Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDual Frequency Branch Framework with Reconstructed Sliding Windows Attention for AI-Generated Image Detection
The rapid advancement of Generative Adversarial Networks (GANs) and diffusion models has enabled the creation of highly realistic synthetic images, presenting significant societal risks, such as misinformation and deception. As a result, detecting AI-generated images has emerged as a critical challenge. Existing researches emphasize extracting fine-grained features to enhance detector generalization, yet they often lack consideration for the importance and interdependencies of internal elements within local regions and are limited to a single frequency domain, hindering the capture of general forgery traces. To overcome the aforementioned limitations, we first utilize a sliding window to restrict the attention mechanism to a local window, and reconstruct the features within the window to model the relationships between neighboring internal elements within the local region. Then, we design a dual frequency domain branch framework consisting of four frequency domain subbands of DWT and the phase part of FFT to enrich the extraction of local forgery features from different perspectives. Through feature enrichment of dual frequency domain branches and fine-grained feature extraction of reconstruction sliding window attention, our method achieves superior generalization detection capabilities on both GAN and diffusion model-based generative images. Evaluated on diverse datasets comprising images from 65 distinct generative models, our approach achieves a 2.13\% improvement in detection accuracy over state-of-the-art methods.
Fast Video Generation with Sliding Tile Attention
Diffusion Transformers (DiTs) with 3D full attention power state-of-the-art video generation, but suffer from prohibitive compute cost -- when generating just a 5-second 720P video, attention alone takes 800 out of 945 seconds of total inference time. This paper introduces sliding tile attention (STA) to address this challenge. STA leverages the observation that attention scores in pretrained video diffusion models predominantly concentrate within localized 3D windows. By sliding and attending over the local spatial-temporal region, STA eliminates redundancy from full attention. Unlike traditional token-wise sliding window attention (SWA), STA operates tile-by-tile with a novel hardware-aware sliding window design, preserving expressiveness while being hardware-efficient. With careful kernel-level optimizations, STA offers the first efficient 2D/3D sliding-window-like attention implementation, achieving 58.79% MFU. Precisely, STA accelerates attention by 2.8-17x over FlashAttention-2 (FA2) and 1.6-10x over FlashAttention-3 (FA3). On the leading video DiT, HunyuanVideo, STA reduces end-to-end latency from 945s (FA3) to 685s without quality degradation, requiring no training. Enabling finetuning further lowers latency to 268s with only a 0.09% drop on VBench.
Short window attention enables long-term memorization
Recent works show that hybrid architectures combining sliding window softmax attention layers with linear recurrent neural network (RNN) layers outperform both of these architectures taken separately. However, the impact of the window length and the interplay between softmax attention and linear RNN layers remain under-studied. In this work, we introduce SWAX, a hybrid architecture consisting of sliding-window attention and xLSTM linear RNN layers. A counter-intuitive finding with SWAX is that larger sliding windows do not improve the long-context performance. In fact, short window attention encourages the model to better train the long-term memory of the xLSTM, by relying less on the softmax attention mechanism for long context-retrieval. The issue with small sliding windows is that they are detrimental for short-context tasks, which could be solved with information from moderately larger sliding windows otherwise. Therefore, we train SWAX by stochastically changing the sliding window size, forcing the model to leverage both a longer context window and the xLSTM memory. SWAX trained with stochastic window sizes significantly outperforms regular window attention both on short and long-context problems.
Long-Context Modeling with Dynamic Hierarchical Sparse Attention for On-Device LLMs
The quadratic cost of attention hinders the scalability of long-context LLMs, especially in resource-constrained settings. Existing static sparse methods such as sliding windows or global tokens utilizes the sparsity of attention to reduce the cost of attention, but poorly adapts to the content-dependent variations in attention due to their staticity. While previous work has proposed several dynamic approaches to improve flexibility, they still depend on predefined templates or heuristic mechanisms. Such strategies reduce generality and prune tokens that remain contextually important, limiting their accuracy across diverse tasks. To tackle these bottlenecks of existing methods for long-context modeling, we introduce Dynamic Hierarchical Sparse Attention (DHSA), a data-driven framework that dynamically predicts attention sparsity online without retraining. Our proposed DHSA adaptively segments sequences into variable-length chunks, then computes chunk representations by aggregating the token embeddings within each chunk. To avoid the bias introduced by varying chunk lengths, we apply length-normalized aggregation that scales the averaged embeddings by the square root of the chunk size. Finally, DHSA upsamples the chunk-level similarity scores to token level similarities to calculate importance scores that determine which token-level interactions should be preserved. Our experiments on Gemma2 with Needle-in-a-Haystack Test and LongBench show that DHSA matches dense attention in accuracy, while reducing prefill latency by 20-60% and peak memory usage by 35%. Compared to other representative baselines such as block sparse attention, DHSA achieves consistently higher accuracy (6-18% relative gains) with comparable or lower cost, offering an efficient and adaptable solution for long-context on-device LLMs.
Efficient Content-Based Sparse Attention with Routing Transformers
Self-attention has recently been adopted for a wide range of sequence modeling problems. Despite its effectiveness, self-attention suffers from quadratic compute and memory requirements with respect to sequence length. Successful approaches to reduce this complexity focused on attending to local sliding windows or a small set of locations independent of content. Our work proposes to learn dynamic sparse attention patterns that avoid allocating computation and memory to attend to content unrelated to the query of interest. This work builds upon two lines of research: it combines the modeling flexibility of prior work on content-based sparse attention with the efficiency gains from approaches based on local, temporal sparse attention. Our model, the Routing Transformer, endows self-attention with a sparse routing module based on online k-means while reducing the overall complexity of attention to Oleft(n^{1.5}dright) from Oleft(n^2dright) for sequence length n and hidden dimension d. We show that our model outperforms comparable sparse attention models on language modeling on Wikitext-103 (15.8 vs 18.3 perplexity) as well as on image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer self-attention layers. Additionally, we set a new state-of-the-art on the newly released PG-19 data-set, obtaining a test perplexity of 33.2 with a 22 layer Routing Transformer model trained on sequences of length 8192.
Cross-Scale Context Extracted Hashing for Fine-Grained Image Binary Encoding
Deep hashing has been widely applied to large-scale image retrieval tasks owing to efficient computation and low storage cost by encoding high-dimensional image data into binary codes. Since binary codes do not contain as much information as float features, the essence of binary encoding is preserving the main context to guarantee retrieval quality. However, the existing hashing methods have great limitations on suppressing redundant background information and accurately encoding from Euclidean space to Hamming space by a simple sign function. In order to solve these problems, a Cross-Scale Context Extracted Hashing Network (CSCE-Net) is proposed in this paper. Firstly, we design a two-branch framework to capture fine-grained local information while maintaining high-level global semantic information. Besides, Attention guided Information Extraction module (AIE) is introduced between two branches, which suppresses areas of low context information cooperated with global sliding windows. Unlike previous methods, our CSCE-Net learns a content-related Dynamic Sign Function (DSF) to replace the original simple sign function. Therefore, the proposed CSCE-Net is context-sensitive and able to perform well on accurate image binary encoding. We further demonstrate that our CSCE-Net is superior to the existing hashing methods, which improves retrieval performance on standard benchmarks.
Training Transformers for Mesh-Based Simulations
Simulating physics using Graph Neural Networks (GNNs) is predominantly driven by message-passing architectures, which face challenges in scaling and efficiency, particularly in handling large, complex meshes. These architectures have inspired numerous enhancements, including multigrid approaches and K-hop aggregation (using neighbours of distance K), yet they often introduce significant complexity and suffer from limited in-depth investigations. In response to these challenges, we propose a novel Graph Transformer architecture that leverages the adjacency matrix as an attention mask. The proposed approach incorporates innovative augmentations, including Dilated Sliding Windows and Global Attention, to extend receptive fields without sacrificing computational efficiency. Through extensive experimentation, we evaluate model size, adjacency matrix augmentations, positional encoding and K-hop configurations using challenging 3D computational fluid dynamics (CFD) datasets. We also train over 60 models to find a scaling law between training FLOPs and parameters. The introduced models demonstrate remarkable scalability, performing on meshes with up to 300k nodes and 3 million edges. Notably, the smallest model achieves parity with MeshGraphNet while being 7times faster and 6times smaller. The largest model surpasses the previous state-of-the-art by 38.8\% on average and outperforms MeshGraphNet by 52\% on the all-rollout RMSE, while having a similar training speed. Code and datasets are available at https://github.com/DonsetPG/graph-physics.
