates. We use a predictive XGBoost model to forecast temperatures based on historical values, detecting anomalies as deviations from predictions. A second XGBoost model predicts anomalies from covariates, capturing their relationships to temperature anomalies. We identify the top three anomalies per parameter and analyse their interactions with covariates using SHAP (Shapley Additive Explanations), enabling rapid, automated analysis of complex parameter relationships. Our method demonstrates how machine learning can enhance telemetry monitoring, offering scalable solutions for other missions with similar data challenges. 6 authors · Nov 8, 2024
- Uncertainty-aware Evaluation of Auxiliary Anomalies with the Expected Anomaly Posterior Anomaly detection is the task of identifying examples that do not behave as expected. Because anomalies are rare and unexpected events, collecting real anomalous examples is often challenging in several applications. In addition, learning an anomaly detector with limited (or no) anomalies often yields poor prediction performance. One option is to employ auxiliary synthetic anomalies to improve the model training. However, synthetic anomalies may be of poor quality: anomalies that are unrealistic or indistinguishable from normal samples may deteriorate the detector's performance. Unfortunately, no existing methods quantify the quality of auxiliary anomalies. We fill in this gap and propose the expected anomaly posterior (EAP), an uncertainty-based score function that measures the quality of auxiliary anomalies by quantifying the total uncertainty of an anomaly detector. Experimentally on 40 benchmark datasets of images and tabular data, we show that EAP outperforms 12 adapted data quality estimators in the majority of cases. 4 authors · May 22, 2024
- Flat Bunches with a Hollow Distribution for Space Charge Mitigation Longitudinally hollow bunches provide one means to mitigate the impact of transverse space charge. The hollow distributions are created via dipolar parametric excitation during acceleration in CERN's Proton Synchrotron Booster. We present simulation work and beam measurements. Particular emphasis is given to the alleviation of space charge effects on the long injection plateau of the downstream Proton Synchrotron machine, which is the main goal of this study. 5 authors · May 5, 2016
1 THEMIS: Unlocking Pretrained Knowledge with Foundation Model Embeddings for Anomaly Detection in Time Series Time series anomaly detection forms a very crucial area in several domains but poses substantial challenges. Due to time series data possessing seasonality, trends, noise, and evolving patterns (concept drift), it becomes very difficult to set a general notion of what constitutes normal behavior. Anomalies themselves could be varied, ranging from a single outlier to contextual or collective anomalies, and are normally very rare; hence, the dataset is largely imbalanced. Additional layers of complexities arise due to the problems of increased dimensionality of modern time series, real-time detection criteria, setting up appropriate detection thresholds, and arriving at results that are interpretable. To embrace these multifaceted challenges, very strong, flexible, and interpretable approaches are required. This paper presents THEMIS, a new framework for time series anomaly detection that exploits pretrained knowledge from foundation models. THEMIS extracts embeddings from the encoder of the Chronos time series foundation model and applies outlier detection techniques like Local Outlier Factor and Spectral Decomposition on the self-similarity matrix, to spot anomalies in the data. Our experiments show that this modular method achieves SOTA results on the MSL dataset and performs quite competitively on the SMAP and SWAT^* datasets. Notably, THEMIS exceeds models trained specifically for anomaly detection, presenting hyperparameter robustness and interpretability by default. This paper advocates for pretrained representations from foundation models for performing efficient and adaptable anomaly detection for time series data. 4 authors · Oct 4, 2025
- Observation of four-top-quark production in the multilepton final state with the ATLAS detector This paper presents the observation of four-top-quark (tttt) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 fb^{-1} at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured tttt signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The tttt production cross section is measured to be 22.5^{+6.6}_{-5.5} fb, consistent with the SM prediction of 12.0 pm 2.4 fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect tttt production. 1 authors · Mar 27, 2023
- Observation of nuclear modification of energy-energy correlators inside jets in heavy ion collisions Energy-energy correlators are constructed by averaging the number of charged particle pairs within jets, weighted by the product of their transverse momenta, as a function of the angular separation of the particles within a pair. They are sensitive to a multitude of perturbative and nonperturbative quantum chromodynamics phenomena in high-energy particle collisions. Using lead-lead data recorded with the CMS detector, energy-energy correlators inside high transverse momentum jets are measured in heavy ion collisions for the first time. The data are obtained at a nucleon-nucleon center-of-mass energy of 5.02 TeV and correspond to an integrated luminosity of 1.70 nb^{-1}. A similar analysis is done for proton-proton collisions at the same center-of-mass energy to establish a reference. The ratio of lead-lead to proton-proton energy-energy correlators reveals significant jet substructure modifications in the quark-gluon plasma. The results are compared to different models that incorporate either color coherence or medium response effects, where the two effects predict similar substructure modifications. 1 authors · Mar 25, 2025
- AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios Recently, multi-class anomaly classification has garnered increasing attention. Previous methods directly cluster anomalies but often struggle due to the lack of anomaly-prior knowledge. Acquiring this knowledge faces two issues: the non-prominent and weak-semantics anomalies. In this paper, we propose AnomalyNCD, a multi-class anomaly classification network compatible with different anomaly detection methods. To address the non-prominence of anomalies, we design main element binarization (MEBin) to obtain anomaly-centered images, ensuring anomalies are learned while avoiding the impact of incorrect detections. Next, to learn anomalies with weak semantics, we design mask-guided representation learning, which focuses on isolated anomalies guided by masks and reduces confusion from erroneous inputs through corrected pseudo labels. Finally, to enable flexible classification at both region and image levels, we develop a region merging strategy that determines the overall image category based on the classified anomaly regions. Our method outperforms the state-of-the-art works on the MVTec AD and MTD datasets. Compared with the current methods, AnomalyNCD combined with zero-shot anomaly detection method achieves a 10.8% F_1 gain, 8.8% NMI gain, and 9.5% ARI gain on MVTec AD, and 12.8% F_1 gain, 5.7% NMI gain, and 10.8% ARI gain on MTD. Code is available at https://github.com/HUST-SLOW/AnomalyNCD. 6 authors · Oct 18, 2024
- First confirmation of anisotropic halo bias from statistically anisotropic matter distributions We confirm for the first time the existence of distinctive halo bias associated with the quadrupolar type of statistical anisotropy (SA) of the linear matter density field using cosmological N-body simulations. We find that the coefficient of the SA-induced bias for cluster-sized halos takes negative values and exhibits a decreasing trend with increasing halo mass. This results in the quadrupole halo power spectra in a statistically anisotropic universe being less amplified compared to the monopole spectra. The anisotropic feature in halo bias that we found presents a promising new tool for testing the hypothesis of a statistically anisotropic universe, with significant implications for the precise verification of anisotropic inflation scenarios and vector dark matter and dark energy models. 5 authors · Sep 18, 2024
- Coronal Abundance Fractionation Linked to Chromospheric Transverse MHD Waves in a Solar Active Region Observed with FISS/GST and EIS/Hinode Elemental abundances in the solar corona differ from those in the photosphere, with low first ionization potential (FIP) elements being enhanced, a phenomenon known as the FIP effect. This enhancement is attributed to ponderomotive forces linked to magnetohydrodynamic (MHD) waves, particularly incompressible transverse waves. Our study investigates the relationship between coronal abundance fractionation and chromospheric transverse MHD waves by examining the spatial correlation between FIP fractionation and these waves and by analyzing their properties to test the ponderomotive force model. We used H alpha data from the Fast Imaging Solar Spectrograph at the Goode Solar Telescope to detect chromospheric transverse MHD waves and Si{X} (low FIP) and S{X} (high FIP) spectra from Hinode EUV Imaging Spectrometer to determine relative abundances in an active region. Extrapolated linear force free magnetic fields from Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetograms further linked the observed chromospheric waves with coronal composition. Approximately 400 wave packets were identified and characterized by their period, velocity amplitude, propagation speed, and direction. These incompressible or weakly compressible waves were mainly observed near loop footpoints in the sunspot penumbra and superpenumbral fibrils. Regions of high FIP fractionation coincided with closed magnetic fields where these waves were present, and low-frequency, downward-propagating waves comprised about 43/% of the total. Our results demonstrate a strong correlation between coronal abundance fractionation and chromospheric transverse MHD waves, supporting the view that the FIP effect is driven by the ponderomotive force from these waves. 8 authors · Feb 26, 2025
- Dijet photoproduction at low x at next-to-leading order and its back-to-back limit We compute the cross section for the inclusive photoproduction of a pair of jets at next-to-leading order accuracy in the Color Glass Condensate (CGC) effective theory. The aim is to study the back-to-back limit, to investigate whether transverse momentum dependent (TMD) factorization can be recovered at this order. In particular, we focus on the large Sudakov double logarithms, which are major ingredients of the TMD evolution. Interestingly, the kinematical improvement of the low-x resummation scheme turns out to be a key ingredient in the analysis. 4 authors · Apr 25, 2022
- Stochastic backgrounds in alternative theories of gravity: overlap reduction functions for pulsar timing arrays In the next decade gravitational waves might be detected using a pulsar timing array. In an effort to develop optimal detection strategies for stochastic backgrounds of gravitational waves in generic metric theories of gravity, we investigate the overlap reduction functions for these theories and discuss their features. We show that the sensitivity to non-transverse gravitational waves is greater than the sensitivity to transverse gravitational waves and discuss the physical origin of this effect. We calculate the overlap reduction functions for the current NANOGrav Pulsar Timing Array (PTA) and show that the sensitivity to the vector and scalar-longitudinal modes can increase dramatically for pulsar pairs with small angular separations. For example, the J1853+1303-J1857+0943 pulsar pair, with an angular separation of about 3 degrees, is about 10^4 times more sensitive to the longitudinal component of the stochastic background, if it is present, than the transverse components. 2 authors · Nov 23, 2011
- Anomalous CMB polarization and gravitational chirality We consider the possibility that gravity breaks parity, with left and right handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous CMB polarization. Non-vanishing TB (and EB) polarization components emerge, revealing interesting experimental targets. Indeed if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation. 3 authors · Jun 18, 2008