- FRoG: Evaluating Fuzzy Reasoning of Generalized Quantifiers in Large Language Models Fuzzy reasoning is vital due to the frequent use of imprecise information in daily contexts. However, the ability of current large language models (LLMs) to handle such reasoning remains largely uncharted. In this paper, we introduce a new benchmark, FRoG, for fuzzy reasoning, featuring real-world mathematical word problems that incorporate generalized quantifiers. Our experimental findings reveal that fuzzy reasoning continues to pose significant challenges for LLMs. Moreover, we find that existing methods designed to enhance reasoning do not consistently improve performance in tasks involving fuzzy logic. Additionally, our results show an inverse scaling effect in the performance of LLMs on FRoG. Interestingly, we also demonstrate that strong mathematical reasoning skills are not necessarily indicative of success on our benchmark. 3 authors · Jul 1, 2024
- Pragmatic Reasoning Unlocks Quantifier Semantics for Foundation Models Generalized quantifiers (e.g., few, most) are used to indicate the proportions predicates are satisfied (for example, some apples are red). One way to interpret quantifier semantics is to explicitly bind these satisfactions with percentage scopes (e.g., 30%-40% of apples are red). This approach can be helpful for tasks like logic formalization and surface-form quantitative reasoning (Gordon and Schubert, 2010; Roy et al., 2015). However, it remains unclear if recent foundation models possess this ability, as they lack direct training signals. To explore this, we introduce QuRe, a crowd-sourced dataset of human-annotated generalized quantifiers in Wikipedia sentences featuring percentage-equipped predicates. We explore quantifier comprehension in language models using PRESQUE, a framework that combines natural language inference and the Rational Speech Acts framework. Experimental results on the HVD dataset and QuRe illustrate that PRESQUE, employing pragmatic reasoning, performs 20% better than a literal reasoning baseline when predicting quantifier percentage scopes, with no additional training required. 4 authors · Nov 8, 2023
- Generalized Zero-Shot Recognition based on Visually Semantic Embedding We propose a novel Generalized Zero-Shot learning (GZSL) method that is agnostic to both unseen images and unseen semantic vectors during training. Prior works in this context propose to map high-dimensional visual features to the semantic domain, we believe contributes to the semantic gap. To bridge the gap, we propose a novel low-dimensional embedding of visual instances that is "visually semantic." Analogous to semantic data that quantifies the existence of an attribute in the presented instance, components of our visual embedding quantifies existence of a prototypical part-type in the presented instance. In parallel, as a thought experiment, we quantify the impact of noisy semantic data by utilizing a novel visual oracle to visually supervise a learner. These factors, namely semantic noise, visual-semantic gap and label noise lead us to propose a new graphical model for inference with pairwise interactions between label, semantic data, and inputs. We tabulate results on a number of benchmark datasets demonstrating significant improvement in accuracy over state-of-the-art under both semantic and visual supervision. 3 authors · Nov 19, 2018
- LEHA-CVQAD: Dataset To Enable Generalized Video Quality Assessment of Compression Artifacts We propose the LEHA-CVQAD (Large-scale Enriched Human-Annotated Compressed Video Quality Assessment) dataset, which comprises 6,240 clips for compression-oriented video quality assessment. 59 source videos are encoded with 186 codec-preset variants, 1.8M pairwise, and 1.5k MOS ratings are fused into a single quality scale; part of the videos remains hidden for blind evaluation. We also propose Rate-Distortion Alignment Error (RDAE), a novel evaluation metric that quantifies how well VQA models preserve bitrate-quality ordering, directly supporting codec parameter tuning. Testing IQA/VQA methods reveals that popular VQA metrics exhibit high RDAE and lower correlations, underscoring the dataset challenges and utility. The open part and the results of LEHA-CVQAD are available at https://aleksandrgushchin.github.io/lcvqad/ 4 authors · Jul 5, 2025