CacheFlow: Compressive Streaming Memory for Efficient Long-Form Video Understanding
Long-form video question answering (VQA) overwhelms current vision-language models (VLMs) because attention and key-value (KV) caches grow with runtime, forcing either expensive inference or near-sighted sliding windows. We introduce CacheFlow, a training-free pipeline that pairs Dynamic Token Dropping (DTD) with a compressive long-term memory. DTD prunes per-patch tokens online via cosine similarity to the previous frame, and surviving tokens are packed into fixed-size blocks. This online, per-frame processing makes our approach fundamentally suited for live streaming VQA. As blocks are processed, each one's keys are summarized by a tiny recurrent encoder to form a retrieval index, while the block's full KV pairs are offloaded and later rehydrated for generation, preserving answer fidelity. At inference, a consensus-based retrieval mechanism retrieves only the Top-K most relevant blocks and attends over both the retrieved and local context for precise, long-range reasoning. CacheFlow is drop-in, architecture-agnostic, and requires no fine-tuning. Experiments on both offline and streaming VQA benchmarks demonstrate that CacheFlow outperforms current strong baselines, while processing up to 87% less tokens. Our dual approach enables VLMs to be both efficient and context-aware, paving the way for practical long-form video understanding.
Sliding Window Attention Adaptation
The self-attention mechanism in Transformer-based Large Language Models (LLMs) scales quadratically with input length, making long-context inference expensive. Sliding window attention (SWA) reduces this cost to linear complexity, but naively enabling complete SWA at inference-time for models pretrained with full attention (FA) causes severe long-context performance degradation due to training-inference mismatch. This makes us wonder: Can FA-pretrained LLMs be well adapted to SWA without pretraining? We investigate this by proposing Sliding Window Attention Adaptation (SWAA), a set of practical recipes that combine five methods for better adaptation: (1) applying SWA only during prefilling; (2) preserving "sink" tokens; (3) interleaving FA/SWA layers; (4) chain-of-thought (CoT); and (5) fine-tuning. Our experiments show that SWA adaptation is feasible while non-trivial: no single method suffices, yet specific synergistic combinations effectively recover the original long-context performance. We further analyze the performance-efficiency trade-offs of different SWAA configurations and provide recommended recipes for diverse scenarios. Our code is available at https://github.com/yuyijiong/sliding-window-attention-adaptation
Sliding Window Attention Training for Efficient Large Language Models
Recent advances in transformer-based Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks. However, their quadratic computational complexity concerning sequence length remains a significant bottleneck for processing long documents. As a result, many efforts like sparse attention and state space models have been proposed to improve the efficiency of LLMs over long sequences. Though effective, these approaches compromise the performance or introduce structural complexity. This calls for a simple yet efficient model that preserves the fundamental Transformer architecture. To this end, we introduce SWAT, which enables efficient long-context handling via Sliding Window Attention Training. This paper first attributes the inefficiency of Transformers to the attention sink phenomenon resulting from the high variance of softmax operation. Then, we replace softmax with the sigmoid function and utilize a balanced ALiBi and Rotary Position Embedding for efficient information compression and retention. Experiments demonstrate that SWAT achieves SOTA performance compared with state-of-the-art linear recurrent architectures on eight benchmarks. Code is available at https://anonymous.4open.science/r/SWAT-attention.
FreeSwim: Revisiting Sliding-Window Attention Mechanisms for Training-Free Ultra-High-Resolution Video Generation
The quadratic time and memory complexity of the attention mechanism in modern Transformer based video generators makes end-to-end training for ultra high resolution videos prohibitively expensive. Motivated by this limitation, we introduce a training-free approach that leverages video Diffusion Transformers pretrained at their native scale to synthesize higher resolution videos without any additional training or adaptation. At the core of our method lies an inward sliding window attention mechanism, which originates from a key observation: maintaining each query token's training scale receptive field is crucial for preserving visual fidelity and detail. However, naive local window attention, unfortunately, often leads to repetitive content and exhibits a lack of global coherence in the generated results. To overcome this challenge, we devise a dual-path pipeline that backs up window attention with a novel cross-attention override strategy, enabling the semantic content produced by local attention to be guided by another branch with a full receptive field and, therefore, ensuring holistic consistency. Furthermore, to improve efficiency, we incorporate a cross-attention caching strategy for this branch to avoid the frequent computation of full 3D attention. Extensive experiments demonstrate that our method delivers ultra-high-resolution videos with fine-grained visual details and high efficiency in a training-free paradigm. Meanwhile, it achieves superior performance on VBench, even compared to training-based alternatives, with competitive or improved efficiency. Codes are available at: https://github.com/WillWu111/FreeSwim
MSWA: Refining Local Attention with Multi-ScaleWindow Attention
Transformer-based LLMs have achieved exceptional performance across a wide range of NLP tasks. However, the standard self-attention mechanism suffers from quadratic time complexity and linearly increased cache size. Sliding window attention (SWA) solves this problem by restricting the attention range to a fixed-size local context window. Nevertheless, SWA employs a uniform window size for each head in each layer, making it inefficient in capturing context of varying scales. To mitigate this limitation, we propose Multi-Scale Window Attention (MSWA) which applies diverse window sizes across heads and layers in the Transformer. It not only allows for different window sizes among heads within the same layer but also progressively increases window size allocation from shallow to deep layers, thus enabling the model to capture contextual information with different lengths and distances. Experimental results on language modeling and common-sense reasoning tasks substantiate that MSWA outperforms traditional local attention in both effectiveness and efficiency.
Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
Neighborhood Attention Transformer
We present Neighborhood Attention (NA), the first efficient and scalable sliding-window attention mechanism for vision. NA is a pixel-wise operation, localizing self attention (SA) to the nearest neighboring pixels, and therefore enjoys a linear time and space complexity compared to the quadratic complexity of SA. The sliding-window pattern allows NA's receptive field to grow without needing extra pixel shifts, and preserves translational equivariance, unlike Swin Transformer's Window Self Attention (WSA). We develop NATTEN (Neighborhood Attention Extension), a Python package with efficient C++ and CUDA kernels, which allows NA to run up to 40% faster than Swin's WSA while using up to 25% less memory. We further present Neighborhood Attention Transformer (NAT), a new hierarchical transformer design based on NA that boosts image classification and downstream vision performance. Experimental results on NAT are competitive; NAT-Tiny reaches 83.2% top-1 accuracy on ImageNet, 51.4% mAP on MS-COCO and 48.4% mIoU on ADE20K, which is 1.9% ImageNet accuracy, 1.0% COCO mAP, and 2.6% ADE20K mIoU improvement over a Swin model with similar size. To support more research based on sliding-window attention, we open source our project and release our checkpoints at: https://github.com/SHI-Labs/Neighborhood-Attention-Transformer .
Sample-Efficient Language Modeling with Linear Attention and Lightweight Enhancements
We study architectural and optimization techniques for sample-efficient language modeling under the constraints of the BabyLM 2025 shared task. Our model, BLaLM, replaces self-attention with a linear-time mLSTM token mixer and explores lightweight enhancements, including short convolutions, sliding window attention with dynamic modulation, and Hedgehog feature maps. To support training in low-resource settings, we curate a high-quality corpus emphasizing readability and pedagogical structure. Experiments across both STRICT and STRICT-SMALL tracks show that (1) linear attention combined with sliding window attention consistently improves zero-shot performance, and (2) the Muon optimizer stabilizes convergence and reduces perplexity over AdamW. These results highlight effective strategies for efficient language modeling without relying on scale.
