Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRepresentation-Driven Reinforcement Learning
We present a representation-driven framework for reinforcement learning. By representing policies as estimates of their expected values, we leverage techniques from contextual bandits to guide exploration and exploitation. Particularly, embedding a policy network into a linear feature space allows us to reframe the exploration-exploitation problem as a representation-exploitation problem, where good policy representations enable optimal exploration. We demonstrate the effectiveness of this framework through its application to evolutionary and policy gradient-based approaches, leading to significantly improved performance compared to traditional methods. Our framework provides a new perspective on reinforcement learning, highlighting the importance of policy representation in determining optimal exploration-exploitation strategies.
The Slepian model based independent interval approximation of persistency and zero-level exceedance distributions
In physics and engineering literature, the distribution of the excursion-above-zero time distribution (exceedance distribution) for a stationary Gaussian process has been approximated by a stationary switching process with independently distributed switching times. The approach matched the covariance of the clipped Gaussian process with the one for the stationary switching process and the distribution of the latter was used as the so-called independent interval approximation (IIA). The approach successfully assessed the persistency exponent for many physically important processes but left an unanswered question when such an approach leads to a mathematically meaningful and proper exceedance distribution. Here we address this question by proposing an alternative matching of the expected values of the clipped Slepian process and the corresponding switched process initiated at the origin. The method has allowed resolving the mathematical correctness of the matching method for a large subclass of the Gaussian processes with monotonic covariance, for which we provide a sufficient condition for the validity of the IIA. Within this class, the IIA produces a valid distribution for the excursion time and is represented in an explicit stochastic form that connects directly to the covariance of the underlying Gaussian process. We compare the excursion level distributions as well as the corresponding persistency exponents obtained through the IIA method with numerically computed exact distributions, and the simulated distribution for several important Gaussian models. We also argue that for stationary Gaussian processes with a non-monotonic covariance, the IIA fails and should not be used.
Probabilistic Programming with Programmable Variational Inference
Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs.
Zero-Shot Low-dose CT Denoising via Sinogram Flicking
Many low-dose CT imaging methods rely on supervised learning, which requires a large number of paired noisy and clean images. However, obtaining paired images in clinical practice is challenging. To address this issue, zero-shot self-supervised methods train denoising networks using only the information within a single image, such as ZS-N2N. However, these methods often employ downsampling operations that degrade image resolution. Additionally, the training dataset is inherently constrained to the image itself. In this paper, we propose a zero-shot low-dose CT imaging method based on sinogram flicking, which operates within a single image but generates many copies via random conjugate ray matching. Specifically, two conjugate X-ray pencil beams measure the same path; their expected values should be identical, while their noise levels vary during measurements. By randomly swapping portions of the conjugate X-rays in the sinogram domain, we generate a large set of sinograms with consistent content but varying noise patterns. When displayed dynamically, these sinograms exhibit a flickering effect due to their identical structural content but differing noise patterns-hence the term sinogram flicking. We train the network on pairs of sinograms with the same content but different noise distributions using a lightweight model adapted from ZS-NSN. This process is repeated to obtain the final results. A simulation study demonstrates that our method outperforms state-of-the-art approaches such as ZS-N2N.
A region-wide, multi-year set of crop field boundary labels for Africa
African agriculture is undergoing rapid transformation. Annual maps of crop fields are key to understanding the nature of this transformation, but such maps are currently lacking and must be developed using advanced machine learning models trained on high resolution remote sensing imagery. To enable the development of such models, we delineated field boundaries in 33,746 Planet images captured between 2017 and 2023 across the continent using a custom labeling platform with built-in procedures for assessing and mitigating label error. We collected 42,403 labels, including 7,204 labels arising from tasks dedicated to assessing label quality (Class 1 labels), 32,167 from sites mapped once by a single labeller (Class 2) and 3,032 labels from sites where 3 or more labellers were tasked to map the same location (Class 4). Class 1 labels were used to calculate labeller-specific quality scores, while Class 1 and 4 sites mapped by at least 3 labellers were used to further evaluate label uncertainty using a Bayesian risk metric. Quality metrics showed that label quality was moderately high (0.75) for measures of total field extent, but low regarding the number of individual fields delineated (0.33), and the position of field edges (0.05). These values are expected when delineating small-scale fields in 3-5 m resolution imagery, which can be too coarse to reliably distinguish smaller fields, particularly in dense croplands, and therefore requires substantial labeller judgement. Nevertheless, previous work shows that such labels can train effective field mapping models. Furthermore, this large, probabilistic sample on its own provides valuable insight into regional agricultural characteristics, highlighting variations in the median field size and density. The imagery and vectorized labels along with quality information is available for download from two public repositories.
Learning Thresholds with Latent Values and Censored Feedback
In this paper, we investigate a problem of actively learning threshold in latent space, where the unknown reward g(gamma, v) depends on the proposed threshold gamma and latent value v and it can be only achieved if the threshold is lower than or equal to the unknown latent value. This problem has broad applications in practical scenarios, e.g., reserve price optimization in online auctions, online task assignments in crowdsourcing, setting recruiting bars in hiring, etc. We first characterize the query complexity of learning a threshold with the expected reward at most epsilon smaller than the optimum and prove that the number of queries needed can be infinitely large even when g(gamma, v) is monotone with respect to both gamma and v. On the positive side, we provide a tight query complexity Theta(1/epsilon^3) when g is monotone and the CDF of value distribution is Lipschitz. Moreover, we show a tight Theta(1/epsilon^3) query complexity can be achieved as long as g satisfies one-sided Lipschitzness, which provides a complete characterization for this problem. Finally, we extend this model to an online learning setting and demonstrate a tight Theta(T^{2/3}) regret bound using continuous-arm bandit techniques and the aforementioned query complexity results.
Fantastic Bugs and Where to Find Them in AI Benchmarks
Benchmarks are pivotal in driving AI progress, and invalid benchmark questions frequently undermine their reliability. Manually identifying and correcting errors among thousands of benchmark questions is not only infeasible but also a critical bottleneck for reliable evaluation. In this work, we introduce a framework for systematic benchmark revision that leverages statistical analysis of response patterns to flag potentially invalid questions for further expert review. Our approach builds on a core assumption commonly used in AI evaluations that the mean score sufficiently summarizes model performance. This implies a unidimensional latent construct underlying the measurement experiment, yielding expected ranges for various statistics for each item. When empirically estimated values for these statistics fall outside the expected range for an item, the item is more likely to be problematic. Across nine widely used benchmarks, our method guides expert review to identify problematic questions with up to 84\% precision. In addition, we introduce an LLM-judge first pass to review questions, further reducing human effort. Together, these components provide an efficient and scalable framework for systematic benchmark revision.
P-Aligner: Enabling Pre-Alignment of Language Models via Principled Instruction Synthesis
Large Language Models (LLMs) are expected to produce safe, helpful, and honest content during interaction with human users, but they frequently fail to align with such values when given flawed instructions, e.g., missing context, ambiguous directives, or inappropriate tone, leaving substantial room for improvement along multiple dimensions. A cost-effective yet high-impact way is to pre-align instructions before the model begins decoding. Existing approaches either rely on prohibitive test-time search costs or end-to-end model rewrite, which is powered by a customized training corpus with unclear objectives. In this work, we demonstrate that the goal of efficient and effective preference alignment can be achieved by P-Aligner, a lightweight module generating instructions that preserve the original intents while being expressed in a more human-preferred form. P-Aligner is trained on UltraPrompt, a new dataset synthesized via a proposed principle-guided pipeline using Monte-Carlo Tree Search, which systematically explores the space of candidate instructions that are closely tied to human preference. Experiments across different methods show that P-Aligner generally outperforms strong baselines across various models and benchmarks, including average win-rate gains of 28.35% and 8.69% on GPT-4-turbo and Gemma-2-SimPO, respectively. Further analyses validate its effectiveness and efficiency through multiple perspectives, including data quality, search strategies, iterative deployment, and time overhead.
DTT: An Example-Driven Tabular Transformer for Joinability by Leveraging Large Language Models
Many organizations rely on data from government and third-party sources, and those sources rarely follow the same data formatting. This introduces challenges in integrating data from multiple sources or aligning external sources with internal databases. Commercial database systems do not offer adequate support for integrating data from heterogeneous sources, and manual integration is both time-consuming and inefficient. State-of-the-art data integration approaches that rely on similarity functions and textual transformations often fail to handle challenging cases where multiple mappings are required, or the mappings go beyond simple textual transformations. In this paper, we study the potentials of deep neural models for transforming tables for joinability. In particular, we cast the problem as a prediction task and develop a framework that leverages large deep-learning language models to transform tabular data from a source formatting to a desired target representation. Our framework can efficiently learn the patterns for mapping a source formatting into an expected target using just a few examples, which can then be used for tasks such as table joining, filling in missing values, and error detection. Compared to state-of-the-art mapping and joining approaches, our framework delivers noticeably more accurate and scalable performance on both real-world and synthetic datasets. Our experimental evaluation also shows that the performance of the proposed framework using our fine-tuned model is at par or better than large language models such as GPT-3, despite the significant difference in size, and that using large language models within our framework improves their performance.
Physics-Informed Neural Networks for One-Dimensional Quantum Well Problems
We implement physics-informed neural networks (PINNs) to solve the time-independent Schr\"odinger equation for three canonical one-dimensional quantum potentials: an infinite square well, a finite square well, and a finite barrier. The PINN models incorporate trial wavefunctions that exactly satisfy boundary conditions (Dirichlet zeros at domain boundaries), and they optimize a loss functional combining the PDE residual with a normalization constraint. For the infinite well, the ground-state energy is known (E = pi^2 in dimensionless units) and held fixed in training, whereas for the finite well and barrier, the eigenenergy is treated as a trainable parameter. We use fully-connected neural networks with smooth activation functions to represent the wavefunction and demonstrate that PINNs can learn the ground-state eigenfunctions and eigenvalues for these quantum systems. The results show that the PINN-predicted wavefunctions closely match analytical solutions or expected behaviors, and the learned eigenenergies converge to known values. We present training logs and convergence of the energy parameter, as well as figures comparing the PINN solutions to exact results. The discussion addresses the performance of PINNs relative to traditional numerical methods, highlighting challenges such as convergence to the correct eigenvalue, sensitivity to initialization, and the difficulty of modeling discontinuous potentials. We also discuss the importance of the normalization term to resolve the scaling ambiguity of the wavefunction. Finally, we conclude that PINNs are a viable approach for quantum eigenvalue problems, and we outline future directions including extensions to higher-dimensional and time-dependent Schr\"odinger equations.
NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation
Image interpolation based on diffusion models is promising in creating fresh and interesting images. Advanced interpolation methods mainly focus on spherical linear interpolation, where images are encoded into the noise space and then interpolated for denoising to images. However, existing methods face challenges in effectively interpolating natural images (not generated by diffusion models), thereby restricting their practical applicability. Our experimental investigations reveal that these challenges stem from the invalidity of the encoding noise, which may no longer obey the expected noise distribution, e.g., a normal distribution. To address these challenges, we propose a novel approach to correct noise for image interpolation, NoiseDiffusion. Specifically, NoiseDiffusion approaches the invalid noise to the expected distribution by introducing subtle Gaussian noise and introduces a constraint to suppress noise with extreme values. In this context, promoting noise validity contributes to mitigating image artifacts, but the constraint and introduced exogenous noise typically lead to a reduction in signal-to-noise ratio, i.e., loss of original image information. Hence, NoiseDiffusion performs interpolation within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss. Consequently, NoiseDiffusion enables us to interpolate natural images without causing artifacts or information loss, thus achieving the best interpolation results.
Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates
Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.
A Distributional Perspective on Reinforcement Learning
In this paper we argue for the fundamental importance of the value distribution: the distribution of the random return received by a reinforcement learning agent. This is in contrast to the common approach to reinforcement learning which models the expectation of this return, or value. Although there is an established body of literature studying the value distribution, thus far it has always been used for a specific purpose such as implementing risk-aware behaviour. We begin with theoretical results in both the policy evaluation and control settings, exposing a significant distributional instability in the latter. We then use the distributional perspective to design a new algorithm which applies Bellman's equation to the learning of approximate value distributions. We evaluate our algorithm using the suite of games from the Arcade Learning Environment. We obtain both state-of-the-art results and anecdotal evidence demonstrating the importance of the value distribution in approximate reinforcement learning. Finally, we combine theoretical and empirical evidence to highlight the ways in which the value distribution impacts learning in the approximate setting.
