new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

Apriel-1.5-15b-Thinker

We present Apriel-1.5-15B-Thinker, a 15-billion parameter open-weights multimodal reasoning model that achieves frontier-level performance through training design rather than sheer scale. Starting from Pixtral-12B, we apply a progressive three-stage methodology: (1) depth upscaling to expand reasoning capacity without pretraining from scratch, (2) staged continual pre-training that first develops foundational text and vision understanding, then enhances visual reasoning through targeted synthetic data generation addressing spatial structure, compositional understanding, and fine-grained perception, and (3) high-quality text-only supervised fine-tuning on curated instruction-response pairs with explicit reasoning traces spanning mathematics, coding, science, and tool use. Notably, our model achieves competitive results without reinforcement learning or preference optimization, isolating the contribution of our data-centric continual pre-training approach. On the Artificial Analysis Intelligence Index, Apriel-1.5-15B-Thinker attains a score of 52, matching DeepSeek-R1-0528 despite requiring significantly fewer computational resources. Across ten image benchmarks, its performance is on average within five points of Gemini-2.5-Flash and Claude Sonnet-3.7, a key achievement for a model operating within single-GPU deployment constraints. Our results demonstrate that thoughtful mid-training 2 design can close substantial capability gaps without massive scale, making frontier-level multimodal reasoning accessible to organizations with limited infrastructure. We release the model checkpoint, all training recipes, and evaluation protocols under the MIT license to to advance open-source research.

R1-Code-Interpreter: Training LLMs to Reason with Code via Supervised and Reinforcement Learning

Despite advances in reasoning and planning of R1-like models, Large Language Models (LLMs) still struggle with tasks requiring precise computation, symbolic manipulation, optimization, and algorithmic reasoning, in which textual reasoning lacks the rigor of code execution. A key challenge is enabling LLMs to decide when to use textual reasoning versus code generation. While OpenAI trains models to invoke a Code Interpreter as needed, public research lacks guidance on aligning pre-trained LLMs to effectively leverage code and generalize across diverse tasks. We present R1-Code-Interpreter, an extension of a text-only LLM trained via multi-turn supervised fine-tuning (SFT) and reinforcement learning (RL) to autonomously generate multiple code queries during step-by-step reasoning. We curate 144 reasoning and planning tasks (107 for training, 37 for testing), each with over 200 diverse questions. We fine-tune Qwen-2.5 models (3B/7B/14B) using various SFT and RL strategies, investigating different answer formats, reasoning vs. non-reasoning models, cold vs. warm starts, GRPO vs. PPO, and masked vs. unmasked code outputs. Unlike prior RL work on narrow domains, we find that Code Interpreter training is significantly harder due to high task diversity and expensive code execution, highlighting the critical role of the SFT stage. Our final model, R1-CI-14B, improves average accuracy on the 37 test tasks from 44.0\% to 64.1\%, outperforming GPT-4o (text-only: 58.6\%) and approaching GPT-4o with Code Interpreter (70.9\%), with the emergent self-checking behavior via code generation. Datasets, Codes, and Models are available at https://github.com/yongchao98/R1-Code-Interpreter and https://huggingface.co/yongchao98.

  • 7 authors
·
May 27 2

MedVLThinker: Simple Baselines for Multimodal Medical Reasoning

Large Reasoning Models (LRMs) have introduced a new paradigm in AI by enabling models to ``think before responding" via chain-of-thought reasoning. However, the absence of open and reproducible recipes for building reasoning-centric medical LMMs hinders community-wide research, analysis, and comparison. In this paper, we present MedVLThinker, a suite of simple yet strong baselines. Our fully open recipe consists of: (1) systematic data curation for both text-only and image-text medical data, filtered according to varying levels of reasoning difficulty, and (2) two training paradigms: Supervised Fine-Tuning (SFT) on distilled reasoning traces and Reinforcement Learning with Verifiable Rewards (RLVR) based on final answer correctness. Across extensive experiments on the Qwen2.5-VL model family (3B, 7B) and six medical QA benchmarks, we find that RLVR consistently and significantly outperforms SFT. Additionally, under the RLVR framework, a key, counter-intuitive finding is that training on our curated text-only reasoning data provides a more substantial performance boost than training on multimodal image-text data. Our best open 7B model, trained using the RLVR recipe on text-only data, establishes a new state-of-the-art on existing public VQA benchmarks, surpassing all previous open-source medical LMMs. Furthermore, scaling our model to 32B achieves performance on par with the proprietary GPT-4o. We release all curated data, models, and code to provide the community with a strong, open foundation for future research in multimodal medical reasoning.