SCOUT: Toward Sub-Quadratic Attention via Segment Compression for Optimized Utility in Transformers
Transformers have demonstrated strong performance across a wide range of sequence modeling tasks, but their quadratic attention complexity limits scalability to long sequences. Linear models such as Mamba and sliding-window attention (SWA) address this by mixing tokens through recurrent or localized operations with fixed-size memory, achieving efficient inference. However, these methods risk degrading performance on long sequences due to their inability to retain detailed information from distant tokens. We propose SCOUT (Segment Compression for Optimized Utility in Transformers), a hybrid architecture that compresses tokens locally within fixed-size segments and applies attention only over these compressed representations. Each token embedding is first enriched via a linear local mixer, Mamba or SWA, that integrates recent context. Then, instead of attending to all previous tokens, each token sparsely attends to a small number of compressed checkpoint tokens that summarize the input history. This design retains much of the expressivity of full attention while substantially reducing the computational and memory cost. By attending to compressed history rather than all previous tokens, SCOUT incurs slightly higher memory than purely linear models, but its growth rate remains sub-quadratic and far more scalable than that of full Transformers. We analyze SCOUT's computational and memory efficiency and evaluate it empirically on long-context language modeling and reasoning tasks. SCOUT with both Mamba and SWA mixers outperforms strong long-sequence baselines under the same computational budget, matches full-attention Transformers on language modeling and common-sense reasoning tasks at 400M and 1.3B scales. Moreover, our SCOUT achieves higher end-to-end throughput than SOTA models, while delivering comparable results on long sequence benchmarks.
Faster Neighborhood Attention: Reducing the O(n^2) Cost of Self Attention at the Threadblock Level
Neighborhood attention reduces the cost of self attention by restricting each token's attention span to its nearest neighbors. This restriction, parameterized by a window size and dilation factor, draws a spectrum of possible attention patterns between linear projection and self attention. Neighborhood attention, and more generally sliding window attention patterns, have long been bounded by infrastructure, particularly in higher-rank spaces (2-D and 3-D), calling for the development of custom kernels, which have been limited in either functionality, or performance, if not both. In this work, we first show that neighborhood attention can be represented as a batched GEMM problem, similar to standard attention, and implement it for 1-D and 2-D neighborhood attention. These kernels on average provide 895% and 272% improvement in full precision latency compared to existing naive kernels for 1-D and 2-D neighborhood attention respectively. We find certain inherent inefficiencies in all unfused neighborhood attention kernels that bound their performance and lower-precision scalability. We also developed fused neighborhood attention; an adaptation of fused dot-product attention kernels that allow fine-grained control over attention across different spatial axes. Known for reducing the quadratic time complexity of self attention to a linear complexity, neighborhood attention can now enjoy a reduced and constant memory footprint, and record-breaking half precision latency. We observe that our fused kernels successfully circumvent some of the unavoidable inefficiencies in unfused implementations. While our unfused GEMM-based kernels only improve half precision performance compared to naive kernels by an average of 496% and 113% in 1-D and 2-D problems respectively, our fused kernels improve naive kernels by an average of 1607% and 581% in 1-D and 2-D problems respectively.
Simple linear attention language models balance the recall-throughput tradeoff
Recent work has shown that attention-based language models excel at recall, the ability to ground generations in tokens previously seen in context. However, the efficiency of attention-based models is bottle-necked during inference by the KV-cache's aggressive memory consumption. In this work, we explore whether we can improve language model efficiency (e.g. by reducing memory consumption) without compromising on recall. By applying experiments and theory to a broad set of architectures, we identify a key tradeoff between a model's state size and recall ability. We show that efficient alternatives to attention (e.g. H3, Mamba, RWKV) maintain a fixed-size recurrent state, but struggle at recall. We propose BASED a simple architecture combining linear and sliding window attention. By varying BASED window size and linear attention feature dimension, we can dial the state size and traverse the pareto frontier of the recall-memory tradeoff curve, recovering the full quality of attention on one end and the small state size of attention-alternatives on the other. We train language models up to 1.3b parameters and show that BASED matches the strongest sub-quadratic models (e.g. Mamba) in perplexity and outperforms them on real-world recall-intensive tasks by 6.22 accuracy points. Implementations of linear attention are often less efficient than optimized standard attention implementations. To make BASED competitive, we develop IO-aware algorithms that enable 24x higher throughput on language generation than FlashAttention-2, when generating 1024 tokens using 1.3b parameter models. Code for this work is provided at: https://github.com/HazyResearch/based.
InfiniteVL: Synergizing Linear and Sparse Attention for Highly-Efficient, Unlimited-Input Vision-Language Models
Window attention and linear attention represent two principal strategies for mitigating the quadratic complexity and ever-growing KV cache in Vision-Language Models (VLMs). However, we observe that window-based VLMs suffer performance degradation when sequence length exceeds the window size, while linear attention underperforms on information-intensive tasks such as OCR and document understanding. To overcome these limitations, we propose InfiniteVL, a linear-complexity VLM architecture that synergizes sliding window attention (SWA) with Gated DeltaNet. For achieving competitive multimodal performance under constrained resources, we design a three-stage training strategy comprising distillation pretraining, instruction tuning, and long-sequence SFT. Remarkably, using less than 2\% of the training data required by leading VLMs, InfiniteVL not only substantially outperforms previous linear-complexity VLMs but also matches the performance of leading Transformer-based VLMs, while demonstrating effective long-term memory retention. Compared to similar-sized Transformer-based VLMs accelerated by FlashAttention-2, InfiniteVL achieves over 3.6\times inference speedup while maintaining constant latency and memory footprint. In streaming video understanding scenarios, it sustains a stable 24 FPS real-time prefill speed while preserving long-term memory cache. Code and models are available at https://github.com/hustvl/InfiniteVL.
Delta Attention: Fast and Accurate Sparse Attention Inference by Delta Correction
The attention mechanism of a transformer has a quadratic complexity, leading to high inference costs and latency for long sequences. However, attention matrices are mostly sparse, which implies that many entries may be omitted from computation for efficient inference. Sparse attention inference methods aim to reduce this computational burden; however, they also come with a troublesome performance degradation. We discover that one reason for this degradation is that the sparse calculation induces a distributional shift in the attention outputs. The distributional shift causes decoding-time queries to fail to align well with the appropriate keys from the prefill stage, leading to a drop in performance. We propose a simple, novel, and effective procedure for correcting this distributional shift, bringing the distribution of sparse attention outputs closer to that of quadratic attention. Our method can be applied on top of any sparse attention method, and results in an average 36%pt performance increase, recovering 88% of quadratic attention accuracy on the 131K RULER benchmark when applied on top of sliding window attention with sink tokens while only adding a small overhead. Our method can maintain approximately 98.5% sparsity over full quadratic attention, making our model 32 times faster than Flash Attention 2 when processing 1M token prefills.
Trainable Dynamic Mask Sparse Attention
In large language models, the demand for modeling long contexts is constantly increasing, but the quadratic complexity of the standard self-attention mechanism often becomes a bottleneck. Although existing sparse attention mechanisms have improved efficiency, they may still encounter issues such as static patterns or information loss. We introduce a trainable dynamic mask sparse attention mechanism, Dynamic Mask Attention, which effectively utilizes content-aware and position-aware sparsity. DMA achieves this through two key innovations: First, it dynamically generates content-aware sparse masks from value representations, enabling the model to identify and focus on critical information adaptively. Second, it implements position-aware sparse attention computation that effectively skips unnecessary calculation regions. This dual-sparsity design allows the model to significantly reduce the computational complexity of important information while retaining complete information, achieving an excellent balance between information fidelity and computational efficiency. We have verified the performance of DMA through comprehensive experiments. Comparative studies show that DMA outperforms multi-head attention, sliding window attention, multi-head latent attention, and native sparse attention in terms of perplexity under Chinchilla Scaling Law settings. Moreover, in challenging multi-query associative recall tasks, DMA also demonstrates superior performance and efficiency compared to these methods. Crucially, in the evaluation of a 1.7B parameter model, DMA significantly outperforms multi-head attention in both standard benchmark performance and the challenging needle-in-a-haystack task. These experimental results highlight its capability to balance model efficiency and long-context modeling ability effectively.