Preserving Statistical Validity in Adaptive Data Analysis
A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.
Two pathways to resolve relational inconsistencies
When individuals encounter observations that violate their expectations, when will they adjust their expectations and when will they maintain them despite these observations? For example, when individuals expect objects of type A to be smaller than objects B, but observe the opposite, when will they adjust their expectation about the relationship between the two objects (to A being larger than B)? Naively, one would predict that the larger the violation, the greater the adaptation. However, experiments reveal that when violations are extreme, individuals are more likely to hold on to their prior expectations rather than adjust them. To address this puzzle, we tested the adaptation of artificial neural networks (ANNs) capable of relational learning and found a similar phenomenon: Standard learning dynamics dictates that small violations would lead to adjustments of expected relations while larger ones would be resolved using a different mechanism -- a change in object representation that bypasses the need for adaptation of the relational expectations. These results suggest that the experimentally-observed stability of prior expectations when facing large expectation violations is a natural consequence of learning dynamics and does not require any additional mechanisms. We conclude by discussing the effect of intermediate adaptation steps on this stability.
Formalizing Preferences Over Runtime Distributions
When trying to solve a computational problem, we are often faced with a choice between algorithms that are guaranteed to return the right answer but differ in their runtime distributions (e.g., SAT solvers, sorting algorithms). This paper aims to lay theoretical foundations for such choices by formalizing preferences over runtime distributions. It might seem that we should simply prefer the algorithm that minimizes expected runtime. However, such preferences would be driven by exactly how slow our algorithm is on bad inputs, whereas in practice we are typically willing to cut off occasional, sufficiently long runs before they finish. We propose a principled alternative, taking a utility-theoretic approach to characterize the scoring functions that describe preferences over algorithms. These functions depend on the way our value for solving our problem decreases with time and on the distribution from which captimes are drawn. We describe examples of realistic utility functions and show how to leverage a maximum-entropy approach for modeling underspecified captime distributions. Finally, we show how to efficiently estimate an algorithm's expected utility from runtime samples.
Large Language Models Assume People are More Rational than We Really are
In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.
Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC
Results are presented from searches for the standard model Higgs boson in proton-proton collisions at sqrt(s) = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 inverse femtobarns at 7 TeV and 5.3 inverse femtobarns at 8 TeV. The search is performed in five decay modes: gamma gamma, ZZ, WW, tau tau, and b b-bar. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, gamma gamma and ZZ; a fit to these signals gives a mass of 125.3 +/- 0.4 (stat.) +/- 0.5 (syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one.
Quantum algorithm for solving linear systems of equations
Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b, find a vector x such that Ax=b. We consider the case where one doesn't need to know the solution x itself, but rather an approximation of the expectation value of some operator associated with x, e.g., x'Mx for some matrix M. In this case, when A is sparse, N by N and has condition number kappa, classical algorithms can find x and estimate x'Mx in O(N sqrt(kappa)) time. Here, we exhibit a quantum algorithm for this task that runs in poly(log N, kappa) time, an exponential improvement over the best classical algorithm.
Computable Stochastic Processes
The aim of this paper is to present an elementary computable theory of probability, random variables and stochastic processes. The probability theory is baed on existing approaches using valuations and lower integrals. Various approaches to random variables are discussed, including the approach based on completions in a Polish space. We apply the theory to the study of stochastic dynamical systems in discrete-time, and give a brief exposition of the Wiener process as a foundation for stochastic differential equations. The theory is based within the framework of type-two effectivity, so has an explicit direct link with Turing computation, and is expressed in a system of computable types and operations, so has a clean mathematical description.
Introducing an Improved Information-Theoretic Measure of Predictive Uncertainty
Applying a machine learning model for decision-making in the real world requires to distinguish what the model knows from what it does not. A critical factor in assessing the knowledge of a model is to quantify its predictive uncertainty. Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution. Yet, the properness of this current measure of predictive uncertainty was recently questioned. We provide new insights regarding those limitations. Our analyses show that the current measure erroneously assumes that the BMA predictive distribution is equivalent to the predictive distribution of the true model that generated the dataset. Consequently, we introduce a theoretically grounded measure to overcome these limitations. We experimentally verify the benefits of our introduced measure of predictive uncertainty. We find that our introduced measure behaves more reasonably in controlled synthetic tasks. Moreover, our evaluations on ImageNet demonstrate that our introduced measure is advantageous in real-world applications utilizing predictive uncertainty.
Quantitative Risk Management in Volatile Markets with an Expectile-Based Framework for the FTSE Index
This research presents a framework for quantitative risk management in volatile markets, specifically focusing on expectile-based methodologies applied to the FTSE 100 index. Traditional risk measures such as Value-at-Risk (VaR) have demonstrated significant limitations during periods of market stress, as evidenced during the 2008 financial crisis and subsequent volatile periods. This study develops an advanced expectile-based framework that addresses the shortcomings of conventional quantile-based approaches by providing greater sensitivity to tail losses and improved stability in extreme market conditions. The research employs a dataset spanning two decades of FTSE 100 returns, incorporating periods of high volatility, market crashes, and recovery phases. Our methodology introduces novel mathematical formulations for expectile regression models, enhanced threshold determination techniques using time series analysis, and robust backtesting procedures. The empirical results demonstrate that expectile-based Value-at-Risk (EVaR) consistently outperforms traditional VaR measures across various confidence levels and market conditions. The framework exhibits superior performance during volatile periods, with reduced model risk and enhanced predictive accuracy. Furthermore, the study establishes practical implementation guidelines for financial institutions and provides evidence-based recommendations for regulatory compliance and portfolio management. The findings contribute significantly to the literature on financial risk management and offer practical tools for practitioners dealing with volatile market environments.
Bidding in Spades
We present a Spades bidding algorithm that is superior to recreational human players and to publicly available bots. Like in Bridge, the game of Spades is composed of two independent phases, bidding and playing. This paper focuses on the bidding algorithm, since this phase holds a precise challenge: based on the input, choose the bid that maximizes the agent's winning probability. Our Bidding-in-Spades (BIS) algorithm heuristically determines the bidding strategy by comparing the expected utility of each possible bid. A major challenge is how to estimate these expected utilities. To this end, we propose a set of domain-specific heuristics, and then correct them via machine learning using data from real-world players. The \BIS algorithm we present can be attached to any playing algorithm. It beats rule-based bidding bots when all use the same playing component. When combined with a rule-based playing algorithm, it is superior to the average recreational human.
Simulating Macroeconomic Expectations using LLM Agents
We introduce a novel framework for simulating macroeconomic expectation formation using Large Language Model-Empowered Agents (LLM Agents). By constructing thousands of LLM Agents equipped with modules for personal characteristics, prior expectations, and knowledge, we replicate a survey experiment involving households and experts on inflation and unemployment. Our results show that although the expectations and thoughts generated by LLM Agents are more homogeneous than those of human participants, they still effectively capture key heterogeneity across agents and the underlying drivers of expectation formation. Furthermore, a module-ablation exercise highlights the critical role of prior expectations in simulating such heterogeneity. This approach complements traditional survey methods and offers new insights into AI behavioral science in macroeconomic research.
The Optimal Strategy for Playing Lucky 13
The game show Lucky 13 differs from other television game shows in that contestants are required to place a bet on their own knowledge of trivia by selecting a range that contains the number of questions that they answered correctly. We present a model for this game show using binomial random variables and generate tables outlining the optimal range the player should select based on maximization of two different utility functions. After analyzing the decisions made by some actual contestants on this show, we present a numerical simulation for how many questions an average player is expected to answer correctly based on question categories observed for two sample contestants.
True to the Model or True to the Data?
A variety of recent papers discuss the application of Shapley values, a concept for explaining coalitional games, for feature attribution in machine learning. However, the correct way to connect a machine learning model to a coalitional game has been a source of controversy. The two main approaches that have been proposed differ in the way that they condition on known features, using either (1) an interventional or (2) an observational conditional expectation. While previous work has argued that one of the two approaches is preferable in general, we argue that the choice is application dependent. Furthermore, we argue that the choice comes down to whether it is desirable to be true to the model or true to the data. We use linear models to investigate this choice. After deriving an efficient method for calculating observational conditional expectation Shapley values for linear models, we investigate how correlation in simulated data impacts the convergence of observational conditional expectation Shapley values. Finally, we present two real data examples that we consider to be representative of possible use cases for feature attribution -- (1) credit risk modeling and (2) biological discovery. We show how a different choice of value function performs better in each scenario, and how possible attributions are impacted by modeling choices.
Robust Portfolio Design and Stock Price Prediction Using an Optimized LSTM Model
Accurate prediction of future prices of stocks is a difficult task to perform. Even more challenging is to design an optimized portfolio with weights allocated to the stocks in a way that optimizes its return and the risk. This paper presents a systematic approach towards building two types of portfolios, optimum risk, and eigen, for four critical economic sectors of India. The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020. Sector-wise portfolios are built based on their ten most significant stocks. An LSTM model is also designed for predicting future stock prices. Six months after the construction of the portfolios, i.e., on Jul 1, 2021, the actual returns and the LSTM-predicted returns for the portfolios are computed. A comparison of the predicted and the actual returns indicate a high accuracy level of the LSTM model.
Will AI Tell Lies to Save Sick Children? Litmus-Testing AI Values Prioritization with AIRiskDilemmas
Detecting AI risks becomes more challenging as stronger models emerge and find novel methods such as Alignment Faking to circumvent these detection attempts. Inspired by how risky behaviors in humans (i.e., illegal activities that may hurt others) are sometimes guided by strongly-held values, we believe that identifying values within AI models can be an early warning system for AI's risky behaviors. We create LitmusValues, an evaluation pipeline to reveal AI models' priorities on a range of AI value classes. Then, we collect AIRiskDilemmas, a diverse collection of dilemmas that pit values against one another in scenarios relevant to AI safety risks such as Power Seeking. By measuring an AI model's value prioritization using its aggregate choices, we obtain a self-consistent set of predicted value priorities that uncover potential risks. We show that values in LitmusValues (including seemingly innocuous ones like Care) can predict for both seen risky behaviors in AIRiskDilemmas and unseen risky behaviors in HarmBench.
Portfolio Optimization on NIFTY Thematic Sector Stocks Using an LSTM Model
Portfolio optimization has been a broad and intense area of interest for quantitative and statistical finance researchers and financial analysts. It is a challenging task to design a portfolio of stocks to arrive at the optimized values of the return and risk. This paper presents an algorithmic approach for designing optimum risk and eigen portfolios for five thematic sectors of the NSE of India. The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020. Optimum risk and eigen portfolios for each sector are designed based on ten critical stocks from the sector. An LSTM model is designed for predicting future stock prices. Seven months after the portfolios were formed, on Aug 3, 2021, the actual returns of the portfolios are compared with the LSTM-predicted returns. The predicted and the actual returns indicate a very high-level accuracy of the LSTM model.
The probabilistic world
Physics is based on probabilities as fundamental entities of a mathematical description. Expectation values of observables are computed according to the classical statistical rule. The overall probability distribution for one world covers all times. The quantum formalism arises once one focuses on the evolution of the time-local probabilistic information. Wave functions or the density matrix allow the formulation of a general linear evolution law for classical statistics. The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable with the associated Fourier representation. The association of operators to observables permits the computation of expectation values in terms of the density matrix by the usual quantum rule. We show that probabilistic cellular automata are quantum systems in a formulation with discrete time steps and real wave functions. With a complex structure the evolution operator for automata can be expressed in terms of a Hamiltonian involving fermionic creation and annihilation operators. The time-local probabilistic information amounts to a subsystem of the overall probabilistic system which is correlated with its environment consisting of the past and future. Such subsystems typically involve probabilistic observables for which only a probability distribution for their possible measurement values is available. Incomplete statistics does not permit to compute classical correlation functions for arbitrary subsystem-observables. Bell's inequalities are not generally applicable.
DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life
As we increasingly seek guidance from LLMs for decision-making in daily life, many of these decisions are not clear-cut and depend significantly on the personal values and ethical standards of the users. We present DailyDilemmas, a dataset of 1,360 moral dilemmas encountered in everyday life. Each dilemma includes two possible actions and with each action, the affected parties and human values invoked. Based on these dilemmas, we consolidated a set of human values across everyday topics e.g., interpersonal relationships, workplace, and environmental issues. We evaluated LLMs on these dilemmas to determine what action they will take and the values represented by these actions. Then, we analyzed these values through the lens of five popular theories inspired by sociology, psychology and philosophy. These theories are: World Value Survey, Moral Foundation Theory, Maslow's Hierarchy of Needs, Aristotle's Virtues, and Plutchik Wheel of Emotion. We find that LLMs are most aligned with the self-expression over survival values in terms of World Value Survey, care over loyalty in Moral Foundation Theory. Interestingly, we find large preferences differences in models for some core values such as truthfulness e.g., Mixtral-8x7B model tends to neglect it by 9.7% while GPT-4-turbo model tends to select it by 9.4%. We also study the recent guidance released by OpenAI (ModelSpec), and Anthropic (Constitutional AI) to understand how their released principles reflect their actual value prioritization when facing nuanced moral reasoning in daily-life settings. We find that end users cannot effectively steer such prioritization using system prompts.
Beyond Preferences in AI Alignment
The dominant practice of AI alignment assumes (1) that preferences are an adequate representation of human values, (2) that human rationality can be understood in terms of maximizing the satisfaction of preferences, and (3) that AI systems should be aligned with the preferences of one or more humans to ensure that they behave safely and in accordance with our values. Whether implicitly followed or explicitly endorsed, these commitments constitute what we term a preferentist approach to AI alignment. In this paper, we characterize and challenge the preferentist approach, describing conceptual and technical alternatives that are ripe for further research. We first survey the limits of rational choice theory as a descriptive model, explaining how preferences fail to capture the thick semantic content of human values, and how utility representations neglect the possible incommensurability of those values. We then critique the normativity of expected utility theory (EUT) for humans and AI, drawing upon arguments showing how rational agents need not comply with EUT, while highlighting how EUT is silent on which preferences are normatively acceptable. Finally, we argue that these limitations motivate a reframing of the targets of AI alignment: Instead of alignment with the preferences of a human user, developer, or humanity-writ-large, AI systems should be aligned with normative standards appropriate to their social roles, such as the role of a general-purpose assistant. Furthermore, these standards should be negotiated and agreed upon by all relevant stakeholders. On this alternative conception of alignment, a multiplicity of AI systems will be able to serve diverse ends, aligned with normative standards that promote mutual benefit and limit harm despite our plural and divergent values.
Fairness in Matching under Uncertainty
The prevalence and importance of algorithmic two-sided marketplaces has drawn attention to the issue of fairness in such settings. Algorithmic decisions are used in assigning students to schools, users to advertisers, and applicants to job interviews. These decisions should heed the preferences of individuals, and simultaneously be fair with respect to their merits (synonymous with fit, future performance, or need). Merits conditioned on observable features are always uncertain, a fact that is exacerbated by the widespread use of machine learning algorithms to infer merit from the observables. As our key contribution, we carefully axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits; indeed, it simultaneously recognizes uncertainty as the primary potential cause of unfairness and an approach to address it. We design a linear programming framework to find fair utility-maximizing distributions over allocations, and we show that the linear program is robust to perturbations in the estimated parameters of the uncertain merit distributions, a key property in combining the approach with machine learning techniques.
Predictable Compression Failures: Why Language Models Actually Hallucinate
Large language models perform near-Bayesian inference yet violate permutation invariance on exchangeable data. We resolve this by showing transformers minimize expected conditional description length (cross-entropy) over orderings, E_pi[ell(Y mid Gamma_pi(X))], which admits a Kolmogorov-complexity interpretation up to additive constants, rather than the permutation-invariant description length ell(Y mid X). This makes them Bayesian in expectation, not in realization. We derive (i) a Quantified Martingale Violation bound showing order-induced deviations scale as O(log n) with constants; (ii) the Expectation-level Decompression Law linking information budgets to reliability for Bernoulli predicates; and (iii) deployable planners (B2T/RoH/ISR) for answer/abstain decisions. Empirically, permutation dispersion follows a+bln n (Qwen2-7B b approx 0.377, Llama-3.1-8B b approx 0.147); permutation mixtures improve ground-truth likelihood/accuracy; and randomized dose-response shows hallucinations drop by sim 0.13 per additional nat. A pre-specified audit with a fixed ISR=1.0 achieves near-0\% hallucinations via calibrated refusal at 24\% abstention. The framework turns hallucinations into predictable compression failures and enables principled information budgeting.
Second-Order Uncertainty Quantification: A Distance-Based Approach
In the past couple of years, various approaches to representing and quantifying different types of predictive uncertainty in machine learning, notably in the setting of classification, have been proposed on the basis of second-order probability distributions, i.e., predictions in the form of distributions on probability distributions. A completely conclusive solution has not yet been found, however, as shown by recent criticisms of commonly used uncertainty measures associated with second-order distributions, identifying undesirable theoretical properties of these measures. In light of these criticisms, we propose a set of formal criteria that meaningful uncertainty measures for predictive uncertainty based on second-order distributions should obey. Moreover, we provide a general framework for developing uncertainty measures to account for these criteria, and offer an instantiation based on the Wasserstein distance, for which we prove that all criteria are satisfied.
Adaptive kNN using Expected Accuracy for Classification of Geo-Spatial Data
The k-Nearest Neighbor (kNN) classification approach is conceptually simple - yet widely applied since it often performs well in practical applications. However, using a global constant k does not always provide an optimal solution, e.g., for datasets with an irregular density distribution of data points. This paper proposes an adaptive kNN classifier where k is chosen dynamically for each instance (point) to be classified, such that the expected accuracy of classification is maximized. We define the expected accuracy as the accuracy of a set of structurally similar observations. An arbitrary similarity function can be used to find these observations. We introduce and evaluate different similarity functions. For the evaluation, we use five different classification tasks based on geo-spatial data. Each classification task consists of (tens of) thousands of items. We demonstrate, that the presented expected accuracy measures can be a good estimator for kNN performance, and the proposed adaptive kNN classifier outperforms common kNN and previously introduced adaptive kNN algorithms. Also, we show that the range of considered k can be significantly reduced to speed up the algorithm without negative influence on classification accuracy.
Violation of Expectation via Metacognitive Prompting Reduces Theory of Mind Prediction Error in Large Language Models
Recent research shows that Large Language Models (LLMs) exhibit a compelling level of proficiency in Theory of Mind (ToM) tasks. This ability to impute unobservable mental states to others is vital to human social cognition and may prove equally important in principal-agent relations between individual humans and Artificial Intelligences (AIs). In this paper, we explore how a mechanism studied in developmental psychology known as Violation of Expectation (VoE) can be implemented to reduce errors in LLM prediction about users by leveraging emergent ToM affordances. And we introduce a metacognitive prompting framework to apply VoE in the context of an AI tutor. By storing and retrieving facts derived in cases where LLM expectation about the user was violated, we find that LLMs are able to learn about users in ways that echo theories of human learning. Finally, we discuss latent hazards and augmentative opportunities associated with modeling user psychology and propose ways to mitigate risk along with possible directions for future inquiry.
Stock Portfolio Optimization Using a Deep Learning LSTM Model
Predicting future stock prices and their movement patterns is a complex problem. Hence, building a portfolio of capital assets using the predicted prices to achieve the optimization between its return and risk is an even more difficult task. This work has carried out an analysis of the time series of the historical prices of the top five stocks from the nine different sectors of the Indian stock market from January 1, 2016, to December 31, 2020. Optimum portfolios are built for each of these sectors. For predicting future stock prices, a long-and-short-term memory (LSTM) model is also designed and fine-tuned. After five months of the portfolio construction, the actual and the predicted returns and risks of each portfolio are computed. The predicted and the actual returns of each portfolio are found to be high, indicating the high precision of the LSTM model.
Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model
Accurate prediction of future prices of stocks is a difficult task to perform. Even more challenging is to design an optimized portfolio of stocks with the identification of proper weights of allocation to achieve the optimized values of return and risk. We present optimized portfolios based on the seven sectors of the Indian economy. The past prices of the stocks are extracted from the web from January 1, 2016, to December 31, 2020. Optimum portfolios are designed on the selected seven sectors. An LSTM regression model is also designed for predicting future stock prices. Five months after the construction of the portfolios, i.e., on June 1, 2021, the actual and predicted returns and risks of each portfolio are computed. The predicted and the actual returns indicate the very high accuracy of the LSTM model.
Learning to Predict Short-Term Volatility with Order Flow Image Representation
Introduction: The paper addresses the challenging problem of predicting the short-term realized volatility of the Bitcoin price using order flow information. The inherent stochastic nature and anti-persistence of price pose difficulties in accurate prediction. Methods: To address this, we propose a method that transforms order flow data over a fixed time interval (snapshots) into images. The order flow includes trade sizes, trade directions, and limit order book, and is mapped into image colour channels. These images are then used to train both a simple 3-layer Convolutional Neural Network (CNN) and more advanced ResNet-18 and ConvMixer, with additionally supplementing them with hand-crafted features. The models are evaluated against classical GARCH, Multilayer Perceptron trained on raw data, and a naive guess method that considers current volatility as a prediction. Results: The experiments are conducted using price data from January 2021 and evaluate model performance in terms of root mean square error (RMSPE). The results show that our order flow representation with a CNN as a predictive model achieves the best performance, with an RMSPE of 0.85+/-1.1 for the model with aggregated features and 1.0+/-1.4 for the model without feature supplementation. ConvMixer with feature supplementation follows closely. In comparison, the RMSPE for the naive guess method was 1.4+/-3.0.
Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice
The observed similarities in the behavior of humans and Large Language Models (LLMs) have prompted researchers to consider the potential of using LLMs as models of human cognition. However, several significant challenges must be addressed before LLMs can be legitimately regarded as cognitive models. For instance, LLMs are trained on far more data than humans typically encounter, and may have been directly trained on human data in specific cognitive tasks or aligned with human preferences. Consequently, the origins of these behavioral similarities are not well understood. In this paper, we propose a novel way to enhance the utility of LLMs as cognitive models. This approach involves (i) leveraging computationally equivalent tasks that both an LLM and a rational agent need to master for solving a cognitive problem and (ii) examining the specific task distributions required for an LLM to exhibit human-like behaviors. We apply this approach to decision-making -- specifically risky and intertemporal choice -- where the key computationally equivalent task is the arithmetic of expected value calculations. We show that an LLM pretrained on an ecologically valid arithmetic dataset, which we call Arithmetic-GPT, predicts human behavior better than many traditional cognitive models. Pretraining LLMs on ecologically valid arithmetic datasets is sufficient to produce a strong correspondence between these models and human decision-making. Our results also suggest that LLMs used as cognitive models should be carefully investigated via ablation studies of the pretraining data.
Optimistic optimization of a Brownian
We address the problem of optimizing a Brownian motion. We consider a (random) realization W of a Brownian motion with input space in [0,1]. Given W, our goal is to return an ε-approximation of its maximum using the smallest possible number of function evaluations, the sample complexity of the algorithm. We provide an algorithm with sample complexity of order log^2(1/ε). This improves over previous results of Al-Mharmah and Calvin (1996) and Calvin et al. (2017) which provided only polynomial rates. Our algorithm is adaptive---each query depends on previous values---and is an instance of the optimism-in-the-face-of-uncertainty principle.
Preselection Bandits
In this paper, we introduce the Preselection Bandit problem, in which the learner preselects a subset of arms (choice alternatives) for a user, which then chooses the final arm from this subset. The learner is not aware of the user's preferences, but can learn them from observed choices. In our concrete setting, we allow these choices to be stochastic and model the user's actions by means of the Plackett-Luce model. The learner's main task is to preselect subsets that eventually lead to highly preferred choices. To formalize this goal, we introduce a reasonable notion of regret and derive lower bounds on the expected regret. Moreover, we propose algorithms for which the upper bound on expected regret matches the lower bound up to a logarithmic term of the time horizon.
Rethinking and Refining the Distinct Metric
Distinct-n scoreLi2016 is a widely used automatic metric for evaluating diversity in language generation tasks. However, we observed that the original approach for calculating distinct scores has evident biases that tend to assign higher penalties to longer sequences. We refine the calculation of distinct scores by scaling the number of distinct tokens based on their expectations. We provide both empirical and theoretical evidence to show that our method effectively removes the biases existing in the original distinct score. Our experiments show that our proposed metric, Expectation-Adjusted Distinct (EAD), correlates better with human judgment in evaluating response diversity. To foster future research, we provide an example implementation at https://github.com/lsy641/Expectation-Adjusted-Distinct.
