new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Cross-modal feature fusion for robust point cloud registration with ambiguous geometry

Point cloud registration has seen significant advancements with the application of deep learning techniques. However, existing approaches often overlook the potential of integrating radiometric information from RGB images. This limitation reduces their effectiveness in aligning point clouds pairs, especially in regions where geometric data alone is insufficient. When used effectively, radiometric information can enhance the registration process by providing context that is missing from purely geometric data. In this paper, we propose CoFF, a novel Cross-modal Feature Fusion method that utilizes both point cloud geometry and RGB images for pairwise point cloud registration. Assuming that the co-registration between point clouds and RGB images is available, CoFF explicitly addresses the challenges where geometric information alone is unclear, such as in regions with symmetric similarity or planar structures, through a two-stage fusion of 3D point cloud features and 2D image features. It incorporates a cross-modal feature fusion module that assigns pixel-wise image features to 3D input point clouds to enhance learned 3D point features, and integrates patch-wise image features with superpoint features to improve the quality of coarse matching. This is followed by a coarse-to-fine matching module that accurately establishes correspondences using the fused features. We extensively evaluate CoFF on four common datasets: 3DMatch, 3DLoMatch, IndoorLRS, and the recently released ScanNet++ datasets. In addition, we assess CoFF on specific subset datasets containing geometrically ambiguous cases. Our experimental results demonstrate that CoFF achieves state-of-the-art registration performance across all benchmarks, including remarkable registration recalls of 95.9% and 81.6% on the widely-used 3DMatch and 3DLoMatch datasets, respectively...(Truncated to fit arXiv abstract length)

  • 6 authors
·
May 19

Transformation Decoupling Strategy based on Screw Theory for Deterministic Point Cloud Registration with Gravity Prior

Point cloud registration is challenging in the presence of heavy outlier correspondences. This paper focuses on addressing the robust correspondence-based registration problem with gravity prior that often arises in practice. The gravity directions are typically obtained by inertial measurement units (IMUs) and can reduce the degree of freedom (DOF) of rotation from 3 to 1. We propose a novel transformation decoupling strategy by leveraging screw theory. This strategy decomposes the original 4-DOF problem into three sub-problems with 1-DOF, 2-DOF, and 1-DOF, respectively, thereby enhancing the computation efficiency. Specifically, the first 1-DOF represents the translation along the rotation axis and we propose an interval stabbing-based method to solve it. The second 2-DOF represents the pole which is an auxiliary variable in screw theory and we utilize a branch-and-bound method to solve it. The last 1-DOF represents the rotation angle and we propose a global voting method for its estimation. The proposed method sequentially solves three consensus maximization sub-problems, leading to efficient and deterministic registration. In particular, it can even handle the correspondence-free registration problem due to its significant robustness. Extensive experiments on both synthetic and real-world datasets demonstrate that our method is more efficient and robust than state-of-the-art methods, even when dealing with outlier rates exceeding 99%.

  • 7 authors
·
Nov 2, 2023

FreeReg: Image-to-Point Cloud Registration Leveraging Pretrained Diffusion Models and Monocular Depth Estimators

Matching cross-modality features between images and point clouds is a fundamental problem for image-to-point cloud registration. However, due to the modality difference between images and points, it is difficult to learn robust and discriminative cross-modality features by existing metric learning methods for feature matching. Instead of applying metric learning on cross-modality data, we propose to unify the modality between images and point clouds by pretrained large-scale models first, and then establish robust correspondence within the same modality. We show that the intermediate features, called diffusion features, extracted by depth-to-image diffusion models are semantically consistent between images and point clouds, which enables the building of coarse but robust cross-modality correspondences. We further extract geometric features on depth maps produced by the monocular depth estimator. By matching such geometric features, we significantly improve the accuracy of the coarse correspondences produced by diffusion features. Extensive experiments demonstrate that without any task-specific training, direct utilization of both features produces accurate image-to-point cloud registration. On three public indoor and outdoor benchmarks, the proposed method averagely achieves a 20.6 percent improvement in Inlier Ratio, a three-fold higher Inlier Number, and a 48.6 percent improvement in Registration Recall than existing state-of-the-arts.