Inference-Friendly Models With MixAttention
The size of the key-value (KV) cache plays a critical role in determining both the maximum context length and the number of concurrent requests supported during inference in modern language models. The KV cache size grows proportionally with the number of attention heads and the tokens processed, leading to increased memory consumption and slower inference for long inputs. In this work, we explore the use of MixAttention, a model architecture modification closely related to a blog published by Character.AI. MixAttention combines sliding window attention, where only a small subset of recent tokens is stored in the KV cache, with KV cache sharing across layers. Our experiments demonstrate that MixAttention significantly reduces memory usage and improves inference speed without sacrificing model performance in both short and long-context tasks. We also explore various configurations of this architecture, identifying those that maintain quality across evaluation metrics while optimizing resource efficiency.
MatchAttention: Matching the Relative Positions for High-Resolution Cross-View Matching
Cross-view matching is fundamentally achieved through cross-attention mechanisms. However, matching of high-resolution images remains challenging due to the quadratic complexity and lack of explicit matching constraints in the existing cross-attention. This paper proposes an attention mechanism, MatchAttention, that dynamically matches relative positions. The relative position determines the attention sampling center of the key-value pairs given a query. Continuous and differentiable sliding-window attention sampling is achieved by the proposed BilinearSoftmax. The relative positions are iteratively updated through residual connections across layers by embedding them into the feature channels. Since the relative position is exactly the learning target for cross-view matching, an efficient hierarchical cross-view decoder, MatchDecoder, is designed with MatchAttention as its core component. To handle cross-view occlusions, gated cross-MatchAttention and a consistency-constrained loss are proposed. These two components collectively mitigate the impact of occlusions in both forward and backward passes, allowing the model to focus more on learning matching relationships. When applied to stereo matching, MatchStereo-B ranked 1st in average error on the public Middlebury benchmark and requires only 29ms for KITTI-resolution inference. MatchStereo-T can process 4K UHD images in 0.1 seconds using only 3GB of GPU memory. The proposed models also achieve state-of-the-art performance on KITTI 2012, KITTI 2015, ETH3D, and Spring flow datasets. The combination of high accuracy and low computational complexity makes real-time, high-resolution, and high-accuracy cross-view matching possible. Code is available at https://github.com/TingmanYan/MatchAttention.
Parallel Loop Transformer for Efficient Test-Time Computation Scaling
Large Language Models (LLMs) are powerful but often too slow and costly for real-world use during inference. Looped transformers save on parameters by reusing the same weights for multiple computational steps, or "loops." However, this approach has a major flaw: the loops run one after another, causing inference latency and memory requirements to increase with each added loop. This makes them impractical for fast applications. To solve this problem, we introduce the Parallel Loop Transformer (PLT). PLT is a new architecture that delivers the performance benefits of a deep, looped model but with the low latency of a standard, non-looped model. PLT works using two key techniques. First, Cross-Loop Parallelism (CLP) breaks the sequential dependency by computing different loops for different tokens at the same time, all within a single pass. Second, to prevent memory costs from growing, we use an Efficient Representation Enhancement strategy. This method shares the memory (KV cache) from the first loop with all other loops. It then uses a Gated Sliding-Window Attention (G-SWA) to combine this shared global information with local information, maintaining high accuracy. Our experiments show that PLT achieves the high accuracy of a traditional looped model but with almost no extra latency or memory cost compared to a standard transformer.
Lizard: An Efficient Linearization Framework for Large Language Models
We propose Lizard, a linearization framework that transforms pretrained Transformer-based Large Language Models (LLMs) into flexible, subquadratic architectures for infinite-context generation. Transformer-based LLMs face significant memory and computational bottlenecks as context lengths increase, due to the quadratic complexity of softmax attention and the growing key-value (KV) cache. Lizard addresses these limitations by introducing a subquadratic attention mechanism that closely approximates softmax attention while preserving the output quality. Unlike previous linearization methods, which are often limited by fixed model structures and therefore exclude gating mechanisms, Lizard incorporates a gating module inspired by recent state-of-the-art linear models. This enables adaptive memory control, supports constant-memory inference, offers strong length generalization, and allows more flexible model design. Lizard combines gated linear attention for global context compression with sliding window attention enhanced by meta memory, forming a hybrid mechanism that captures both long-range dependencies and fine-grained local interactions. Moreover, we introduce a hardware-aware algorithm that accelerates the training speed of our models. Extensive experiments show that Lizard achieves near-lossless recovery of the teacher model's performance across standard language modeling tasks, while significantly outperforming previous linearization methods. On the 5-shot MMLU benchmark, Lizard improves over prior models by 18 points and shows significant improvements on associative recall tasks.
BitMar: Low-Bit Multimodal Fusion with Episodic Memory for Edge Devices
Cross-attention transformers and other multimodal vision-language models excel at grounding and generation; however, their extensive, full-precision backbones make it challenging to deploy them on edge devices. Memory-augmented architectures enhance the utilization of past context; however, most works rarely pair them with aggressive edge-oriented quantization. We introduce BitMar, a quantized multimodal transformer that proposes an external human-like episodic memory for effective image-text generation on hardware with limited resources. BitMar utilizes 1.58-bit encoders, one for text (BitNet-style) and one for vision (DiNOv2-based), to create compact embeddings that are combined and used to query a fixed-size key-value episodic memory. During vector retrieval, the BitNet decoder applies per-layer conditioning, which increases the contextual relevance of generated content. The decoder also employs attention sinks with a sliding-window mechanism to process long or streaming inputs under tight memory budgets. The combination of per-layer conditioning and sliding-window attention achieves a strong quality-speed trade-off, delivering competitive captioning and multimodal understanding at low latency with a small model footprint. These characteristics make BitMar well-suited for edge deployment.
MiMo-V2-Flash Technical Report
We present MiMo-V2-Flash, a Mixture-of-Experts (MoE) model with 309B total parameters and 15B active parameters, designed for fast, strong reasoning and agentic capabilities. MiMo-V2-Flash adopts a hybrid attention architecture that interleaves Sliding Window Attention (SWA) with global attention, with a 128-token sliding window under a 5:1 hybrid ratio. The model is pre-trained on 27 trillion tokens with Multi-Token Prediction (MTP), employing a native 32k context length and subsequently extended to 256k. To efficiently scale post-training compute, MiMo-V2-Flash introduces a novel Multi-Teacher On-Policy Distillation (MOPD) paradigm. In this framework, domain-specialized teachers (e.g., trained via large-scale reinforcement learning) provide dense and token-level reward, enabling the student model to perfectly master teacher expertise. MiMo-V2-Flash rivals top-tier open-weight models such as DeepSeek-V3.2 and Kimi-K2, despite using only 1/2 and 1/3 of their total parameters, respectively. During inference, by repurposing MTP as a draft model for speculative decoding, MiMo-V2-Flash achieves up to 3.6 acceptance length and 2.6x decoding speedup with three MTP layers. We open-source both the model weights and the three-layer MTP weights to foster open research and community collaboration.
Reward Forcing: Efficient Streaming Video Generation with Rewarded Distribution Matching Distillation
Efficient streaming video generation is critical for simulating interactive and dynamic worlds. Existing methods distill few-step video diffusion models with sliding window attention, using initial frames as sink tokens to maintain attention performance and reduce error accumulation. However, video frames become overly dependent on these static tokens, resulting in copied initial frames and diminished motion dynamics. To address this, we introduce Reward Forcing, a novel framework with two key designs. First, we propose EMA-Sink, which maintains fixed-size tokens initialized from initial frames and continuously updated by fusing evicted tokens via exponential moving average as they exit the sliding window. Without additional computation cost, EMA-Sink tokens capture both long-term context and recent dynamics, preventing initial frame copying while maintaining long-horizon consistency. Second, to better distill motion dynamics from teacher models, we propose a novel Rewarded Distribution Matching Distillation (Re-DMD). Vanilla distribution matching treats every training sample equally, limiting the model's ability to prioritize dynamic content. Instead, Re-DMD biases the model's output distribution toward high-reward regions by prioritizing samples with greater dynamics rated by a vision-language model. Re-DMD significantly enhances motion quality while preserving data fidelity. We include both quantitative and qualitative experiments to show that Reward Forcing achieves state-of-the-art performance on standard benchmarks while enabling high-quality streaming video generation at 23.1 FPS on a single H100 GPU.