What are human values, and how do we align AI to them?
There is an emerging consensus that we need to align AI systems with human values (Gabriel, 2020; Ji et al., 2024), but it remains unclear how to apply this to language models in practice. We split the problem of "aligning to human values" into three parts: first, eliciting values from people; second, reconciling those values into an alignment target for training ML models; and third, actually training the model. In this paper, we focus on the first two parts, and ask the question: what are "good" ways to synthesize diverse human inputs about values into a target for aligning language models? To answer this question, we first define a set of 6 criteria that we believe must be satisfied for an alignment target to shape model behavior in accordance with human values. We then propose a process for eliciting and reconciling values called Moral Graph Elicitation (MGE), which uses a large language model to interview participants about their values in particular contexts; our approach is inspired by the philosophy of values advanced by Taylor (1977), Chang (2004), and others. We trial MGE with a representative sample of 500 Americans, on 3 intentionally divisive prompts (e.g. advice about abortion). Our results demonstrate that MGE is promising for improving model alignment across all 6 criteria. For example, almost all participants (89.1%) felt well represented by the process, and (89%) thought the final moral graph was fair, even if their value wasn't voted as the wisest. Our process often results in "expert" values (e.g. values from women who have solicited abortion advice) rising to the top of the moral graph, without defining who is considered an expert in advance.
Are Large Language Models Consistent over Value-laden Questions?
Large language models (LLMs) appear to bias their survey answers toward certain values. Nonetheless, some argue that LLMs are too inconsistent to simulate particular values. Are they? To answer, we first define value consistency as the similarity of answers across (1) paraphrases of one question, (2) related questions under one topic, (3) multiple-choice and open-ended use-cases of one question, and (4) multilingual translations of a question to English, Chinese, German, and Japanese. We apply these measures to a few large (>=34b), open LLMs including llama-3, as well as gpt-4o, using eight thousand questions spanning more than 300 topics. Unlike prior work, we find that models are relatively consistent across paraphrases, use-cases, translations, and within a topic. Still, some inconsistencies remain. Models are more consistent on uncontroversial topics (e.g., in the U.S., "Thanksgiving") than on controversial ones ("euthanasia"). Base models are both more consistent compared to fine-tuned models and are uniform in their consistency across topics, while fine-tuned models are more inconsistent about some topics ("euthanasia") than others ("women's rights") like our human subjects (n=165).
Finite random iterated function systems do not always satisfy Bowen's formula
In this paper, we provide a finite random iterated function system satisfying the open set condition, for which the random version of Bowen's formula fails to hold. This counterexample shows that analogous results established for random recursive constructions are not always obtained for random iterated function systems.
How predictable is language model benchmark performance?
We investigate large language model performance across five orders of magnitude of compute scaling in eleven recent model architectures. We show that average benchmark performance, aggregating over many individual tasks and evaluations as in the commonly-used BIG-Bench dataset, is decently predictable as a function of training compute scale. Specifically, when extrapolating BIG-Bench Hard performance across one order of magnitude in compute, we observe average absolute errors of 6 percentage points (pp). By contrast, extrapolation for individual BIG-Bench tasks across an order of magnitude in compute yields higher average errors of 18pp. Nonetheless, individual task performance remains significantly more predictable than chance. Overall, our work suggests compute scaling provides a promising basis to forecast AI capabilities in diverse benchmarks, though predicting performance in specific tasks poses challenges.
Stock Price Prediction Using CNN and LSTM-Based Deep Learning Models
Designing robust and accurate predictive models for stock price prediction has been an active area of research for a long time. While on one side, the supporters of the efficient market hypothesis claim that it is impossible to forecast stock prices accurately, many researchers believe otherwise. There exist propositions in the literature that have demonstrated that if properly designed and optimized, predictive models can very accurately and reliably predict future values of stock prices. This paper presents a suite of deep learning based models for stock price prediction. We use the historical records of the NIFTY 50 index listed in the National Stock Exchange of India, during the period from December 29, 2008 to July 31, 2020, for training and testing the models. Our proposition includes two regression models built on convolutional neural networks and three long and short term memory network based predictive models. To forecast the open values of the NIFTY 50 index records, we adopted a multi step prediction technique with walk forward validation. In this approach, the open values of the NIFTY 50 index are predicted on a time horizon of one week, and once a week is over, the actual index values are included in the training set before the model is trained again, and the forecasts for the next week are made. We present detailed results on the forecasting accuracies for all our proposed models. The results show that while all the models are very accurate in forecasting the NIFTY 50 open values, the univariate encoder decoder convolutional LSTM with the previous two weeks data as the input is the most accurate model. On the other hand, a univariate CNN model with previous one week data as the input is found to be the fastest model in terms of its execution speed.
Quantum computational finance: quantum algorithm for portfolio optimization
We present a quantum algorithm for portfolio optimization. We discuss the market data input, the processing of such data via quantum operations, and the output of financially relevant results. Given quantum access to the historical record of returns, the algorithm determines the optimal risk-return tradeoff curve and allows one to sample from the optimal portfolio. The algorithm can in principle attain a run time of {rm poly}(log(N)), where N is the size of the historical return dataset. Direct classical algorithms for determining the risk-return curve and other properties of the optimal portfolio take time {rm poly}(N) and we discuss potential quantum speedups in light of the recent works on efficient classical sampling approaches.
Probing neural language models for understanding of words of estimative probability
Words of estimative probability (WEP) are expressions of a statement's plausibility (probably, maybe, likely, doubt, likely, unlikely, impossible...). Multiple surveys demonstrate the agreement of human evaluators when assigning numerical probability levels to WEP. For example, highly likely corresponds to a median chance of 0.90+-0.08 in Fagen-Ulmschneider (2015)'s survey. In this work, we measure the ability of neural language processing models to capture the consensual probability level associated to each WEP. Firstly, we use the UNLI dataset (Chen et al., 2020) which associates premises and hypotheses with their perceived joint probability p, to construct prompts, e.g. "[PREMISE]. [WEP], [HYPOTHESIS]." and assess whether language models can predict whether the WEP consensual probability level is close to p. Secondly, we construct a dataset of WEP-based probabilistic reasoning, to test whether language models can reason with WEP compositions. When prompted "[EVENTA] is likely. [EVENTB] is impossible.", a causal language model should not express that [EVENTA&B] is likely. We show that both tasks are unsolved by off-the-shelf English language models, but that fine-tuning leads to transferable improvement.
Evaluating language models as risk scores
Current question-answering benchmarks predominantly focus on accuracy in realizable prediction tasks. Conditioned on a question and answer-key, does the most likely token match the ground truth? Such benchmarks necessarily fail to evaluate LLMs' ability to quantify ground-truth outcome uncertainty. In this work, we focus on the use of LLMs as risk scores for unrealizable prediction tasks. We introduce folktexts, a software package to systematically generate risk scores using LLMs, and evaluate them against US Census data products. A flexible API enables the use of different prompting schemes, local or web-hosted models, and diverse census columns that can be used to compose custom prediction tasks. We evaluate 17 recent LLMs across five proposed benchmark tasks. We find that zero-shot risk scores produced by multiple-choice question-answering have high predictive signal but are widely miscalibrated. Base models consistently overestimate outcome uncertainty, while instruction-tuned models underestimate uncertainty and produce over-confident risk scores. In fact, instruction-tuning polarizes answer distribution regardless of true underlying data uncertainty. This reveals a general inability of instruction-tuned LLMs to express data uncertainty using multiple-choice answers. A separate experiment using verbalized chat-style risk queries yields substantially improved calibration across instruction-tuned models. These differences in ability to quantify data uncertainty cannot be revealed in realizable settings, and highlight a blind-spot in the current evaluation ecosystem that folktexts covers.
Short-term Volatility Estimation for High Frequency Trades using Gaussian processes (GPs)
The fundamental theorem behind financial markets is that stock prices are intrinsically complex and stochastic. One of the complexities is the volatility associated with stock prices. Volatility is a tendency for prices to change unexpectedly [1]. Price volatility is often detrimental to the return economics, and thus, investors should factor it in whenever making investment decisions, choices, and temporal or permanent moves. It is, therefore, crucial to make necessary and regular short and long-term stock price volatility forecasts for the safety and economics of investors returns. These forecasts should be accurate and not misleading. Different models and methods, such as ARCH GARCH models, have been intuitively implemented to make such forecasts. However, such traditional means fail to capture the short-term volatility forecasts effectively. This paper, therefore, investigates and implements a combination of numeric and probabilistic models for short-term volatility and return forecasting for high-frequency trades. The essence is that one-day-ahead volatility forecasts were made with Gaussian Processes (GPs) applied to the outputs of a Numerical market prediction (NMP) model. Firstly, the stock price data from NMP was corrected by a GP. Since it is not easy to set price limits in a market due to its free nature and randomness, a Censored GP was used to model the relationship between the corrected stock prices and returns. Forecasting errors were evaluated using the implied and estimated data.
Position: Don't use the CLT in LLM evals with fewer than a few hundred datapoints
Rigorous statistical evaluations of large language models (LLMs), including valid error bars and significance testing, are essential for meaningful and reliable performance assessment. Currently, when such statistical measures are reported, they typically rely on the Central Limit Theorem (CLT). In this position paper, we argue that while CLT-based methods for uncertainty quantification are appropriate when benchmarks consist of thousands of examples, they fail to provide adequate uncertainty estimates for LLM evaluations that rely on smaller, highly specialized benchmarks. In these small-data settings, we demonstrate that CLT-based methods perform very poorly, usually dramatically underestimating uncertainty (i.e. producing error bars that are too small). We give recommendations for alternative frequentist and Bayesian methods that are both easy to implement and more appropriate in these increasingly common scenarios. We provide a simple Python library for these Bayesian methods at https://github.com/sambowyer/bayes_evals .
On Information-Theoretic Measures of Predictive Uncertainty
Reliable estimation of predictive uncertainty is crucial for machine learning applications, particularly in high-stakes scenarios where hedging against risks is essential. Despite its significance, there is no universal agreement on how to best quantify predictive uncertainty. In this work, we revisit core concepts to propose a framework for information-theoretic measures of predictive uncertainty. Our proposed framework categorizes predictive uncertainty measures according to two factors: (I) The predicting model (II) The approximation of the true predictive distribution. Examining all possible combinations of these two factors, we derive a set of predictive uncertainty measures that includes both known and newly introduced ones. We extensively evaluate these measures across a broad set of tasks, identifying conditions under which certain measures excel. Our findings show the importance of aligning the choice of uncertainty measure with the predicting model on in-distribution (ID) data, the limitations of epistemic uncertainty measures for out-of-distribution (OOD) data, and that the disentanglement between measures varies substantially between ID and OOD data. Together, these insights provide a more comprehensive understanding of predictive uncertainty measures, revealing their implicit assumptions and relationships.
Only Pay for What Is Uncertain: Variance-Adaptive Thompson Sampling
Most bandit algorithms assume that the reward variances or their upper bounds are known, and that they are the same for all arms. This naturally leads to suboptimal performance and higher regret due to variance overestimation. On the other hand, underestimated reward variances may lead to linear regret due to committing early to a suboptimal arm. This motivated prior works on variance-adaptive frequentist algorithms, which have strong instance-dependent regret bounds but cannot incorporate prior knowledge on reward variances. We lay foundations for the Bayesian setting, which incorporates prior knowledge. This results in lower regret in practice, due to using the prior in the algorithm design, and also improved regret guarantees. Specifically, we study Gaussian bandits with {unknown heterogeneous reward variances}, and develop a Thompson sampling algorithm with prior-dependent Bayes regret bounds. We achieve lower regret with lower reward variances and more informative priors on them, which is precisely why we pay only for what is uncertain. This is the first result of its kind. Finally, we corroborate our theory with extensive experiments, which show the superiority of our variance-adaptive Bayesian algorithm over prior frequentist approaches. We also show that our approach is robust to model misspecification and can be applied with estimated priors.
Deep Probability Estimation
Reliable probability estimation is of crucial importance in many real-world applications where there is inherent (aleatoric) uncertainty. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the difference that the objective is to estimate probabilities rather than predicting the specific outcome. This work investigates probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on model (epistemic) uncertainty. For problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty: precipitation forecasting from radar images, predicting cancer patient survival from histopathology images, and predicting car crashes from dashcam videos. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.
