new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 20

DECKBench: Benchmarking Multi-Agent Frameworks for Academic Slide Generation and Editing

Automatically generating and iteratively editing academic slide decks requires more than document summarization. It demands faithful content selection, coherent slide organization, layout-aware rendering, and robust multi-turn instruction following. However, existing benchmarks and evaluation protocols do not adequately measure these challenges. To address this gap, we introduce the Deck Edits and Compliance Kit Benchmark (DECKBench), an evaluation framework for multi-agent slide generation and editing. DECKBench is built on a curated dataset of paper to slide pairs augmented with realistic, simulated editing instructions. Our evaluation protocol systematically assesses slide-level and deck-level fidelity, coherence, layout quality, and multi-turn instruction following. We further implement a modular multi-agent baseline system that decomposes the slide generation and editing task into paper parsing and summarization, slide planning, HTML creation, and iterative editing. Experimental results demonstrate that the proposed benchmark highlights strengths, exposes failure modes, and provides actionable insights for improving multi-agent slide generation and editing systems. Overall, this work establishes a standardized foundation for reproducible and comparable evaluation of academic presentation generation and editing. Code and data are publicly available at https://github.com/morgan-heisler/DeckBench .

  • 8 authors
·
Feb 10

Generating Narrated Lecture Videos from Slides with Synchronized Highlights

Turning static slides into engaging video lectures takes considerable time and effort, requiring presenters to record explanations and visually guide their audience through the material. We introduce an end-to-end system designed to automate this process entirely. Given a slide deck, this system synthesizes a video lecture featuring AI-generated narration synchronized precisely with dynamic visual highlights. These highlights automatically draw attention to the specific concept being discussed, much like an effective presenter would. The core technical contribution is a novel highlight alignment module. This module accurately maps spoken phrases to locations on a given slide using diverse strategies (e.g., Levenshtein distance, LLM-based semantic analysis) at selectable granularities (line or word level) and utilizes timestamp-providing Text-to-Speech (TTS) for timing synchronization. We demonstrate the system's effectiveness through a technical evaluation using a manually annotated slide dataset with 1000 samples, finding that LLM-based alignment achieves high location accuracy (F1 > 92%), significantly outperforming simpler methods, especially on complex, math-heavy content. Furthermore, the calculated generation cost averages under $1 per hour of video, offering potential savings of two orders of magnitude compared to conservative estimates of manual production costs. This combination of high accuracy and extremely low cost positions this approach as a practical and scalable tool for transforming static slides into effective, visually-guided video lectures.

  • 1 authors
·
May 5, 2025