Streaming Video Question-Answering with In-context Video KV-Cache Retrieval
We propose ReKV, a novel training-free approach that enables efficient streaming video question-answering (StreamingVQA), by seamlessly integrating with existing Video Large Language Models (Video-LLMs). Traditional VideoQA systems struggle with long videos, as they must process entire videos before responding to queries, and repeat this process for each new question. In contrast, our approach analyzes long videos in a streaming manner, allowing for prompt responses as soon as user queries are received. Building on a common Video-LLM, we first incorporate a sliding-window attention mechanism, ensuring that input frames attend to a limited number of preceding frames, thereby reducing computational overhead. To prevent information loss, we store processed video key-value caches (KV-Caches) in RAM and disk, reloading them into GPU memory as needed. Additionally, we introduce a retrieval method that leverages an external retriever or the parameters within Video-LLMs to retrieve only query-relevant KV-Caches, ensuring both efficiency and accuracy in question answering. ReKV enables the separation of video encoding and question-answering across different processes and GPUs, significantly enhancing the efficiency of StreamingVQA. Through comprehensive experimentation, we validate the efficacy and practicality of our approach, which significantly boosts efficiency and enhances applicability over existing VideoQA models.
Mistral 7B
We introduce Mistral 7B v0.1, a 7-billion-parameter language model engineered for superior performance and efficiency. Mistral 7B outperforms Llama 2 13B across all evaluated benchmarks, and Llama 1 34B in reasoning, mathematics, and code generation. Our model leverages grouped-query attention (GQA) for faster inference, coupled with sliding window attention (SWA) to effectively handle sequences of arbitrary length with a reduced inference cost. We also provide a model fine-tuned to follow instructions, Mistral 7B -- Instruct, that surpasses the Llama 2 13B -- Chat model both on human and automated benchmarks. Our models are released under the Apache 2.0 license.
Parallelizing Linear Transformers with the Delta Rule over Sequence Length
Transformers with linear attention (i.e., linear transformers) and state-space models have recently been suggested as a viable linear-time alternative to transformers with softmax attention. However, these models still underperform transformers especially on tasks that require in-context retrieval. While more expressive variants of linear transformers which replace the additive outer-product update in linear transformers with the delta rule have been found to be more effective at associative recall, existing algorithms for training such models do not parallelize over sequence length and are thus inefficient to train on modern hardware. This work describes a hardware-efficient algorithm for training linear transformers with the delta rule, which exploits a memory-efficient representation for computing products of Householder matrices. This algorithm allows us to scale up DeltaNet to standard language modeling settings. We train a 1.3B model for 100B tokens and find that it outperforms recent linear-time baselines such as Mamba and GLA in terms of perplexity and zero-shot performance on downstream tasks (including on tasks that focus on recall). We also experiment with two hybrid models which combine DeltaNet layers with (1) sliding-window attention layers every other layer or (2) two global attention layers, and find that these hybrid models outperform strong transformer baselines.
Gated Delta Networks: Improving Mamba2 with Delta Rule
Linear Transformers have gained attention as efficient alternatives to standard Transformers, but their performance in retrieval and long-context tasks has been limited. To address these limitations, recent work has explored two distinct mechanisms: gating for adaptive memory control and the delta update rule for precise memory modifications. We observe that these mechanisms are complementary: gating enables rapid memory erasure while the delta rule facilitates targeted updates. Building on this insight, we introduce the gated delta rule and develop a parallel training algorithm optimized for modern hardware. Our proposed architecture, Gated DeltaNet, consistently surpasses existing models like Mamba2 and DeltaNet across multiple benchmarks, including language modeling, common-sense reasoning, in-context retrieval, length extrapolation, and long-context understanding. We further enhance performance by developing hybrid architectures that combine Gated DeltaNet layers with sliding window attention or Mamba2 layers, achieving both improved training efficiency and superior task performance.
LongCoder: A Long-Range Pre-trained Language Model for Code Completion
In this paper, we introduce a new task for code completion that focuses on handling long code input and propose a sparse Transformer model, called LongCoder, to address this task. LongCoder employs a sliding window mechanism for self-attention and introduces two types of globally accessible tokens - bridge tokens and memory tokens - to improve performance and efficiency. Bridge tokens are inserted throughout the input sequence to aggregate local information and facilitate global interaction, while memory tokens are included to highlight important statements that may be invoked later and need to be memorized, such as package imports and definitions of classes, functions, or structures. We conduct experiments on a newly constructed dataset that contains longer code context and the publicly available CodeXGLUE benchmark. Experimental results demonstrate that LongCoder achieves superior performance on code completion tasks compared to previous models while maintaining comparable efficiency in terms of computational resources during inference. All the codes and data are available at https://github.com/microsoft/CodeBERT.
Hymba: A Hybrid-head Architecture for Small Language Models
We propose Hymba, a family of small language models featuring a hybrid-head parallel architecture that integrates transformer attention mechanisms with state space models (SSMs) for enhanced efficiency. Attention heads provide high-resolution recall, while SSM heads enable efficient context summarization. Additionally, we introduce learnable meta tokens that are prepended to prompts, storing critical information and alleviating the "forced-to-attend" burden associated with attention mechanisms. This model is further optimized by incorporating cross-layer key-value (KV) sharing and partial sliding window attention, resulting in a compact cache size. During development, we conducted a controlled study comparing various architectures under identical settings and observed significant advantages of our proposed architecture. Notably, Hymba achieves state-of-the-art results for small LMs: Our Hymba-1.5B-Base model surpasses all sub-2B public models in performance and even outperforms Llama-3.2-3B with 1.32% higher average accuracy, an 11.67x cache size reduction, and 3.49x throughput.
Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling
Efficiently modeling sequences with infinite context length has been a long-standing problem. Past works suffer from either the quadratic computation complexity or the limited extrapolation ability on length generalization. In this work, we present Samba, a simple hybrid architecture that layer-wise combines Mamba, a selective State Space Model (SSM), with Sliding Window Attention (SWA). Samba selectively compresses a given sequence into recurrent hidden states while still maintaining the ability to precisely recall memories with the attention mechanism. We scale Samba up to 3.8B parameters with 3.2T training tokens and show that Samba substantially outperforms the state-of-the-art models based on pure attention or SSMs on a wide range of benchmarks. When trained on 4K length sequences, Samba can be efficiently extrapolated to 256K context length with perfect memory recall and show improved token predictions up to 1M context length. As a linear-time sequence model, Samba enjoys a 3.73x higher throughput compared to Transformers with grouped-query attention when processing user prompts of 128K length, and 3.64x speedup when generating 64K tokens with unlimited streaming. A sample implementation of Samba is publicly available in https://github.com/microsoft/Samba.
Efficient Pretraining Length Scaling
Recent advances in large language models have demonstrated the effectiveness of length scaling during post-training, yet its potential in pre-training remains underexplored. We present the Parallel Hidden Decoding Transformer (PHD-Transformer), a novel framework that enables efficient length scaling during pre-training while maintaining inference efficiency. PHD-Transformer achieves this through an innovative KV cache management strategy that distinguishes between original tokens and hidden decoding tokens. By retaining only the KV cache of original tokens for long-range dependencies while immediately discarding hidden decoding tokens after use, our approach maintains the same KV cache size as the vanilla transformer while enabling effective length scaling. To further enhance performance, we introduce two optimized variants: PHD-SWA employs sliding window attention to preserve local dependencies, while PHD-CSWA implements chunk-wise sliding window attention to eliminate linear growth in pre-filling time. Extensive experiments demonstrate consistent improvements across multiple benchmarks.
Do Large Language Models Learn Human-Like Strategic Preferences?