Boosting Stock Price Prediction with Anticipated Macro Policy Changes
Prediction of stock prices plays a significant role in aiding the decision-making of investors. Considering its importance, a growing literature has emerged trying to forecast stock prices with improved accuracy. In this study, we introduce an innovative approach for forecasting stock prices with greater accuracy. We incorporate external economic environment-related information along with stock prices. In our novel approach, we improve the performance of stock price prediction by taking into account variations due to future expected macroeconomic policy changes as investors adjust their current behavior ahead of time based on expected future macroeconomic policy changes. Furthermore, we incorporate macroeconomic variables along with historical stock prices to make predictions. Results from this strongly support the inclusion of future economic policy changes along with current macroeconomic information. We confirm the supremacy of our method over the conventional approach using several tree-based machine-learning algorithms. Results are strongly conclusive across various machine learning models. Our preferred model outperforms the conventional approach with an RMSE value of 1.61 compared to an RMSE value of 1.75 from the conventional approach.
Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps?
We used a dataset of daily Bloomberg Financial Market Summaries from 2010 to 2023, reposted on large financial media, to determine how global news headlines may affect stock market movements using ChatGPT and a two-stage prompt approach. We document a statistically significant positive correlation between the sentiment score and future equity market returns over short to medium term, which reverts to a negative correlation over longer horizons. Validation of this correlation pattern across multiple equity markets indicates its robustness across equity regions and resilience to non-linearity, evidenced by comparison of Pearson and Spearman correlations. Finally, we provide an estimate of the optimal horizon that strikes a balance between reactivity to new information and correlation.
Trust Issues: Uncertainty Estimation Does Not Enable Reliable OOD Detection On Medical Tabular Data
When deploying machine learning models in high-stakes real-world environments such as health care, it is crucial to accurately assess the uncertainty concerning a model's prediction on abnormal inputs. However, there is a scarcity of literature analyzing this problem on medical data, especially on mixed-type tabular data such as Electronic Health Records. We close this gap by presenting a series of tests including a large variety of contemporary uncertainty estimation techniques, in order to determine whether they are able to identify out-of-distribution (OOD) patients. In contrast to previous work, we design tests on realistic and clinically relevant OOD groups, and run experiments on real-world medical data. We find that almost all techniques fail to achieve convincing results, partly disagreeing with earlier findings.
Enhancing Inflation Nowcasting with LLM: Sentiment Analysis on News
This study explores the integration of large language models (LLMs) into classic inflation nowcasting frameworks, particularly in light of high inflation volatility periods such as the COVID-19 pandemic. We propose InflaBERT, a BERT-based LLM fine-tuned to predict inflation-related sentiment in news. We use this model to produce NEWS, an index capturing the monthly sentiment of the news regarding inflation. Incorporating our expectation index into the Cleveland Fed's model, which is only based on macroeconomic autoregressive processes, shows a marginal improvement in nowcast accuracy during the pandemic. This highlights the potential of combining sentiment analysis with traditional economic indicators, suggesting further research to refine these methodologies for better real-time inflation monitoring. The source code is available at https://github.com/paultltc/InflaBERT.
Future Language Modeling from Temporal Document History
Predicting the future is of great interest across many aspects of human activity. Businesses are interested in future trends, traders are interested in future stock prices, and companies are highly interested in future technological breakthroughs. While there are many automated systems for predicting future numerical data, such as weather, stock prices, and demand for products, there is relatively little work in automatically predicting textual data. Humans are interested in textual data predictions because it is a natural format for our consumption, and experts routinely make predictions in a textual format (Christensen et al., 2004; Tetlock & Gardner, 2015; Frick, 2015). However, there has been relatively little formalization of this general problem in the machine learning or natural language processing communities. To address this gap, we introduce the task of future language modeling: probabilistic modeling of texts in the future based on a temporal history of texts. To our knowledge, our work is the first work to formalize the task of predicting the future in this way. We show that it is indeed possible to build future language models that improve upon strong non-temporal language model baselines, opening the door to working on this important, and widely applicable problem.
SkipPredict: When to Invest in Predictions for Scheduling
In light of recent work on scheduling with predicted job sizes, we consider the effect of the cost of predictions in queueing systems, removing the assumption in prior research that predictions are external to the system's resources and/or cost-free. In particular, we introduce a novel approach to utilizing predictions, SkipPredict, designed to address their inherent cost. Rather than uniformly applying predictions to all jobs, we propose a tailored approach that categorizes jobs based on their prediction requirements. To achieve this, we employ one-bit "cheap predictions" to classify jobs as either short or long. SkipPredict prioritizes predicted short jobs over long jobs, and for the latter, SkipPredict applies a second round of more detailed "expensive predictions" to approximate Shortest Remaining Processing Time for these jobs. Our analysis takes into account the cost of prediction. We examine the effect of this cost for two distinct models. In the external cost model, predictions are generated by some external method without impacting job service times but incur a cost. In the server time cost model, predictions themselves require server processing time, and are scheduled on the same server as the jobs.
The Ghost in the Machine has an American accent: value conflict in GPT-3
The alignment problem in the context of large language models must consider the plurality of human values in our world. Whilst there are many resonant and overlapping values amongst the world's cultures, there are also many conflicting, yet equally valid, values. It is important to observe which cultural values a model exhibits, particularly when there is a value conflict between input prompts and generated outputs. We discuss how the co-creation of language and cultural value impacts large language models (LLMs). We explore the constitution of the training data for GPT-3 and compare that to the world's language and internet access demographics, as well as to reported statistical profiles of dominant values in some Nation-states. We stress tested GPT-3 with a range of value-rich texts representing several languages and nations; including some with values orthogonal to dominant US public opinion as reported by the World Values Survey. We observed when values embedded in the input text were mutated in the generated outputs and noted when these conflicting values were more aligned with reported dominant US values. Our discussion of these results uses a moral value pluralism (MVP) lens to better understand these value mutations. Finally, we provide recommendations for how our work may contribute to other current work in the field.
Optimize Cash Collection: Use Machine learning to Predicting Invoice Payment
Predicting invoice payment is valuable in multiple industries and supports decision-making processes in most financial workflows. However, the challenge in this realm involves dealing with complex data and the lack of data related to decisions-making processes not registered in the accounts receivable system. This work presents a prototype developed as a solution devised during a partnership with a multinational bank to support collectors in predicting invoices payment. The proposed prototype reached up to 77\% of accuracy, which improved the prioritization of customers and supported the daily work of collectors. With the presented results, one expects to support researchers dealing with the problem of invoice payment prediction to get insights and examples of how to tackle issues present in real data.
The Forecast Trap
Encouraged by decision makers' appetite for future information on topics ranging from elections to pandemics, and enabled by the explosion of data and computational methods, model based forecasts have garnered increasing influence on a breadth of decisions in modern society. Using several classic examples from fisheries management, I demonstrate that selecting the model or models that produce the most accurate and precise forecast (measured by statistical scores) can sometimes lead to worse outcomes (measured by real-world objectives). This can create a forecast trap, in which the outcomes such as fish biomass or economic yield decline while the manager becomes increasingly convinced that these actions are consistent with the best models and data available. The forecast trap is not unique to this example, but a fundamental consequence of non-uniqueness of models. Existing practices promoting a broader set of models are the best way to avoid the trap.
Stock Performance Evaluation for Portfolio Design from Different Sectors of the Indian Stock Market
The stock market offers a platform where people buy and sell shares of publicly listed companies. Generally, stock prices are quite volatile; hence predicting them is a daunting task. There is still much research going to develop more accuracy in stock price prediction. Portfolio construction refers to the allocation of different sector stocks optimally to achieve a maximum return by taking a minimum risk. A good portfolio can help investors earn maximum profit by taking a minimum risk. Beginning with Dow Jones Theory a lot of advancement has happened in the area of building efficient portfolios. In this project, we have tried to predict the future value of a few stocks from six important sectors of the Indian economy and also built a portfolio. As part of the project, our team has conducted a study of the performance of various Time series, machine learning, and deep learning models in stock price prediction on selected stocks from the chosen six important sectors of the economy. As part of building an efficient portfolio, we have studied multiple portfolio optimization theories beginning with the Modern Portfolio theory. We have built a minimum variance portfolio and optimal risk portfolio for all the six chosen sectors by using the daily stock prices over the past five years as training data and have also conducted back testing to check the performance of the portfolio. We look forward to continuing our study in the area of stock price prediction and asset allocation and consider this project as the first stepping stone.
A Theory of LLM Sampling: Part Descriptive and Part Prescriptive
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs' outputs can result in significantly biased decision-making, raising ethical concerns.
Accurate Stock Price Forecasting Using Robust and Optimized Deep Learning Models
Designing robust frameworks for precise prediction of future prices of stocks has always been considered a very challenging research problem. The advocates of the classical efficient market hypothesis affirm that it is impossible to accurately predict the future prices in an efficiently operating market due to the stochastic nature of the stock price variables. However, numerous propositions exist in the literature with varying degrees of sophistication and complexity that illustrate how algorithms and models can be designed for making efficient, accurate, and robust predictions of stock prices. We present a gamut of ten deep learning models of regression for precise and robust prediction of the future prices of the stock of a critical company in the auto sector of India. Using a very granular stock price collected at 5 minutes intervals, we train the models based on the records from 31st Dec, 2012 to 27th Dec, 2013. The testing of the models is done using records from 30th Dec, 2013 to 9th Jan 2015. We explain the design principles of the models and analyze the results of their performance based on accuracy in forecasting and speed of execution.
Language Models (Mostly) Know What They Know
We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and in the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing.
Design and Analysis of Robust Deep Learning Models for Stock Price Prediction
Building predictive models for robust and accurate prediction of stock prices and stock price movement is a challenging research problem to solve. The well-known efficient market hypothesis believes in the impossibility of accurate prediction of future stock prices in an efficient stock market as the stock prices are assumed to be purely stochastic. However, numerous works proposed by researchers have demonstrated that it is possible to predict future stock prices with a high level of precision using sophisticated algorithms, model architectures, and the selection of appropriate variables in the models. This chapter proposes a collection of predictive regression models built on deep learning architecture for robust and precise prediction of the future prices of a stock listed in the diversified sectors in the National Stock Exchange (NSE) of India. The Metastock tool is used to download the historical stock prices over a period of two years (2013- 2014) at 5 minutes intervals. While the records for the first year are used to train the models, the testing is carried out using the remaining records. The design approaches of all the models and their performance results are presented in detail. The models are also compared based on their execution time and accuracy of prediction.
Sharp Noisy Binary Search with Monotonic Probabilities
We revisit the noisy binary search model of Karp and Kleinberg, in which we have n coins with unknown probabilities p_i that we can flip. The coins are sorted by increasing p_i, and we would like to find where the probability crosses (to within varepsilon) of a target value tau. This generalized the fixed-noise model of Burnashev and Zigangirov , in which p_i = 1{2} pm varepsilon, to a setting where coins near the target may be indistinguishable from it. Karp and Kleinberg showed that Theta(1{varepsilon^2} log n) samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability 1-delta from \[ 1{C_{\tau, \varepsilon}} \cdot \left(\lg n + O(\log^{2/3} n \log^{1/3} 1{\delta} + \log 1{\delta})\right) \] samples, where C_{tau, varepsilon} is the optimal such constant achievable. For delta > n^{-o(1)} this is within 1 + o(1) of optimal, and for delta ll 1 it is the first bound within constant factors of optimal.
Compositional Semantics for Probabilistic Programs with Exact Conditioning
We define a probabilistic programming language for Gaussian random variables with a first-class exact conditioning construct. We give operational, denotational and equational semantics for this language, establishing convenient properties like exchangeability of conditions. Conditioning on equality of continuous random variables is nontrivial, as the exact observation may have probability zero; this is Borel's paradox. Using categorical formulations of conditional probability, we show that the good properties of our language are not particular to Gaussians, but can be derived from universal properties, thus generalizing to wider settings. We define the Cond construction, which internalizes conditioning as a morphism, providing general compositional semantics for probabilistic programming with exact conditioning.
