new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

Label Shift Adapter for Test-Time Adaptation under Covariate and Label Shifts

Test-time adaptation (TTA) aims to adapt a pre-trained model to the target domain in a batch-by-batch manner during inference. While label distributions often exhibit imbalances in real-world scenarios, most previous TTA approaches typically assume that both source and target domain datasets have balanced label distribution. Due to the fact that certain classes appear more frequently in certain domains (e.g., buildings in cities, trees in forests), it is natural that the label distribution shifts as the domain changes. However, we discover that the majority of existing TTA methods fail to address the coexistence of covariate and label shifts. To tackle this challenge, we propose a novel label shift adapter that can be incorporated into existing TTA approaches to deal with label shifts during the TTA process effectively. Specifically, we estimate the label distribution of the target domain to feed it into the label shift adapter. Subsequently, the label shift adapter produces optimal parameters for the target label distribution. By predicting only the parameters for a part of the pre-trained source model, our approach is computationally efficient and can be easily applied, regardless of the model architectures. Through extensive experiments, we demonstrate that integrating our strategy with TTA approaches leads to substantial performance improvements under the joint presence of label and covariate shifts.

  • 4 authors
·
Aug 17, 2023

Enhancing Source-Free Domain Adaptive Object Detection with Low-confidence Pseudo Label Distillation

Source-Free domain adaptive Object Detection (SFOD) is a promising strategy for deploying trained detectors to new, unlabeled domains without accessing source data, addressing significant concerns around data privacy and efficiency. Most SFOD methods leverage a Mean-Teacher (MT) self-training paradigm relying heavily on High-confidence Pseudo Labels (HPL). However, these HPL often overlook small instances that undergo significant appearance changes with domain shifts. Additionally, HPL ignore instances with low confidence due to the scarcity of training samples, resulting in biased adaptation toward familiar instances from the source domain. To address this limitation, we introduce the Low-confidence Pseudo Label Distillation (LPLD) loss within the Mean-Teacher based SFOD framework. This novel approach is designed to leverage the proposals from Region Proposal Network (RPN), which potentially encompasses hard-to-detect objects in unfamiliar domains. Initially, we extract HPL using a standard pseudo-labeling technique and mine a set of Low-confidence Pseudo Labels (LPL) from proposals generated by RPN, leaving those that do not overlap significantly with HPL. These LPL are further refined by leveraging class-relation information and reducing the effect of inherent noise for the LPLD loss calculation. Furthermore, we use feature distance to adaptively weight the LPLD loss to focus on LPL containing a larger foreground area. Our method outperforms previous SFOD methods on four cross-domain object detection benchmarks. Extensive experiments demonstrate that our LPLD loss leads to effective adaptation by reducing false negatives and facilitating the use of domain-invariant knowledge from the source model. Code is available at https://github.com/junia3/LPLD.

  • 6 authors
·
Jul 18, 2024

A realistic and robust model for Chinese word segmentation

A realistic Chinese word segmentation tool must adapt to textual variations with minimal training input and yet robust enough to yield reliable segmentation result for all variants. Various lexicon-driven approaches to Chinese segmentation, e.g. [1,16], achieve high f-scores yet require massive training for any variation. Text-driven approach, e.g. [12], can be easily adapted for domain and genre changes yet has difficulty matching the high f-scores of the lexicon-driven approaches. In this paper, we refine and implement an innovative text-driven word boundary decision (WBD) segmentation model proposed in [15]. The WBD model treats word segmentation simply and efficiently as a binary decision on whether to realize the natural textual break between two adjacent characters as a word boundary. The WBD model allows simple and quick training data preparation converting characters as contextual vectors for learning the word boundary decision. Machine learning experiments with four different classifiers show that training with 1,000 vectors and 1 million vectors achieve comparable and reliable results. In addition, when applied to SigHAN Bakeoff 3 competition data, the WBD model produces OOV recall rates that are higher than all published results. Unlike all previous work, our OOV recall rate is comparable to our own F-score. Both experiments support the claim that the WBD model is a realistic model for Chinese word segmentation as it can be easily adapted for new variants with the robust result. In conclusion, we will discuss linguistic ramifications as well as future implications for the WBD approach.