  • 5 authors
·
Aug 4

Leveraging Generative Models for Real-Time Query-Driven Text Summarization in Large-Scale Web Search

In the dynamic landscape of large-scale web search, Query-Driven Text Summarization (QDTS) aims to generate concise and informative summaries from textual documents based on a given query, which is essential for improving user engagement and facilitating rapid decision-making. Traditional extractive summarization models, based primarily on ranking candidate summary segments, have been the dominant approach in industrial applications. However, these approaches suffer from two key limitations: 1) The multi-stage pipeline often introduces cumulative information loss and architectural bottlenecks due to its weakest component; 2) Traditional models lack sufficient semantic understanding of both user queries and documents, particularly when dealing with complex search intents. In this study, we propose a novel framework to pioneer the application of generative models to address real-time QDTS in industrial web search. Our approach integrates large model distillation, supervised fine-tuning, direct preference optimization, and lookahead decoding to transform a lightweight model with only 0.1B parameters into a domain-specialized QDTS expert. Evaluated on multiple industry-relevant metrics, our model outperforms the production baseline and achieves a new state of the art. Furthermore, it demonstrates excellent deployment efficiency, requiring only 334 NVIDIA L20 GPUs to handle \textasciitilde50,000 queries per second under 55~ms average latency per query.

  • 7 authors
·
Aug 28

Reasoning-SQL: Reinforcement Learning with SQL Tailored Partial Rewards for Reasoning-Enhanced Text-to-SQL

Text-to-SQL is a challenging task involving multiple reasoning-intensive subtasks, including natural language understanding, database schema comprehension, and precise SQL query formulation. Existing approaches often rely on handcrafted reasoning paths with inductive biases that can limit their overall effectiveness. Motivated by the recent success of reasoning-enhanced models such as DeepSeek R1 and OpenAI o1, which effectively leverage reward-driven self-exploration to enhance reasoning capabilities and generalization, we propose a novel set of partial rewards tailored specifically for the Text-to-SQL task. Our reward set includes schema-linking, AI feedback, n-gram similarity, and syntax check, explicitly designed to address the reward sparsity issue prevalent in reinforcement learning (RL). Leveraging group relative policy optimization (GRPO), our approach explicitly encourages large language models (LLMs) to develop intrinsic reasoning skills necessary for accurate SQL query generation. With models of different sizes, we demonstrate that RL-only training with our proposed rewards consistently achieves higher accuracy and superior generalization compared to supervised fine-tuning (SFT). Remarkably, our RL-trained 14B-parameter model significantly outperforms larger proprietary models, e.g. o3-mini by 4% and Gemini-1.5-Pro-002 by 3% on the BIRD benchmark. These highlight the efficacy of our proposed RL-training framework with partial rewards for enhancing both accuracy and reasoning capabilities in Text-to-SQL tasks.

  • 8 authors
·
Mar 29 4

CiteSum: Citation Text-guided Scientific Extreme Summarization and Domain Adaptation with Limited Supervision

Scientific extreme summarization (TLDR) aims to form ultra-short summaries of scientific papers. Previous efforts on curating scientific TLDR datasets failed to scale up due to the heavy human annotation and domain expertise required. In this paper, we propose a simple yet effective approach to automatically extracting TLDR summaries for scientific papers from their citation texts. Based on the proposed approach, we create a new benchmark CiteSum without human annotation, which is around 30 times larger than the previous human-curated dataset SciTLDR. We conduct a comprehensive analysis of CiteSum, examining its data characteristics and establishing strong baselines. We further demonstrate the usefulness of CiteSum by adapting models pre-trained on CiteSum (named CITES) to new tasks and domains with limited supervision. For scientific extreme summarization, CITES outperforms most fully-supervised methods on SciTLDR without any fine-tuning and obtains state-of-the-art results with only 128 examples. For news extreme summarization, CITES achieves significant gains on XSum over its base model (not pre-trained on CiteSum), e.g., +7.2 ROUGE-1 zero-shot performance and state-of-the-art few-shot performance. For news headline generation, CITES performs the best among unsupervised and zero-shot methods on Gigaword. Our dataset and code can be found at https://github.com/morningmoni/CiteSum.

  • 3 authors
·
May 12, 2022

Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining

We present Lumina-mGPT, a family of multimodal autoregressive models capable of various vision and language tasks, particularly excelling in generating flexible photorealistic images from text descriptions. Unlike existing autoregressive image generation approaches, Lumina-mGPT employs a pretrained decoder-only transformer as a unified framework for modeling multimodal token sequences. Our key insight is that a simple decoder-only transformer with multimodal Generative PreTraining (mGPT), utilizing the next-token prediction objective on massive interleaved text-image sequences, can learn broad and general multimodal capabilities, thereby illuminating photorealistic text-to-image generation. Building on these pretrained models, we propose Flexible Progressive Supervised Finetuning (FP-SFT) on high-quality image-text pairs to fully unlock their potential for high-aesthetic image synthesis at any resolution while maintaining their general multimodal capabilities. Furthermore, we introduce Ominiponent Supervised Finetuning (Omni-SFT), transforming Lumina-mGPT into a foundation model that seamlessly achieves omnipotent task unification. The resulting model demonstrates versatile multimodal capabilities, including visual generation tasks like flexible text-to-image generation and controllable generation, visual recognition tasks like segmentation and depth estimation, and vision-language tasks like multiturn visual question answering. Additionally, we analyze the differences and similarities between diffusion-based and autoregressive methods in a direct comparison.

  • 7 authors
·
Aug 5, 2024 2