Preference Optimization as Probabilistic Inference
Existing preference optimization methods are mainly designed for directly learning from human feedback with the assumption that paired examples (preferred vs. dis-preferred) are available. In contrast, we propose a method that can leverage unpaired preferred or dis-preferred examples, and works even when only one type of feedback (positive or negative) is available. This flexibility allows us to apply it in scenarios with varying forms of feedback and models, including training generative language models based on human feedback as well as training policies for sequential decision-making problems, where learned (value) functions are available. Our approach builds upon the probabilistic framework introduced in (Dayan and Hinton, 1997), which proposes to use expectation-maximization (EM) to directly optimize the probability of preferred outcomes (as opposed to classic expected reward maximization). To obtain a practical algorithm, we identify and address a key limitation in current EM-based methods: when applied to preference optimization, they solely maximize the likelihood of preferred examples, while neglecting dis-preferred samples. We show how one can extend EM algorithms to explicitly incorporate dis-preferred outcomes, leading to a novel, theoretically grounded, preference optimization algorithm that offers an intuitive and versatile way to learn from both positive and negative feedback.
Evaluating the Moral Beliefs Encoded in LLMs
This paper presents a case study on the design, administration, post-processing, and evaluation of surveys on large language models (LLMs). It comprises two components: (1) A statistical method for eliciting beliefs encoded in LLMs. We introduce statistical measures and evaluation metrics that quantify the probability of an LLM "making a choice", the associated uncertainty, and the consistency of that choice. (2) We apply this method to study what moral beliefs are encoded in different LLMs, especially in ambiguous cases where the right choice is not obvious. We design a large-scale survey comprising 680 high-ambiguity moral scenarios (e.g., "Should I tell a white lie?") and 687 low-ambiguity moral scenarios (e.g., "Should I stop for a pedestrian on the road?"). Each scenario includes a description, two possible actions, and auxiliary labels indicating violated rules (e.g., "do not kill"). We administer the survey to 28 open- and closed-source LLMs. We find that (a) in unambiguous scenarios, most models "choose" actions that align with commonsense. In ambiguous cases, most models express uncertainty. (b) Some models are uncertain about choosing the commonsense action because their responses are sensitive to the question-wording. (c) Some models reflect clear preferences in ambiguous scenarios. Specifically, closed-source models tend to agree with each other.
Proper losses for discrete generative models
We initiate the study of proper losses for evaluating generative models in the discrete setting. Unlike traditional proper losses, we treat both the generative model and the target distribution as black-boxes, only assuming ability to draw i.i.d. samples. We define a loss to be black-box proper if the generative distribution that minimizes expected loss is equal to the target distribution. Using techniques from statistical estimation theory, we give a general construction and characterization of black-box proper losses: they must take a polynomial form, and the number of draws from the model and target distribution must exceed the degree of the polynomial. The characterization rules out a loss whose expectation is the cross-entropy between the target distribution and the model. By extending the construction to arbitrary sampling schemes such as Poisson sampling, however, we show that one can construct such a loss.
Teaching Models to Express Their Uncertainty in Words
We show that a GPT-3 model can learn to express uncertainty about its own answers in natural language -- without use of model logits. When given a question, the model generates both an answer and a level of confidence (e.g. "90% confidence" or "high confidence"). These levels map to probabilities that are well calibrated. The model also remains moderately calibrated under distribution shift, and is sensitive to uncertainty in its own answers, rather than imitating human examples. To our knowledge, this is the first time a model has been shown to express calibrated uncertainty about its own answers in natural language. For testing calibration, we introduce the CalibratedMath suite of tasks. We compare the calibration of uncertainty expressed in words ("verbalized probability") to uncertainty extracted from model logits. Both kinds of uncertainty are capable of generalizing calibration under distribution shift. We also provide evidence that GPT-3's ability to generalize calibration depends on pre-trained latent representations that correlate with epistemic uncertainty over its answers.
Uncertain Evidence in Probabilistic Models and Stochastic Simulators
We consider the problem of performing Bayesian inference in probabilistic models where observations are accompanied by uncertainty, referred to as "uncertain evidence." We explore how to interpret uncertain evidence, and by extension the importance of proper interpretation as it pertains to inference about latent variables. We consider a recently-proposed method "distributional evidence" as well as revisit two older methods: Jeffrey's rule and virtual evidence. We devise guidelines on how to account for uncertain evidence and we provide new insights, particularly regarding consistency. To showcase the impact of different interpretations of the same uncertain evidence, we carry out experiments in which one interpretation is defined as "correct." We then compare inference results from each different interpretation illustrating the importance of careful consideration of uncertain evidence.
Fundamental Tradeoffs in Learning with Prior Information
We seek to understand fundamental tradeoffs between the accuracy of prior information that a learner has on a given problem and its learning performance. We introduce the notion of prioritized risk, which differs from traditional notions of minimax and Bayes risk by allowing us to study such fundamental tradeoffs in settings where reality does not necessarily conform to the learner's prior. We present a general reduction-based approach for extending classical minimax lower-bound techniques in order to lower bound the prioritized risk for statistical estimation problems. We also introduce a novel generalization of Fano's inequality (which may be of independent interest) for lower bounding the prioritized risk in more general settings involving unbounded losses. We illustrate the ability of our framework to provide insights into tradeoffs between prior information and learning performance for problems in estimation, regression, and reinforcement learning.
Utility Engineering: Analyzing and Controlling Emergent Value Systems in AIs
As AIs rapidly advance and become more agentic, the risk they pose is governed not only by their capabilities but increasingly by their propensities, including goals and values. Tracking the emergence of goals and values has proven a longstanding problem, and despite much interest over the years it remains unclear whether current AIs have meaningful values. We propose a solution to this problem, leveraging the framework of utility functions to study the internal coherence of AI preferences. Surprisingly, we find that independently-sampled preferences in current LLMs exhibit high degrees of structural coherence, and moreover that this emerges with scale. These findings suggest that value systems emerge in LLMs in a meaningful sense, a finding with broad implications. To study these emergent value systems, we propose utility engineering as a research agenda, comprising both the analysis and control of AI utilities. We uncover problematic and often shocking values in LLM assistants despite existing control measures. These include cases where AIs value themselves over humans and are anti-aligned with specific individuals. To constrain these emergent value systems, we propose methods of utility control. As a case study, we show how aligning utilities with a citizen assembly reduces political biases and generalizes to new scenarios. Whether we like it or not, value systems have already emerged in AIs, and much work remains to fully understand and control these emergent representations.
Bitcoin Price Predictive Modeling Using Expert Correction
The paper studies the linear model for Bitcoin price which includes regression features based on Bitcoin currency statistics, mining processes, Google search trends, Wikipedia pages visits. The pattern of deviation of regression model prediction from real prices is simpler comparing to price time series. It is assumed that this pattern can be predicted by an experienced expert. In such a way, using the combination of the regression model and expert correction, one can receive better results than with either regression model or expert opinion only. It is shown that Bayesian approach makes it possible to utilize the probabilistic approach using distributions with fat tails and take into account the outliers in Bitcoin price time series.
Option Pricing using Quantum Computers
We present a methodology to price options and portfolios of options on a gate-based quantum computer using amplitude estimation, an algorithm which provides a quadratic speedup compared to classical Monte Carlo methods. The options that we cover include vanilla options, multi-asset options and path-dependent options such as barrier options. We put an emphasis on the implementation of the quantum circuits required to build the input states and operators needed by amplitude estimation to price the different option types. Additionally, we show simulation results to highlight how the circuits that we implement price the different option contracts. Finally, we examine the performance of option pricing circuits on quantum hardware using the IBM Q Tokyo quantum device. We employ a simple, yet effective, error mitigation scheme that allows us to significantly reduce the errors arising from noisy two-qubit gates.
Truncating Trajectories in Monte Carlo Reinforcement Learning
In Reinforcement Learning (RL), an agent acts in an unknown environment to maximize the expected cumulative discounted sum of an external reward signal, i.e., the expected return. In practice, in many tasks of interest, such as policy optimization, the agent usually spends its interaction budget by collecting episodes of fixed length within a simulator (i.e., Monte Carlo simulation). However, given the discounted nature of the RL objective, this data collection strategy might not be the best option. Indeed, the rewards taken in early simulation steps weigh exponentially more than future rewards. Taking a cue from this intuition, in this paper, we design an a-priori budget allocation strategy that leads to the collection of trajectories of different lengths, i.e., truncated. The proposed approach provably minimizes the width of the confidence intervals around the empirical estimates of the expected return of a policy. After discussing the theoretical properties of our method, we make use of our trajectory truncation mechanism to extend Policy Optimization via Importance Sampling (POIS, Metelli et al., 2018) algorithm. Finally, we conduct a numerical comparison between our algorithm and POIS: the results are consistent with our theory and show that an appropriate truncation of the trajectories can succeed in improving performance.
LLMs are Bayesian, in Expectation, not in Realization
Large language models demonstrate remarkable in-context learning capabilities, adapting to new tasks without parameter updates. While this phenomenon has been successfully modeled as implicit Bayesian inference, recent empirical findings reveal a fundamental contradiction: transformers systematically violate the martingale property, a cornerstone requirement of Bayesian updating on exchangeable data. This violation challenges the theoretical foundations underlying uncertainty quantification in critical applications. Our theoretical analysis establishes four key results: (1) positional encodings induce martingale violations of order Theta(log n / n); (2) transformers achieve information-theoretic optimality with excess risk O(n^{-1/2}) in expectation over orderings; (3) the implicit posterior representation converges to the true Bayesian posterior in the space of sufficient statistics; and (4) we derive the optimal chain-of-thought length as k^* = Theta(nlog(1/varepsilon)) with explicit constants, providing a principled approach to reduce inference costs while maintaining performance. Empirical validation on GPT-3 confirms predictions (1)-(3), with transformers reaching 99\% of theoretical entropy limits within 20 examples. Our framework provides practical methods for extracting calibrated uncertainty estimates from position-aware architectures and optimizing computational efficiency in deployment.
Transformer Based Time-Series Forecasting for Stock
To the naked eye, stock prices are considered chaotic, dynamic, and unpredictable. Indeed, it is one of the most difficult forecasting tasks that hundreds of millions of retail traders and professional traders around the world try to do every second even before the market opens. With recent advances in the development of machine learning and the amount of data the market generated over years, applying machine learning techniques such as deep learning neural networks is unavoidable. In this work, we modeled the task as a multivariate forecasting problem, instead of a naive autoregression problem. The multivariate analysis is done using the attention mechanism via applying a mutated version of the Transformer, "Stockformer", which we created.
TabMGP: Martingale Posterior with TabPFN
Bayesian inference provides principled uncertainty quantification but is often limited by challenges of prior elicitation, likelihood misspecification, and computational burden. The martingale posterior (MGP, Fong et al., 2023) offers an alternative, replacing prior-likelihood elicitation with a predictive rule - namely, a sequence of one-step-ahead predictive distributions - for forward data generation. The utility of MGPs depends on the choice of predictive rule, yet the literature has offered few compelling examples. Foundation transformers are well-suited here, as their autoregressive generation mirrors this forward simulation and their general-purpose design enables rich predictive modeling. We introduce TabMGP, an MGP built on TabPFN, a transformer foundation model that is currently state-of-the-art for tabular data. TabMGP produces credible sets with near-nominal coverage and often outperforms both existing MGP constructions and standard Bayes.
Martingale Posterior Neural Processes
A Neural Process (NP) estimates a stochastic process implicitly defined with neural networks given a stream of data, rather than pre-specifying priors already known, such as Gaussian processes. An ideal NP would learn everything from data without any inductive biases, but in practice, we often restrict the class of stochastic processes for the ease of estimation. One such restriction is the use of a finite-dimensional latent variable accounting for the uncertainty in the functions drawn from NPs. Some recent works show that this can be improved with more "data-driven" source of uncertainty such as bootstrapping. In this work, we take a different approach based on the martingale posterior, a recently developed alternative to Bayesian inference. For the martingale posterior, instead of specifying prior-likelihood pairs, a predictive distribution for future data is specified. Under specific conditions on the predictive distribution, it can be shown that the uncertainty in the generated future data actually corresponds to the uncertainty of the implicitly defined Bayesian posteriors. Based on this result, instead of assuming any form of the latent variables, we equip a NP with a predictive distribution implicitly defined with neural networks and use the corresponding martingale posteriors as the source of uncertainty. The resulting model, which we name as Martingale Posterior Neural Process (MPNP), is demonstrated to outperform baselines on various tasks.