  • 7 authors
·
Oct 5, 2023

RAR: Region-Aware Point Cloud Registration

This paper concerns the research problem of point cloud registration to find the rigid transformation to optimally align the source point set with the target one. Learning robust point cloud registration models with deep neural networks has emerged as a powerful paradigm, offering promising performance in predicting the global geometric transformation for a pair of point sets. Existing methods firstly leverage an encoder to regress a latent shape embedding, which is then decoded into a shape-conditioned transformation via concatenation-based conditioning. However, different regions of a 3D shape vary in their geometric structures which makes it more sense that we have a region-conditioned transformation instead of the shape-conditioned one. In this paper we present a Region-Aware point cloud Registration, denoted as RAR, to predict transformation for pairwise point sets in the self-supervised learning fashion. More specifically, we develop a novel region-aware decoder (RAD) module that is formed with an implicit neural region representation parameterized by neural networks. The implicit neural region representation is learned with a self-supervised 3D shape reconstruction loss without the need for region labels. Consequently, the region-aware decoder (RAD) module guides the training of the region-aware transformation (RAT) module and region-aware weight (RAW) module, which predict the transforms and weights for different regions respectively. The global geometric transformation from source point set to target one is then formed by the weighted fusion of region-aware transforms. Compared to the state-of-the-art approaches, our experiments show that our RAR achieves superior registration performance over various benchmark datasets (e.g. ModelNet40).

  • 2 authors
·
Oct 7, 2021

SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D Object Pose Estimation

In this paper, we introduce an SE(3) diffusion model-based point cloud registration framework for 6D object pose estimation in real-world scenarios. Our approach formulates the 3D registration task as a denoising diffusion process, which progressively refines the pose of the source point cloud to obtain a precise alignment with the model point cloud. Training our framework involves two operations: An SE(3) diffusion process and an SE(3) reverse process. The SE(3) diffusion process gradually perturbs the optimal rigid transformation of a pair of point clouds by continuously injecting noise (perturbation transformation). By contrast, the SE(3) reverse process focuses on learning a denoising network that refines the noisy transformation step-by-step, bringing it closer to the optimal transformation for accurate pose estimation. Unlike standard diffusion models used in linear Euclidean spaces, our diffusion model operates on the SE(3) manifold. This requires exploiting the linear Lie algebra se(3) associated with SE(3) to constrain the transformation transitions during the diffusion and reverse processes. Additionally, to effectively train our denoising network, we derive a registration-specific variational lower bound as the optimization objective for model learning. Furthermore, we show that our denoising network can be constructed with a surrogate registration model, making our approach applicable to different deep registration networks. Extensive experiments demonstrate that our diffusion registration framework presents outstanding pose estimation performance on the real-world TUD-L, LINEMOD, and Occluded-LINEMOD datasets.

  • 5 authors
·
Oct 26, 2023

AutoSynth: Learning to Generate 3D Training Data for Object Point Cloud Registration

In the current deep learning paradigm, the amount and quality of training data are as critical as the network architecture and its training details. However, collecting, processing, and annotating real data at scale is difficult, expensive, and time-consuming, particularly for tasks such as 3D object registration. While synthetic datasets can be created, they require expertise to design and include a limited number of categories. In this paper, we introduce a new approach called AutoSynth, which automatically generates 3D training data for point cloud registration. Specifically, AutoSynth automatically curates an optimal dataset by exploring a search space encompassing millions of potential datasets with diverse 3D shapes at a low cost.To achieve this, we generate synthetic 3D datasets by assembling shape primitives, and develop a meta-learning strategy to search for the best training data for 3D registration on real point clouds. For this search to remain tractable, we replace the point cloud registration network with a much smaller surrogate network, leading to a 4056.43 times speedup. We demonstrate the generality of our approach by implementing it with two different point cloud registration networks, BPNet and IDAM. Our results on TUD-L, LINEMOD and Occluded-LINEMOD evidence that a neural network trained on our searched dataset yields consistently better performance than the same one trained on the widely used ModelNet40 dataset.

  • 2 authors
·
Sep 20, 2023

PARE-Net: Position-Aware Rotation-Equivariant Networks for Robust Point Cloud Registration

Learning rotation-invariant distinctive features is a fundamental requirement for point cloud registration. Existing methods often use rotation-sensitive networks to extract features, while employing rotation augmentation to learn an approximate invariant mapping rudely. This makes networks fragile to rotations, overweight, and hinders the distinctiveness of features. To tackle these problems, we propose a novel position-aware rotation-equivariant network, for efficient, light-weighted, and robust registration. The network can provide a strong model inductive bias to learn rotation-equivariant/invariant features, thus addressing the aforementioned limitations. To further improve the distinctiveness of descriptors, we propose a position-aware convolution, which can better learn spatial information of local structures. Moreover, we also propose a feature-based hypothesis proposer. It leverages rotation-equivariant features that encode fine-grained structure orientations to generate reliable model hypotheses. Each correspondence can generate a hypothesis, thus it is more efficient than classic estimators that require multiple reliable correspondences. Accordingly, a contrastive rotation loss is presented to enhance the robustness of rotation-equivariant features against data degradation. Extensive experiments on indoor and outdoor datasets demonstrate that our method significantly outperforms the SOTA methods in terms of registration recall while being lightweight and keeping a fast speed. Moreover, experiments on rotated datasets demonstrate its robustness against rotation variations. Code is available at https://github.com/yaorz97/PARENet.