In this paper, we evaluate whether LLMs learn to make human-like preference judgements in strategic scenarios as compared with known empirical results. Solar and Mistral are shown to exhibit stable value-based preference consistent with humans and exhibit human-like preference for cooperation in the prisoner's dilemma (including stake-size effect) and traveler's dilemma (including penalty-size effect). We establish a relationship between model size, value-based preference, and superficiality. Finally, results here show that models tending to be less brittle have relied on sliding window attention suggesting a potential link. Additionally, we contribute a novel method for constructing preference relations from arbitrary LLMs and support for a hypothesis regarding human behavior in the traveler's dilemma.
One-Minute Video Generation with Test-Time Training
Transformers today still struggle to generate one-minute videos because self-attention layers are inefficient for long context. Alternatives such as Mamba layers struggle with complex multi-scene stories because their hidden states are less expressive. We experiment with Test-Time Training (TTT) layers, whose hidden states themselves can be neural networks, therefore more expressive. Adding TTT layers into a pre-trained Transformer enables it to generate one-minute videos from text storyboards. For proof of concept, we curate a dataset based on Tom and Jerry cartoons. Compared to baselines such as Mamba~2, Gated DeltaNet, and sliding-window attention layers, TTT layers generate much more coherent videos that tell complex stories, leading by 34 Elo points in a human evaluation of 100 videos per method. Although promising, results still contain artifacts, likely due to the limited capability of the pre-trained 5B model. The efficiency of our implementation can also be improved. We have only experimented with one-minute videos due to resource constraints, but the approach can be extended to longer videos and more complex stories. Sample videos, code and annotations are available at: https://test-time-training.github.io/video-dit
Knot Forcing: Taming Autoregressive Video Diffusion Models for Real-time Infinite Interactive Portrait Animation
Real-time portrait animation is essential for interactive applications such as virtual assistants and live avatars, requiring high visual fidelity, temporal coherence, ultra-low latency, and responsive control from dynamic inputs like reference images and driving signals. While diffusion-based models achieve strong quality, their non-causal nature hinders streaming deployment. Causal autoregressive video generation approaches enable efficient frame-by-frame generation but suffer from error accumulation, motion discontinuities at chunk boundaries, and degraded long-term consistency. In this work, we present a novel streaming framework named Knot Forcing for real-time portrait animation that addresses these challenges through three key designs: (1) a chunk-wise generation strategy with global identity preservation via cached KV states of the reference image and local temporal modeling using sliding window attention; (2) a temporal knot module that overlaps adjacent chunks and propagates spatio-temporal cues via image-to-video conditioning to smooth inter-chunk motion transitions; and (3) A "running ahead" mechanism that dynamically updates the reference frame's temporal coordinate during inference, keeping its semantic context ahead of the current rollout frame to support long-term coherence. Knot Forcing enables high-fidelity, temporally consistent, and interactive portrait animation over infinite sequences, achieving real-time performance with strong visual stability on consumer-grade GPUs.
SWAN-GPT: An Efficient and Scalable Approach for Long-Context Language Modeling
We present a decoder-only Transformer architecture that robustly generalizes to sequence lengths substantially longer than those seen during training. Our model, SWAN-GPT, interleaves layers without positional encodings (NoPE) and sliding-window attention layers equipped with rotary positional encodings (SWA-RoPE). Experiments demonstrate strong performance on sequence lengths significantly longer than the training length without the need for additional long-context training. This robust length extrapolation is achieved through our novel architecture, enhanced by a straightforward dynamic scaling of attention scores during inference. In addition, SWAN-GPT is more computationally efficient than standard GPT architectures, resulting in cheaper training and higher throughput. Further, we demonstrate that existing pre-trained decoder-only models can be efficiently converted to the SWAN architecture with minimal continued training, enabling longer contexts. Overall, our work presents an effective approach for scaling language models to longer contexts in a robust and efficient manner.
Vi-Mistral-X: Building a Vietnamese Language Model with Advanced Continual Pre-training
The advancement of Large Language Models (LLMs) has significantly transformed the field of natural language processing, although the focus on English-centric models has created a noticeable research gap for specific languages, including Vietnamese. To address this issue, this paper presents vi-mistral-x, an innovative Large Language Model designed expressly for the Vietnamese language. It utilizes a unique method of continual pre-training, based on the Mistral architecture, which incorporates grouped-query attention and sliding window attention techniques. This model, vi-Mistral-X, marks a significant step forward in improving the understanding and generation of the Vietnamese language. It introduces an additional phase of continual pre-training, specifically adapted for Vietnamese, enhancing the model's capability in understanding complex language nuances and generating accurate, context-aware Vietnamese text. Through comprehensive testing on various benchmarks, vi-mistral-x has shown to outperform existing Vietnamese LLMs in several key areas, including text classification, question answering, and text generation. Particularly, in the Vietnamese Multitask Language Understanding (VMLU) benchmark, vi-mistral-x sets a new standard, outperforming other available models significantly. This paper highlights the critical role of continual pre-training in advancing language-specific LLMs and opens new avenues for the development of multilingual models. We aim for vi-mistral-x to not just be an important asset for processing the Vietnamese language but also to encourage more advancements in creating large language models for languages that are less represented.
SWAT: Scalable and Efficient Window Attention-based Transformers Acceleration on FPGAs
Efficiently supporting long context length is crucial for Transformer models. The quadratic complexity of the self-attention computation plagues traditional Transformers. Sliding window-based static sparse attention mitigates the problem by limiting the attention scope of the input tokens, reducing the theoretical complexity from quadratic to linear. Although the sparsity induced by window attention is highly structured, it does not align perfectly with the microarchitecture of the conventional accelerators, leading to suboptimal implementation. In response, we propose a dataflow-aware FPGA-based accelerator design, SWAT, that efficiently leverages the sparsity to achieve scalable performance for long input. The proposed microarchitecture is based on a design that maximizes data reuse by using a combination of row-wise dataflow, kernel fusion optimization, and an input-stationary design considering the distributed memory and computation resources of FPGA. Consequently, it achieves up to 22times and 5.7times improvement in latency and energy efficiency compared to the baseline FPGA-based accelerator and 15times energy efficiency compared to GPU-based solution.
Dilated Neighborhood Attention Transformer
Transformers are quickly becoming one of the most heavily applied deep learning architectures across modalities, domains, and tasks. In vision, on top of ongoing efforts into plain transformers, hierarchical transformers have also gained significant attention, thanks to their performance and easy integration into existing frameworks. These models typically employ localized attention mechanisms, such as the sliding-window Neighborhood Attention (NA) or Swin Transformer's Shifted Window Self Attention. While effective at reducing self attention's quadratic complexity, local attention weakens two of the most desirable properties of self attention: long range inter-dependency modeling, and global receptive field. In this paper, we introduce Dilated Neighborhood Attention (DiNA), a natural, flexible and efficient extension to NA that can capture more global context and expand receptive fields exponentially at no additional cost. NA's local attention and DiNA's sparse global attention complement each other, and therefore we introduce Dilated Neighborhood Attention Transformer (DiNAT), a new hierarchical vision transformer built upon both. DiNAT variants enjoy significant improvements over strong baselines such as NAT, Swin, and ConvNeXt. Our large model is faster and ahead of its Swin counterpart by 1.6% box AP in COCO object detection, 1.4% mask AP in COCO instance segmentation, and 1.4% mIoU in ADE20K semantic segmentation. Paired with new frameworks, our large variant is the new state of the art panoptic segmentation model on COCO (58.5 PQ) and ADE20K (49.4 PQ), and instance segmentation model on Cityscapes (45.1 AP) and ADE20K (35.4 AP) (no extra data). It also matches the state of the art specialized semantic segmentation models on ADE20K (58.1 mIoU), and ranks second on Cityscapes (84.5 mIoU) (no extra data).