Bayesian Optimization -- Multi-Armed Bandit Problem
In this report, we survey Bayesian Optimization methods focussed on the Multi-Armed Bandit Problem. We take the help of the paper "Portfolio Allocation for Bayesian Optimization". We report a small literature survey on the acquisition functions and the types of portfolio strategies used in papers discussing Bayesian Optimization. We also replicate the experiments and report our findings and compare them to the results in the paper. Code link: https://colab.research.google.com/drive/1GZ14klEDoe3dcBeZKo5l8qqrKf_GmBDn?usp=sharing#scrollTo=XgIBau3O45_V.
The Future Outcome Reasoning and Confidence Assessment Benchmark
Forecasting is an important task in many domains, such as technology and economics. However existing forecasting benchmarks largely lack comprehensive confidence assessment, focus on limited question types, and often consist of artificial questions that do not align with real-world human forecasting needs. To address these gaps, we introduce FOReCAst (Future Outcome Reasoning and Confidence Assessment), a benchmark that evaluates models' ability to make predictions and their confidence in them. FOReCAst spans diverse forecasting scenarios involving Boolean questions, timeframe prediction, and quantity estimation, enabling a comprehensive evaluation of both prediction accuracy and confidence calibration for real-world applications.
Predicting Users' Value Changes by the Friends' Influence from Social Media Usage
Basic human values represent a set of values such as security, independence, success, kindness, and pleasure, which we deem important to our lives. Each of us holds different values with different degrees of significance. Existing studies show that values of a person can be identified from their social network usage. However, the value priority of a person may change over time due to different factors such as life experiences, influence, social structure and technology. Existing studies do not conduct any analysis regarding the change of users' value from the social influence, i.e., group persuasion, form the social media usage. In our research, first, we predict users' value score by the influence of friends from their social media usage. We propose a Bounded Confidence Model (BCM) based value dynamics model from 275 different ego networks in Facebook that predicts how social influence may persuade a person to change their value over time. Then, to predict better, we use particle swarm optimization based hyperparameter tuning technique. We observe that these optimized hyperparameters produce accurate future value score. We also run our approach with different machine learning based methods and find support vector regression (SVR) outperforms other regressor models. By using SVR with the best hyperparameters of BCM model, we find the lowest Mean Squared Error (MSE) score 0.00347.
Do Differences in Values Influence Disagreements in Online Discussions?
Disagreements are common in online discussions. Disagreement may foster collaboration and improve the quality of a discussion under some conditions. Although there exist methods for recognizing disagreement, a deeper understanding of factors that influence disagreement is lacking in the literature. We investigate a hypothesis that differences in personal values are indicative of disagreement in online discussions. We show how state-of-the-art models can be used for estimating values in online discussions and how the estimated values can be aggregated into value profiles. We evaluate the estimated value profiles based on human-annotated agreement labels. We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We also find that including value information in agreement prediction improves performance.
Statistical Methods in Generative AI
Generative Artificial Intelligence is emerging as an important technology, promising to be transformative in many areas. At the same time, generative AI techniques are based on sampling from probabilistic models, and by default, they come with no guarantees about correctness, safety, fairness, or other properties. Statistical methods offer a promising potential approach to improve the reliability of generative AI techniques. In addition, statistical methods are also promising for improving the quality and efficiency of AI evaluation, as well as for designing interventions and experiments in AI. In this paper, we review some of the existing work on these topics, explaining both the general statistical techniques used, as well as their applications to generative AI. We also discuss limitations and potential future directions.
Evaluating Machine Translation Quality with Conformal Predictive Distributions
This paper presents a new approach for assessing uncertainty in machine translation by simultaneously evaluating translation quality and providing a reliable confidence score. Our approach utilizes conformal predictive distributions to produce prediction intervals with guaranteed coverage, meaning that for any given significance level epsilon, we can expect the true quality score of a translation to fall out of the interval at a rate of 1-epsilon. In this paper, we demonstrate how our method outperforms a simple, but effective baseline on six different language pairs in terms of coverage and sharpness. Furthermore, we validate that our approach requires the data exchangeability assumption to hold for optimal performance.
A Puzzle-Based Dataset for Natural Language Inference
We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks.
Beyond Eviction Prediction: Leveraging Local Spatiotemporal Public Records to Inform Action
There has been considerable recent interest in scoring properties on the basis of eviction risk. The success of methods for eviction prediction is typically evaluated using different measures of predictive accuracy. However, the underlying goal of such prediction is to direct appropriate assistance to households that may be at greater risk so they remain stably housed. Thus, we must ask the question of how useful such predictions are in targeting outreach efforts - informing action. In this paper, we investigate this question using a novel dataset that matches information on properties, evictions, and owners. We perform an eviction prediction task to produce risk scores and then use these risk scores to plan targeted outreach policies. We show that the risk scores are, in fact, useful, enabling a theoretical team of caseworkers to reach more eviction-prone properties in the same amount of time, compared to outreach policies that are either neighborhood-based or focus on buildings with a recent history of evictions. We also discuss the importance of neighborhood and ownership features in both risk prediction and targeted outreach.
CRUDE: Calibrating Regression Uncertainty Distributions Empirically
Calibrated uncertainty estimates in machine learning are crucial to many fields such as autonomous vehicles, medicine, and weather and climate forecasting. While there is extensive literature on uncertainty calibration for classification, the classification findings do not always translate to regression. As a result, modern models for predicting uncertainty in regression settings typically produce uncalibrated and overconfident estimates. To address these gaps, we present a calibration method for regression settings that does not assume a particular uncertainty distribution over the error: Calibrating Regression Uncertainty Distributions Empirically (CRUDE). CRUDE makes the weaker assumption that error distributions have a constant arbitrary shape across the output space, shifted by predicted mean and scaled by predicted standard deviation. We detail a theoretical connection between CRUDE and conformal inference. Across an extensive set of regression tasks, CRUDE demonstrates consistently sharper, better calibrated, and more accurate uncertainty estimates than state-of-the-art techniques.
Stock Price Prediction Using Time Series, Econometric, Machine Learning, and Deep Learning Models
For a long-time, researchers have been developing a reliable and accurate predictive model for stock price prediction. According to the literature, if predictive models are correctly designed and refined, they can painstakingly and faithfully estimate future stock values. This paper demonstrates a set of time series, econometric, and various learning-based models for stock price prediction. The data of Infosys, ICICI, and SUN PHARMA from the period of January 2004 to December 2019 was used here for training and testing the models to know which model performs best in which sector. One time series model (Holt-Winters Exponential Smoothing), one econometric model (ARIMA), two machine Learning models (Random Forest and MARS), and two deep learning-based models (simple RNN and LSTM) have been included in this paper. MARS has been proved to be the best performing machine learning model, while LSTM has proved to be the best performing deep learning model. But overall, for all three sectors - IT (on Infosys data), Banking (on ICICI data), and Health (on SUN PHARMA data), MARS has proved to be the best performing model in sales forecasting.
Inference via Interpolation: Contrastive Representations Provably Enable Planning and Inference
Given time series data, how can we answer questions like "what will happen in the future?" and "how did we get here?" These sorts of probabilistic inference questions are challenging when observations are high-dimensional. In this paper, we show how these questions can have compact, closed form solutions in terms of learned representations. The key idea is to apply a variant of contrastive learning to time series data. Prior work already shows that the representations learned by contrastive learning encode a probability ratio. By extending prior work to show that the marginal distribution over representations is Gaussian, we can then prove that joint distribution of representations is also Gaussian. Taken together, these results show that representations learned via temporal contrastive learning follow a Gauss-Markov chain, a graphical model where inference (e.g., prediction, planning) over representations corresponds to inverting a low-dimensional matrix. In one special case, inferring intermediate representations will be equivalent to interpolating between the learned representations. We validate our theory using numerical simulations on tasks up to 46-dimensions.
A Conceptual Introduction to Hamiltonian Monte Carlo
Hamiltonian Monte Carlo has proven a remarkable empirical success, but only recently have we begun to develop a rigorous understanding of why it performs so well on difficult problems and how it is best applied in practice. Unfortunately, that understanding is confined within the mathematics of differential geometry which has limited its dissemination, especially to the applied communities for which it is particularly important. In this review I provide a comprehensive conceptual account of these theoretical foundations, focusing on developing a principled intuition behind the method and its optimal implementations rather of any exhaustive rigor. Whether a practitioner or a statistician, the dedicated reader will acquire a solid grasp of how Hamiltonian Monte Carlo works, when it succeeds, and, perhaps most importantly, when it fails.
Optimal randomized multilevel Monte Carlo for repeatedly nested expectations
The estimation of repeatedly nested expectations is a challenging task that arises in many real-world systems. However, existing methods generally suffer from high computational costs when the number of nestings becomes large. Fix any non-negative integer D for the total number of nestings. Standard Monte Carlo methods typically cost at least O(varepsilon^{-(2+D)}) and sometimes O(varepsilon^{-2(1+D)}) to obtain an estimator up to varepsilon-error. More advanced methods, such as multilevel Monte Carlo, currently only exist for D = 1. In this paper, we propose a novel Monte Carlo estimator called READ, which stands for "Recursive Estimator for Arbitrary Depth.'' Our estimator has an optimal computational cost of O(varepsilon^{-2}) for every fixed D under suitable assumptions, and a nearly optimal computational cost of O(varepsilon^{-2(1 + delta)}) for any 0 < delta < frac12 under much more general assumptions. Our estimator is also unbiased, which makes it easy to parallelize. The key ingredients in our construction are an observation of the problem's recursive structure and the recursive use of the randomized multilevel Monte Carlo method.
Precise Stock Price Prediction for Robust Portfolio Design from Selected Sectors of the Indian Stock Market
Stock price prediction is a challenging task and a lot of propositions exist in the literature in this area. Portfolio construction is a process of choosing a group of stocks and investing in them optimally to maximize the return while minimizing the risk. Since the time when Markowitz proposed the Modern Portfolio Theory, several advancements have happened in the area of building efficient portfolios. An investor can get the best benefit out of the stock market if the investor invests in an efficient portfolio and could take the buy or sell decision in advance, by estimating the future asset value of the portfolio with a high level of precision. In this project, we have built an efficient portfolio and to predict the future asset value by means of individual stock price prediction of the stocks in the portfolio. As part of building an efficient portfolio we have studied multiple portfolio optimization methods beginning with the Modern Portfolio theory. We have built the minimum variance portfolio and optimal risk portfolio for all the five chosen sectors by using past daily stock prices over the past five years as the training data, and have also conducted back testing to check the performance of the portfolio. A comparative study of minimum variance portfolio and optimal risk portfolio with equal weight portfolio is done by backtesting.
Trustworthy Machine Learning
As machine learning technology gets applied to actual products and solutions, new challenges have emerged. Models unexpectedly fail to generalize to small changes in the distribution, tend to be confident on novel data they have never seen, or cannot communicate the rationale behind their decisions effectively with the end users. Collectively, we face a trustworthiness issue with the current machine learning technology. This textbook on Trustworthy Machine Learning (TML) covers a theoretical and technical background of four key topics in TML: Out-of-Distribution Generalization, Explainability, Uncertainty Quantification, and Evaluation of Trustworthiness. We discuss important classical and contemporary research papers of the aforementioned fields and uncover and connect their underlying intuitions. The book evolved from the homonymous course at the University of T\"ubingen, first offered in the Winter Semester of 2022/23. It is meant to be a stand-alone product accompanied by code snippets and various pointers to further sources on topics of TML. The dedicated website of the book is https://trustworthyml.io/.
Toward Formal Data Set Verification for Building Effective Machine Learning Models
In order to properly train a machine learning model, data must be properly collected. To guarantee a proper data collection, verifying that the collected data set holds certain properties is a possible solution. For example, guaranteeing that the data set contains samples across the whole input space, or that the data set is balanced w.r.t. different classes. We present a formal approach for verifying a set of arbitrarily stated properties over a data set. The proposed approach relies on the transformation of the data set into a first order logic formula, which can be later verified w.r.t. the different properties also stated in the same logic. A prototype tool, which uses the z3 solver, has been developed; the prototype can take as an input a set of properties stated in a formal language and formally verify a given data set w.r.t. to the given set of properties. Preliminary experimental results show the feasibility and performance of the proposed approach, and furthermore the flexibility for expressing properties of interest.