  • 5 authors
·
Jul 14, 2024

DCReg: Decoupled Characterization for Efficient Degenerate LiDAR Registration

LiDAR point cloud registration is fundamental to robotic perception and navigation. However, in geometrically degenerate or narrow environments, registration problems become ill-conditioned, leading to unstable solutions and degraded accuracy. While existing approaches attempt to handle these issues, they fail to address the core challenge: accurately detection, interpret, and resolve this ill-conditioning, leading to missed detections or corrupted solutions. In this study, we introduce DCReg, a principled framework that systematically addresses the ill-conditioned registration problems through three integrated innovations. First, DCReg achieves reliable ill-conditioning detection by employing a Schur complement decomposition to the hessian matrix. This technique decouples the registration problem into clean rotational and translational subspaces, eliminating coupling effects that mask degeneracy patterns in conventional analyses. Second, within these cleanly subspaces, we develop quantitative characterization techniques that establish explicit mappings between mathematical eigenspaces and physical motion directions, providing actionable insights about which specific motions lack constraints. Finally, leveraging this clean subspace, we design a targeted mitigation strategy: a novel preconditioner that selectively stabilizes only the identified ill-conditioned directions while preserving all well-constrained information in observable space. This enables efficient and robust optimization via the Preconditioned Conjugate Gradient method with a single physical interpretable parameter. Extensive experiments demonstrate DCReg achieves at least 20% - 50% improvement in localization accuracy and 5-100 times speedup over state-of-the-art methods across diverse environments. Our implementation will be available at https://github.com/JokerJohn/DCReg.

G3Reg: Pyramid Graph-based Global Registration using Gaussian Ellipsoid Model

This study introduces a novel framework, G3Reg, for fast and robust global registration of LiDAR point clouds. In contrast to conventional complex keypoints and descriptors, we extract fundamental geometric primitives, including planes, clusters, and lines (PCL) from the raw point cloud to obtain low-level semantic segments. Each segment is represented as a unified Gaussian Ellipsoid Model (GEM), using a probability ellipsoid to ensure the ground truth centers are encompassed with a certain degree of probability. Utilizing these GEMs, we present a distrust-and-verify scheme based on a Pyramid Compatibility Graph for Global Registration (PAGOR). Specifically, we establish an upper bound, which can be traversed based on the confidence level for compatibility testing to construct the pyramid graph. Then, we solve multiple maximum cliques (MAC) for each level of the pyramid graph, thus generating the corresponding transformation candidates. In the verification phase, we adopt a precise and efficient metric for point cloud alignment quality, founded on geometric primitives, to identify the optimal candidate. The algorithm's performance is validated on three publicly available datasets and a self-collected multi-session dataset. Parameter settings remained unchanged during the experiment evaluations. The results exhibit superior robustness and real-time performance of the G3Reg framework compared to state-of-the-art methods. Furthermore, we demonstrate the potential for integrating individual GEM and PAGOR components into other registration frameworks to enhance their efficacy. Code: https://github.com/HKUST-Aerial-Robotics/G3Reg

  • 5 authors
·
Aug 22, 2023

EP2P-Loc: End-to-End 3D Point to 2D Pixel Localization for Large-Scale Visual Localization

Visual localization is the task of estimating a 6-DoF camera pose of a query image within a provided 3D reference map. Thanks to recent advances in various 3D sensors, 3D point clouds are becoming a more accurate and affordable option for building the reference map, but research to match the points of 3D point clouds with pixels in 2D images for visual localization remains challenging. Existing approaches that jointly learn 2D-3D feature matching suffer from low inliers due to representational differences between the two modalities, and the methods that bypass this problem into classification have an issue of poor refinement. In this work, we propose EP2P-Loc, a novel large-scale visual localization method that mitigates such appearance discrepancy and enables end-to-end training for pose estimation. To increase the number of inliers, we propose a simple algorithm to remove invisible 3D points in the image, and find all 2D-3D correspondences without keypoint detection. To reduce memory usage and search complexity, we take a coarse-to-fine approach where we extract patch-level features from 2D images, then perform 2D patch classification on each 3D point, and obtain the exact corresponding 2D pixel coordinates through positional encoding. Finally, for the first time in this task, we employ a differentiable PnP for end-to-end training. In the experiments on newly curated large-scale indoor and outdoor benchmarks based on 2D-3D-S and KITTI, we show that our method achieves the state-of-the-art performance compared to existing visual localization and image-to-point cloud registration methods.