MotionStream: Real-Time Video Generation with Interactive Motion Controls
Current motion-conditioned video generation methods suffer from prohibitive latency (minutes per video) and non-causal processing that prevents real-time interaction. We present MotionStream, enabling sub-second latency with up to 29 FPS streaming generation on a single GPU. Our approach begins by augmenting a text-to-video model with motion control, which generates high-quality videos that adhere to the global text prompt and local motion guidance, but does not perform inference on the fly. As such, we distill this bidirectional teacher into a causal student through Self Forcing with Distribution Matching Distillation, enabling real-time streaming inference. Several key challenges arise when generating videos of long, potentially infinite time-horizons: (1) bridging the domain gap from training on finite length and extrapolating to infinite horizons, (2) sustaining high quality by preventing error accumulation, and (3) maintaining fast inference, without incurring growth in computational cost due to increasing context windows. A key to our approach is introducing carefully designed sliding-window causal attention, combined with attention sinks. By incorporating self-rollout with attention sinks and KV cache rolling during training, we properly simulate inference-time extrapolations with a fixed context window, enabling constant-speed generation of arbitrarily long videos. Our models achieve state-of-the-art results in motion following and video quality while being two orders of magnitude faster, uniquely enabling infinite-length streaming. With MotionStream, users can paint trajectories, control cameras, or transfer motion, and see results unfold in real-time, delivering a truly interactive experience.
Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
Optimizing Native Sparse Attention with Latent Attention and Local Global Alternating Strategies
In this work, we conduct a systematic analysis of Native Sparse Attention (NSA) and propose targeted improvements that enhance long-context modeling. A key insight is that alternating between local (sliding-window) and global (compression, selective) attention across layers, rather than using fixed patterns, enables more effective propagation of long-range dependencies and substantially boosts performance on long-sequence tasks. Meanwhile, we further refine NSA's branches with Latent Attention that the sliding-window branch is enhanced with Multi-head Latent Attention (MLA) while compression and selective branches adopt Group-head Latent Attention (GLA). These changes reduce KV-cache memory by 50\% versus NSA while improving the model's common-sense reasoning and long-text understanding capabilities. Experiments on models from 340M to 1.3B parameters (trained on 15B and 100B tokens) show our method matches or exceeds full attention and native sparse attention in both common-sense reasoning and long-context understanding tasks.
Efficient Streaming Language Models with Attention Sinks
Deploying Large Language Models (LLMs) in streaming applications such as multi-round dialogue, where long interactions are expected, is urgently needed but poses two major challenges. Firstly, during the decoding stage, caching previous tokens' Key and Value states (KV) consumes extensive memory. Secondly, popular LLMs cannot generalize to longer texts than the training sequence length. Window attention, where only the most recent KVs are cached, is a natural approach -- but we show that it fails when the text length surpasses the cache size. We observe an interesting phenomenon, namely attention sink, that keeping the KV of initial tokens will largely recover the performance of window attention. In this paper, we first demonstrate that the emergence of attention sink is due to the strong attention scores towards initial tokens as a ``sink'' even if they are not semantically important. Based on the above analysis, we introduce StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence lengths without any fine-tuning. We show that StreamingLLM can enable Llama-2, MPT, Falcon, and Pythia to perform stable and efficient language modeling with up to 4 million tokens and more. In addition, we discover that adding a placeholder token as a dedicated attention sink during pre-training can further improve streaming deployment. In streaming settings, StreamingLLM outperforms the sliding window recomputation baseline by up to 22.2x speedup. Code and datasets are provided at https://github.com/mit-han-lab/streaming-llm.
Native Hybrid Attention for Efficient Sequence Modeling
Transformers excel at sequence modeling but face quadratic complexity, while linear attention offers improved efficiency but often compromises recall accuracy over long contexts. In this work, we introduce Native Hybrid Attention (NHA), a novel hybrid architecture of linear and full attention that integrates both intra \& inter-layer hybridization into a unified layer design. NHA maintains long-term context in key-value slots updated by a linear RNN, and augments them with short-term tokens from a sliding window. A single softmax attention operation is then applied over all keys and values, enabling per-token and per-head context-dependent weighting without requiring additional fusion parameters. The inter-layer behavior is controlled through a single hyperparameter, the sliding window size, which allows smooth adjustment between purely linear and full attention while keeping all layers structurally uniform. Experimental results show that NHA surpasses Transformers and other hybrid baselines on recall-intensive and commonsense reasoning tasks. Furthermore, pretrained LLMs can be structurally hybridized with NHA, achieving competitive accuracy while delivering significant efficiency gains. Code is available at https://github.com/JusenD/NHA.
Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light
Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.
HiP Attention: Sparse Sub-Quadratic Attention with Hierarchical Attention Pruning
In modern large language models (LLMs), increasing sequence lengths is a crucial challenge for enhancing their comprehension and coherence in handling complex tasks such as multi-modal question answering. However, handling long context sequences with LLMs is prohibitively costly due to the conventional attention mechanism's quadratic time and space complexity, and the context window size is limited by the GPU memory. Although recent works have proposed linear and sparse attention mechanisms to address this issue, their real-world applicability is often limited by the need to re-train pre-trained models. In response, we propose a novel approach, Hierarchically Pruned Attention (HiP), which simultaneously reduces the training and inference time complexity from O(T^2) to O(T log T) and the space complexity from O(T^2) to O(T). To this end, we devise a dynamic sparse attention mechanism that generates an attention mask through a novel tree-search-like algorithm for a given query on the fly. HiP is training-free as it only utilizes the pre-trained attention scores to spot the positions of the top-k most significant elements for each query. Moreover, it ensures that no token is overlooked, unlike the sliding window-based sub-quadratic attention methods, such as StreamingLLM. Extensive experiments on diverse real-world benchmarks demonstrate that HiP significantly reduces prompt (i.e., prefill) and decoding latency and memory usage while maintaining high generation performance with little or no degradation. As HiP allows pretrained LLMs to scale to millions of tokens on commodity GPUs with no additional engineering due to its easy plug-and-play deployment, we believe that our work will have a large practical impact, opening up the possibility to many long-context LLM applications previously infeasible.
PowerAttention: Exponentially Scaling of Receptive Fields for Effective Sparse Attention
Large Language Models (LLMs) face efficiency bottlenecks due to the quadratic complexity of the attention mechanism when processing long contexts. Sparse attention methods offer a promising solution, but existing approaches often suffer from incomplete effective context and/or require complex implementation of pipeline. We present a comprehensive analysis of sparse attention for autoregressive LLMs from the respective of receptive field, recognize the suboptimal nature of existing methods for expanding the receptive field, and introduce PowerAttention, a novel sparse attention design that facilitates effective and complete context extension through the theoretical analysis. PowerAttention achieves exponential receptive field growth in d-layer LLMs, allowing each output token to attend to 2^d tokens, ensuring completeness and continuity of the receptive field. Experiments demonstrate that PowerAttention outperforms existing static sparse attention methods by 5sim 40%, especially on tasks demanding long-range dependencies like Passkey Retrieval and RULER, while maintaining a comparable time complexity to sliding window attention. Efficiency evaluations further highlight PowerAttention's superior speedup in both prefilling and decoding phases compared with dynamic sparse attentions and full attention (3.0times faster on 128K context), making it a highly effective and user-friendly solution for processing long sequences in LLMs.
DPad: Efficient Diffusion Language Models with Suffix Dropout
Diffusion-based Large Language Models (dLLMs) parallelize text generation by framing decoding as a denoising process, but suffer from high computational overhead since they predict all future suffix tokens at each step while retaining only a small fraction. We propose Diffusion Scratchpad (DPad), a training-free method that restricts attention to a small set of nearby suffix tokens, preserving fidelity while eliminating redundancy. DPad integrates two strategies: (i) a sliding window, which maintains a fixed-length suffix window, and (ii) distance-decay dropout, which deterministically removes distant suffix tokens before attention computation. This simple design is compatible with existing optimizations such as prefix caching and can be implemented with only a few lines of code. Comprehensive evaluations across multiple benchmarks on LLaDA-1.5 and Dream models demonstrate that DPad delivers up to 61.4times speedup over vanilla dLLMs while maintaining comparable accuracy, highlighting its potential for efficient and scalable long-sequence inference. Our code is available at https://github.com/Crys-Chen/DPad.