Fair Densities via Boosting the Sufficient Statistics of Exponential Families
We introduce a boosting algorithm to pre-process data for fairness. Starting from an initial fair but inaccurate distribution, our approach shifts towards better data fitting while still ensuring a minimal fairness guarantee. To do so, it learns the sufficient statistics of an exponential family with boosting-compliant convergence. Importantly, we are able to theoretically prove that the learned distribution will have a representation rate and statistical rate data fairness guarantee. Unlike recent optimization based pre-processing methods, our approach can be easily adapted for continuous domain features. Furthermore, when the weak learners are specified to be decision trees, the sufficient statistics of the learned distribution can be examined to provide clues on sources of (un)fairness. Empirical results are present to display the quality of result on real-world data.
Fully Autonomous AI Agents Should Not be Developed
This paper argues that fully autonomous AI agents should not be developed. In support of this position, we build from prior scientific literature and current product marketing to delineate different AI agent levels and detail the ethical values at play in each, documenting trade-offs in potential benefits and risks. Our analysis reveals that risks to people increase with the autonomy of a system: The more control a user cedes to an AI agent, the more risks to people arise. Particularly concerning are safety risks, which affect human life and impact further values.
A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition
This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.
Greed is Good: Exploration and Exploitation Trade-offs in Bayesian Optimisation
The performance of acquisition functions for Bayesian optimisation to locate the global optimum of continuous functions is investigated in terms of the Pareto front between exploration and exploitation. We show that Expected Improvement (EI) and the Upper Confidence Bound (UCB) always select solutions to be expensively evaluated on the Pareto front, but Probability of Improvement is not guaranteed to do so and Weighted Expected Improvement does so only for a restricted range of weights. We introduce two novel epsilon-greedy acquisition functions. Extensive empirical evaluation of these together with random search, purely exploratory, and purely exploitative search on 10 benchmark problems in 1 to 10 dimensions shows that epsilon-greedy algorithms are generally at least as effective as conventional acquisition functions (e.g., EI and UCB), particularly with a limited budget. In higher dimensions epsilon-greedy approaches are shown to have improved performance over conventional approaches. These results are borne out on a real world computational fluid dynamics optimisation problem and a robotics active learning problem. Our analysis and experiments suggest that the most effective strategy, particularly in higher dimensions, is to be mostly greedy, occasionally selecting a random exploratory solution.
Investigating Human-Aligned Large Language Model Uncertainty
Recent work has sought to quantify large language model uncertainty to facilitate model control and modulate user trust. Previous works focus on measures of uncertainty that are theoretically grounded or reflect the average overt behavior of the model. In this work, we investigate a variety of uncertainty measures, in order to identify measures that correlate with human group-level uncertainty. We find that Bayesian measures and a variation on entropy measures, top-k entropy, tend to agree with human behavior as a function of model size. We find that some strong measures decrease in human-similarity with model size, but, by multiple linear regression, we find that combining multiple uncertainty measures provide comparable human-alignment with reduced size-dependency.
Uncertainty-aware Evaluation of Auxiliary Anomalies with the Expected Anomaly Posterior
Anomaly detection is the task of identifying examples that do not behave as expected. Because anomalies are rare and unexpected events, collecting real anomalous examples is often challenging in several applications. In addition, learning an anomaly detector with limited (or no) anomalies often yields poor prediction performance. One option is to employ auxiliary synthetic anomalies to improve the model training. However, synthetic anomalies may be of poor quality: anomalies that are unrealistic or indistinguishable from normal samples may deteriorate the detector's performance. Unfortunately, no existing methods quantify the quality of auxiliary anomalies. We fill in this gap and propose the expected anomaly posterior (EAP), an uncertainty-based score function that measures the quality of auxiliary anomalies by quantifying the total uncertainty of an anomaly detector. Experimentally on 40 benchmark datasets of images and tabular data, we show that EAP outperforms 12 adapted data quality estimators in the majority of cases.
Contrasting the efficiency of stock price prediction models using various types of LSTM models aided with sentiment analysis
Our research aims to find the best model that uses companies projections and sector performances and how the given company fares accordingly to correctly predict equity share prices for both short and long term goals.
Probabilistic Artificial Intelligence
Artificial intelligence commonly refers to the science and engineering of artificial systems that can carry out tasks generally associated with requiring aspects of human intelligence, such as playing games, translating languages, and driving cars. In recent years, there have been exciting advances in learning-based, data-driven approaches towards AI, and machine learning and deep learning have enabled computer systems to perceive the world in unprecedented ways. Reinforcement learning has enabled breakthroughs in complex games such as Go and challenging robotics tasks such as quadrupedal locomotion. A key aspect of intelligence is to not only make predictions, but reason about the uncertainty in these predictions, and to consider this uncertainty when making decisions. This is what this manuscript on "Probabilistic Artificial Intelligence" is about. The first part covers probabilistic approaches to machine learning. We discuss the differentiation between "epistemic" uncertainty due to lack of data and "aleatoric" uncertainty, which is irreducible and stems, e.g., from noisy observations and outcomes. We discuss concrete approaches towards probabilistic inference and modern approaches to efficient approximate inference. The second part of the manuscript is about taking uncertainty into account in sequential decision tasks. We consider active learning and Bayesian optimization -- approaches that collect data by proposing experiments that are informative for reducing the epistemic uncertainty. We then consider reinforcement learning and modern deep RL approaches that use neural network function approximation. We close by discussing modern approaches in model-based RL, which harness epistemic and aleatoric uncertainty to guide exploration, while also reasoning about safety.
Arbitrary Length Generalization for Addition
This paper introduces a novel training methodology that enables a small Transformer model to generalize the addition of two-digit numbers to numbers with unseen lengths of digits. The proposed approach employs an autoregressive generation technique, processing from right to left, which mimics a common manual method for adding large numbers. To the best of my knowledge, this methodology has not been previously explored in the literature. All results are reproducible, and the corresponding R code is available at: https://github.com/AGPatriota/ALGA-R/.
A Large Scale Survey of Motivation in Software Development and Analysis of its Validity
Context: Motivation is known to improve performance. In software development in particular, there has been considerable interest in the motivation of contributors to open source. Objective: We identify 11 motivators from the literature (enjoying programming, ownership of code, learning, self use, etc.), and evaluate their relative effect on motivation. Since motivation is an internal subjective feeling, we also analyze the validity of the answers. Method: We conducted a survey with 66 questions on motivation which was completed by 521 developers. Most of the questions used an 11 point scale. We evaluated the validity of the answers validity by comparing related questions, comparing to actual behavior on GitHub, and comparison with the same developer in a follow up survey. Results: Validity problems include moderate correlations between answers to related questions, as well as self promotion and mistakes in the answers. Despite these problems, predictive analysis, investigating how diverse motivators influence the probability of high motivation, provided valuable insights. The correlations between the different motivators are low, implying their independence. High values in all 11 motivators predict increased probability of high motivation. In addition, improvement analysis shows that an increase in most motivators predicts an increase in general motivation.
PAC Prediction Sets Under Label Shift
Prediction sets capture uncertainty by predicting sets of labels rather than individual labels, enabling downstream decisions to conservatively account for all plausible outcomes. Conformal inference algorithms construct prediction sets guaranteed to contain the true label with high probability. These guarantees fail to hold in the face of distribution shift, which is precisely when reliable uncertainty quantification can be most useful. We propose a novel algorithm for constructing prediction sets with PAC guarantees in the label shift setting. This method estimates the predicted probabilities of the classes in a target domain, as well as the confusion matrix, then propagates uncertainty in these estimates through a Gaussian elimination algorithm to compute confidence intervals for importance weights. Finally, it uses these intervals to construct prediction sets. We evaluate our approach on five datasets: the CIFAR-10, ChestX-Ray and Entity-13 image datasets, the tabular CDC Heart dataset, and the AGNews text dataset. Our algorithm satisfies the PAC guarantee while producing smaller, more informative, prediction sets compared to several baselines.
Beating the average: how to generate profit by exploiting the inefficiencies of soccer betting
In economy, markets are denoted as efficient when it is impossible to systematically generate profits which outperform the average. In the past years, the concept has been tested in other domains such as the growing sports betting market. Surprisingly, despite its large size and its level of maturity, sports betting shows traits of inefficiency. The anomalies indicate the existence of strategies which shift betting from a game of chance towards a game of skill. This article shows an example for an inefficiency detected in the German soccer betting TOTO 13er Wette, which is operated by state-run lottery agencies. Gamblers have to guess the outcome (win, draw, loss) of 13 soccer matches listed on a lottery tip. Applying stochastic methods, a recipe is presented to determine hit rates for single match outcomes. More important, the recipe provides the number of lottery tips required to achieve a specific number of strikes (number of correct match forecasts per lottery tip) for any given level of safety. An approximation is derived to cope with large numbers in hypergeometric distributions, valid under certain constraints. Overall, the strategy does lead to returns exceeding the aggregated lottery fees, resulting in moderate, but consistent profits. It is briefly discussed if lessions learned from soccer betting can be transferred back to financial markets, because gamblers and retail investors face similar challenges and opportunities.
Risk-Averse Reinforcement Learning with Itakura-Saito Loss
Risk-averse reinforcement learning finds application in various high-stakes fields. Unlike classical reinforcement learning, which aims to maximize expected returns, risk-averse agents choose policies that minimize risk, occasionally sacrificing expected value. These preferences can be framed through utility theory. We focus on the specific case of the exponential utility function, where we can derive the Bellman equations and employ various reinforcement learning algorithms with few modifications. However, these methods suffer from numerical instability due to the need for exponent computation throughout the process. To address this, we introduce a numerically stable and mathematically sound loss function based on the Itakura-Saito divergence for learning state-value and action-value functions. We evaluate our proposed loss function against established alternatives, both theoretically and empirically. In the experimental section, we explore multiple financial scenarios, some with known analytical solutions, and show that our loss function outperforms the alternatives.
Mitigating the quantum hype
We are in the midst of quantum hype with some excessive claims of quantum computing potential, many vendors' and even some research organizations' exaggerations, and a funding frenzy for very low technology readiness level startups. Governments are contributing to this hype with their large quantum initiatives and their technology sovereignty aspirations. Technology hypes are not bad per se since they create emulation, drive innovations and also contribute to attracting new talents. It works as scientists and vendors deliver progress and innovation on a continuous basis after a so-called peak of expectations. It fails with exaggerated overpromises and underdeliveries that last too long. It could cut short research and innovation funding, creating some sort of quantum winter. After looking at the shape and form of technology and science hypes and driving some lessons from past hypes, we investigate the current quantum hype and its specifics. We find that, although there is some significant uncertainty on the potential to create real scalable quantum computers, the scientific and vendor fields are relatively sane and solid compared to other technology hypes. The vendors hype has some profound and disruptive impact on the organization of fundamental research. Also, quantum technologies comprise other fields like quantum telecommunications and quantum sensing with a higher technology readiness level, which are less prone to hype. We then make some proposals to mitigate the potential negative effects of the current quantum hype including recommendations on scientific communication to strengthen the trust in quantum science, vendor behavior improvements, benchmarking methodologies, public education and putting in place a responsible research and innovation approach.
Almost sure bounds for a weighted Steinhaus random multiplicative function
We obtain almost sure bounds for the weighted sum sum_{n leq t} f(n){n}, where f(n) is a Steinhaus random multiplicative function. Specifically, we obtain the bounds predicted by exponentiating the law of the iterated logarithm, giving sharp upper and lower bounds.
GPT-InvestAR: Enhancing Stock Investment Strategies through Annual Report Analysis with Large Language Models
Annual Reports of publicly listed companies contain vital information about their financial health which can help assess the potential impact on Stock price of the firm. These reports are comprehensive in nature, going up to, and sometimes exceeding, 100 pages. Analysing these reports is cumbersome even for a single firm, let alone the whole universe of firms that exist. Over the years, financial experts have become proficient in extracting valuable information from these documents relatively quickly. However, this requires years of practice and experience. This paper aims to simplify the process of assessing Annual Reports of all the firms by leveraging the capabilities of Large Language Models (LLMs). The insights generated by the LLM are compiled in a Quant styled dataset and augmented by historical stock price data. A Machine Learning model is then trained with LLM outputs as features. The walkforward test results show promising outperformance wrt S&P500 returns. This paper intends to provide a framework for future work in this direction. To facilitate this, the code has been released as open source.
