- MACE4IR: A foundation model for molecular infrared spectroscopy Machine-learned interatomic potentials (MLIPs) have shown significant promise in predicting infrared spectra with high fidelity. However, the absence of general-purpose MLIPs capable of handling a wide range of elements and their combinations has limited their broader applicability. In this work, we introduce MACE4IR, a machine learning foundation model built on the MACE architecture and trained on 10 million geometries and corresponding density-functional theory (DFT) energies, forces and dipole moments from the QCML dataset. The training data encompasses approximately 80 elements and a diverse set of molecules, including organic compounds, inorganic species, and metal complexes. MACE4IR accurately predicts energies, forces, dipole moments, and infrared spectra at significantly reduced computational cost compared to DFT. By combining generality, accuracy, and efficiency, MACE4IR opens the door to rapid and reliable infrared spectra prediction for complex systems across chemistry, biology, and materials science. 5 authors · Aug 26, 2025
- The Open DAC 2025 Dataset for Sorbent Discovery in Direct Air Capture Identifying useful sorbent materials for direct air capture (DAC) from humid air remains a challenge. We present the Open DAC 2025 (ODAC25) dataset, a significant expansion and improvement upon ODAC23 (Sriram et al., ACS Central Science, 10 (2024) 923), comprising nearly 70 million DFT single-point calculations for CO_2, H_2O, N_2, and O_2 adsorption in 15,000 MOFs. ODAC25 introduces chemical and configurational diversity through functionalized MOFs, high-energy GCMC-derived placements, and synthetically generated frameworks. ODAC25 also significantly improves upon the accuracy of DFT calculations and the treatment of flexible MOFs in ODAC23. Along with the dataset, we release new state-of-the-art machine-learned interatomic potentials trained on ODAC25 and evaluate them on adsorption energy and Henry's law coefficient predictions. 15 authors · Aug 5, 2025
- Learning Inter-Atomic Potentials without Explicit Equivariance Accurate and scalable machine-learned inter-atomic potentials (MLIPs) are essential for molecular simulations ranging from drug discovery to new material design. Current state-of-the-art models enforce roto-translational symmetries through equivariant neural network architectures, a hard-wired inductive bias that can often lead to reduced flexibility, computational efficiency, and scalability. In this work, we introduce TransIP: Transformer-based Inter-Atomic Potentials, a novel training paradigm for interatomic potentials achieving symmetry compliance without explicit architectural constraints. Our approach guides a generic non-equivariant Transformer-based model to learn SO(3)-equivariance by optimizing its representations in the embedding space. Trained on the recent Open Molecules (OMol25) collection, a large and diverse molecular dataset built specifically for MLIPs and covering different types of molecules (including small organics, biomolecular fragments, and electrolyte-like species), TransIP attains comparable performance in machine-learning force fields versus state-of-the-art equivariant baselines. Further, compared to a data augmentation baseline, TransIP achieves 40% to 60% improvement in performance across varying OMol25 dataset sizes. More broadly, our work shows that learned equivariance can be a powerful and efficient alternative to equivariant or augmentation-based MLIP models. 6 authors · Sep 25, 2025
- Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments We propose a machine learning method to model molecular tensorial quantities, namely the magnetic anisotropy tensor, based on the Gaussian-moment neural-network approach. We demonstrate that the proposed methodology can achieve an accuracy of 0.3--0.4 cm^{-1} and has excellent generalization capability for out-of-sample configurations. Moreover, in combination with machine-learned interatomic potential energies based on Gaussian moments, our approach can be applied to study the dynamic behavior of magnetic anisotropy tensors and provide a unique insight into spin-phonon relaxation. 5 authors · Dec 3, 2023