MagicInfinite: Generating Infinite Talking Videos with Your Words and Voice
We present MagicInfinite, a novel diffusion Transformer (DiT) framework that overcomes traditional portrait animation limitations, delivering high-fidelity results across diverse character types-realistic humans, full-body figures, and stylized anime characters. It supports varied facial poses, including back-facing views, and animates single or multiple characters with input masks for precise speaker designation in multi-character scenes. Our approach tackles key challenges with three innovations: (1) 3D full-attention mechanisms with a sliding window denoising strategy, enabling infinite video generation with temporal coherence and visual quality across diverse character styles; (2) a two-stage curriculum learning scheme, integrating audio for lip sync, text for expressive dynamics, and reference images for identity preservation, enabling flexible multi-modal control over long sequences; and (3) region-specific masks with adaptive loss functions to balance global textual control and local audio guidance, supporting speaker-specific animations. Efficiency is enhanced via our innovative unified step and cfg distillation techniques, achieving a 20x inference speed boost over the basemodel: generating a 10 second 540x540p video in 10 seconds or 720x720p in 30 seconds on 8 H100 GPUs, without quality loss. Evaluations on our new benchmark demonstrate MagicInfinite's superiority in audio-lip synchronization, identity preservation, and motion naturalness across diverse scenarios. It is publicly available at https://www.hedra.com/, with examples at https://magicinfinite.github.io/.
MAMBA: Multi-level Aggregation via Memory Bank for Video Object Detection
State-of-the-art video object detection methods maintain a memory structure, either a sliding window or a memory queue, to enhance the current frame using attention mechanisms. However, we argue that these memory structures are not efficient or sufficient because of two implied operations: (1) concatenating all features in memory for enhancement, leading to a heavy computational cost; (2) frame-wise memory updating, preventing the memory from capturing more temporal information. In this paper, we propose a multi-level aggregation architecture via memory bank called MAMBA. Specifically, our memory bank employs two novel operations to eliminate the disadvantages of existing methods: (1) light-weight key-set construction which can significantly reduce the computational cost; (2) fine-grained feature-wise updating strategy which enables our method to utilize knowledge from the whole video. To better enhance features from complementary levels, i.e., feature maps and proposals, we further propose a generalized enhancement operation (GEO) to aggregate multi-level features in a unified manner. We conduct extensive evaluations on the challenging ImageNetVID dataset. Compared with existing state-of-the-art methods, our method achieves superior performance in terms of both speed and accuracy. More remarkably, MAMBA achieves mAP of 83.7/84.6% at 12.6/9.1 FPS with ResNet-101. Code is available at https://github.com/guanxiongsun/video_feature_enhancement.
Rodimus*: Breaking the Accuracy-Efficiency Trade-Off with Efficient Attentions
Recent advancements in Transformer-based large language models (LLMs) have set new standards in natural language processing. However, the classical softmax attention incurs significant computational costs, leading to a O(T) complexity for per-token generation, where T represents the context length. This work explores reducing LLMs' complexity while maintaining performance by introducing Rodimus and its enhanced version, Rodimus+. Rodimus employs an innovative data-dependent tempered selection (DDTS) mechanism within a linear attention-based, purely recurrent framework, achieving significant accuracy while drastically reducing the memory usage typically associated with recurrent models. This method exemplifies semantic compression by maintaining essential input information with fixed-size hidden states. Building on this, Rodimus+ combines Rodimus with the innovative Sliding Window Shared-Key Attention (SW-SKA) in a hybrid approach, effectively leveraging the complementary semantic, token, and head compression techniques. Our experiments demonstrate that Rodimus+-1.6B, trained on 1 trillion tokens, achieves superior downstream performance against models trained on more tokens, including Qwen2-1.5B and RWKV6-1.6B, underscoring its potential to redefine the accuracy-efficiency balance in LLMs. Model code and pre-trained checkpoints will be available soon.
Artificial Hippocampus Networks for Efficient Long-Context Modeling
Long-sequence modeling faces a fundamental trade-off between the efficiency of compressive fixed-size memory in RNN-like models and the fidelity of lossless growing memory in attention-based Transformers. Inspired by the Multi-Store Model in cognitive science, we introduce a memory framework of artificial neural networks. Our method maintains a sliding window of the Transformer's KV cache as lossless short-term memory, while a learnable module termed Artificial Hippocampus Network (AHN) recurrently compresses out-of-window information into a fixed-size compact long-term memory. To validate this framework, we instantiate AHNs using modern RNN-like architectures, including Mamba2, DeltaNet, and Gated DeltaNet. Extensive experiments on long-context benchmarks LV-Eval and InfiniteBench demonstrate that AHN-augmented models consistently outperform sliding window baselines and achieve performance comparable or even superior to full-attention models, while substantially reducing computational and memory requirements. For instance, augmenting the Qwen2.5-3B-Instruct with AHNs reduces inference FLOPs by 40.5% and memory cache by 74.0%, while improving its average score on LV-Eval (128k sequence length) from 4.41 to 5.88. Code is available at: https://github.com/ByteDance-Seed/AHN.
Small Language Model Makes an Effective Long Text Extractor
Named Entity Recognition (NER) is a fundamental problem in natural language processing (NLP). However, the task of extracting longer entity spans (e.g., awards) from extended texts (e.g., homepages) is barely explored. Current NER methods predominantly fall into two categories: span-based methods and generation-based methods. Span-based methods require the enumeration of all possible token-pair spans, followed by classification on each span, resulting in substantial redundant computations and excessive GPU memory usage. In contrast, generation-based methods involve prompting or fine-tuning large language models (LLMs) to adapt to downstream NER tasks. However, these methods struggle with the accurate generation of longer spans and often incur significant time costs for effective fine-tuning. To address these challenges, this paper introduces a lightweight span-based NER method called SeNER, which incorporates a bidirectional arrow attention mechanism coupled with LogN-Scaling on the [CLS] token to embed long texts effectively, and comprises a novel bidirectional sliding-window plus-shaped attention (BiSPA) mechanism to reduce redundant candidate token-pair spans significantly and model interactions between token-pair spans simultaneously. Extensive experiments demonstrate that our method achieves state-of-the-art extraction accuracy on three long NER datasets and is capable of extracting entities from long texts in a GPU-memory-friendly manner. Code: https://github.com/THUDM/scholar-profiling/tree/main/sener
Zero-Shot Text-to-Speech from Continuous Text Streams
Existing zero-shot text-to-speech (TTS) systems are typically designed to process complete sentences and are constrained by the maximum duration for which they have been trained. However, in many streaming applications, texts arrive continuously in short chunks, necessitating instant responses from the system. We identify the essential capabilities required for chunk-level streaming and introduce LiveSpeech 2, a stream-aware model that supports infinitely long speech generation, text-audio stream synchronization, and seamless transitions between short speech chunks. To achieve these, we propose (1) adopting Mamba, a class of sequence modeling distinguished by linear-time decoding, which is augmented by cross-attention mechanisms for conditioning, (2) utilizing rotary positional embeddings in the computation of cross-attention, enabling the model to process an infinite text stream by sliding a window, and (3) decoding with semantic guidance, a technique that aligns speech with the transcript during inference with minimal overhead. Experimental results demonstrate that our models are competitive with state-of-the-art language model-based zero-shot TTS models, while also providing flexibility to support a wide range of streaming scenarios.
End-to-End Test-Time Training for Long Context
We formulate long-context language modeling as a problem in continual learning rather than architecture design. Under this formulation, we only use a standard architecture -- a Transformer with sliding-window attention. However, our model continues learning at test time via next-token prediction on the given context, compressing the context it reads into its weights. In addition, we improve the model's initialization for learning at test time via meta-learning at training time. Overall, our method, a form of Test-Time Training (TTT), is End-to-End (E2E) both at test time (via next-token prediction) and training time (via meta-learning), in contrast to previous forms. We conduct extensive experiments with a focus on scaling properties. In particular, for 3B models trained with 164B tokens, our method (TTT-E2E) scales with context length in the same way as Transformer with full attention, while others, such as Mamba 2 and Gated DeltaNet, do not. However, similar to RNNs, TTT-E2E has constant inference latency regardless of context length, making it 2.7 times faster than full attention for 128K context. Our code is publicly available.