  • 3 authors
·
Sep 14, 2023

BEV-LIO(LC): BEV Image Assisted LiDAR-Inertial Odometry with Loop Closure

This work introduces BEV-LIO(LC), a novel LiDAR-Inertial Odometry (LIO) framework that combines Bird's Eye View (BEV) image representations of LiDAR data with geometry-based point cloud registration and incorporates loop closure (LC) through BEV image features. By normalizing point density, we project LiDAR point clouds into BEV images, thereby enabling efficient feature extraction and matching. A lightweight convolutional neural network (CNN) based feature extractor is employed to extract distinctive local and global descriptors from the BEV images. Local descriptors are used to match BEV images with FAST keypoints for reprojection error construction, while global descriptors facilitate loop closure detection. Reprojection error minimization is then integrated with point-to-plane registration within an iterated Extended Kalman Filter (iEKF). In the back-end, global descriptors are used to create a KD-tree-indexed keyframe database for accurate loop closure detection. When a loop closure is detected, Random Sample Consensus (RANSAC) computes a coarse transform from BEV image matching, which serves as the initial estimate for Iterative Closest Point (ICP). The refined transform is subsequently incorporated into a factor graph along with odometry factors, improving the global consistency of localization. Extensive experiments conducted in various scenarios with different LiDAR types demonstrate that BEV-LIO(LC) outperforms state-of-the-art methods, achieving competitive localization accuracy. Our code, video and supplementary materials can be found at https://github.com/HxCa1/BEV-LIO-LC.

  • 5 authors
·
Feb 26

Rotation-Invariant Transformer for Point Cloud Matching

The intrinsic rotation invariance lies at the core of matching point clouds with handcrafted descriptors. However, it is widely despised by recent deep matchers that obtain the rotation invariance extrinsically via data augmentation. As the finite number of augmented rotations can never span the continuous SO(3) space, these methods usually show instability when facing rotations that are rarely seen. To this end, we introduce RoITr, a Rotation-Invariant Transformer to cope with the pose variations in the point cloud matching task. We contribute both on the local and global levels. Starting from the local level, we introduce an attention mechanism embedded with Point Pair Feature (PPF)-based coordinates to describe the pose-invariant geometry, upon which a novel attention-based encoder-decoder architecture is constructed. We further propose a global transformer with rotation-invariant cross-frame spatial awareness learned by the self-attention mechanism, which significantly improves the feature distinctiveness and makes the model robust with respect to the low overlap. Experiments are conducted on both the rigid and non-rigid public benchmarks, where RoITr outperforms all the state-of-the-art models by a considerable margin in the low-overlapping scenarios. Especially when the rotations are enlarged on the challenging 3DLoMatch benchmark, RoITr surpasses the existing methods by at least 13 and 5 percentage points in terms of Inlier Ratio and Registration Recall, respectively.

  • 7 authors
·
Mar 14, 2023

NICP: Neural ICP for 3D Human Registration at Scale

Aligning a template to 3D human point clouds is a long-standing problem crucial for tasks like animation, reconstruction, and enabling supervised learning pipelines. Recent data-driven methods leverage predicted surface correspondences. However, they are not robust to varied poses, identities, or noise. In contrast, industrial solutions often rely on expensive manual annotations or multi-view capturing systems. Recently, neural fields have shown promising results. Still, their purely data-driven and extrinsic nature does not incorporate any guidance toward the target surface, often resulting in a trivial misalignment of the template registration. Currently, no method can be considered the standard for 3D Human registration, limiting the scalability of downstream applications. In this work, we propose a neural scalable registration method, NSR, a pipeline that, for the first time, generalizes and scales across thousands of shapes and more than ten different data sources. Our essential contribution is NICP, an ICP-style self-supervised task tailored to neural fields. NSR takes a few seconds, is self-supervised, and works out of the box on pre-trained neural fields. NSR combines NICP with a localized neural field trained on a large MoCap dataset, achieving the state of the art over public benchmarks. The release of our code and checkpoints provides a powerful tool useful for many downstream tasks like dataset alignments, cleaning, or asset animation.

  • 3 authors
·
Dec 21, 2023