  • 4 authors
·
May 21, 2019

Efficient Model Adaptation for Continual Learning at the Edge

Most machine learning (ML) systems assume stationary and matching data distributions during training and deployment. This is often a false assumption. When ML models are deployed on real devices, data distributions often shift over time due to changes in environmental factors, sensor characteristics, and task-of-interest. While it is possible to have a human-in-the-loop to monitor for distribution shifts and engineer new architectures in response to these shifts, such a setup is not cost-effective. Instead, non-stationary automated ML (AutoML) models are needed. This paper presents the Encoder-Adaptor-Reconfigurator (EAR) framework for efficient continual learning under domain shifts. The EAR framework uses a fixed deep neural network (DNN) feature encoder and trains shallow networks on top of the encoder to handle novel data. The EAR framework is capable of 1) detecting when new data is out-of-distribution (OOD) by combining DNNs with hyperdimensional computing (HDC), 2) identifying low-parameter neural adaptors to adapt the model to the OOD data using zero-shot neural architecture search (ZS-NAS), and 3) minimizing catastrophic forgetting on previous tasks by progressively growing the neural architecture as needed and dynamically routing data through the appropriate adaptors and reconfigurators for handling domain-incremental and class-incremental continual learning. We systematically evaluate our approach on several benchmark datasets for domain adaptation and demonstrate strong performance compared to state-of-the-art algorithms for OOD detection and few-/zero-shot NAS.

  • 8 authors
·
Aug 3, 2023

POND: Multi-Source Time Series Domain Adaptation with Information-Aware Prompt Tuning

Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, they primarily focus on domain adaptation from a single source domain. Yet, it is more crucial to investigate domain adaptation from multiple domains due to the potential for greater improvements. To address this, three important challenges need to be overcome: 1). The lack of exploration to utilize domain-specific information for domain adaptation, 2). The difficulty to learn domain-specific information that changes over time, and 3). The difficulty to evaluate learned domain-specific information. In order to tackle these challenges simultaneously, in this paper, we introduce PrOmpt-based domaiN Discrimination (POND), the first framework to utilize prompts for time series domain adaptation. Specifically, to address Challenge 1, we extend the idea of prompt tuning to time series analysis and learn prompts to capture common and domain-specific information from all source domains. To handle Challenge 2, we introduce a conditional module for each source domain to generate prompts from time series input data. For Challenge 3, we propose two criteria to select good prompts, which are used to choose the most suitable source domain for domain adaptation. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing four datasets. Experimental results demonstrate that our proposed POND model outperforms all state-of-the-art comparison methods by up to 66% on the F1-score.

  • 6 authors
·
Dec 19, 2023

MultiWOZ 2.1: A Consolidated Multi-Domain Dialogue Dataset with State Corrections and State Tracking Baselines

MultiWOZ 2.0 (Budzianowski et al., 2018) is a recently released multi-domain dialogue dataset spanning 7 distinct domains and containing over 10,000 dialogues. Though immensely useful and one of the largest resources of its kind to-date, MultiWOZ 2.0 has a few shortcomings. Firstly, there is substantial noise in the dialogue state annotations and dialogue utterances which negatively impact the performance of state-tracking models. Secondly, follow-up work (Lee et al., 2019) has augmented the original dataset with user dialogue acts. This leads to multiple co-existent versions of the same dataset with minor modifications. In this work we tackle the aforementioned issues by introducing MultiWOZ 2.1. To fix the noisy state annotations, we use crowdsourced workers to re-annotate state and utterances based on the original utterances in the dataset. This correction process results in changes to over 32% of state annotations across 40% of the dialogue turns. In addition, we fix 146 dialogue utterances by canonicalizing slot values in the utterances to the values in the dataset ontology. To address the second problem, we combined the contributions of the follow-up works into MultiWOZ 2.1. Hence, our dataset also includes user dialogue acts as well as multiple slot descriptions per dialogue state slot. We then benchmark a number of state-of-the-art dialogue state tracking models on the MultiWOZ 2.1 dataset and show the joint state tracking performance on the corrected state annotations. We are publicly releasing MultiWOZ 2.1 to the community, hoping that this dataset resource will allow for more effective models across various dialogue subproblems to be built in the future.

  • 10 authors
·
Jul 2, 2019

Domain Adaptive Hand Keypoint and Pixel Localization in the Wild

We aim to improve the performance of regressing hand keypoints and segmenting pixel-level hand masks under new imaging conditions (e.g., outdoors) when we only have labeled images taken under very different conditions (e.g., indoors). In the real world, it is important that the model trained for both tasks works under various imaging conditions. However, their variation covered by existing labeled hand datasets is limited. Thus, it is necessary to adapt the model trained on the labeled images (source) to unlabeled images (target) with unseen imaging conditions. While self-training domain adaptation methods (i.e., learning from the unlabeled target images in a self-supervised manner) have been developed for both tasks, their training may degrade performance when the predictions on the target images are noisy. To avoid this, it is crucial to assign a low importance (confidence) weight to the noisy predictions during self-training. In this paper, we propose to utilize the divergence of two predictions to estimate the confidence of the target image for both tasks. These predictions are given from two separate networks, and their divergence helps identify the noisy predictions. To integrate our proposed confidence estimation into self-training, we propose a teacher-student framework where the two networks (teachers) provide supervision to a network (student) for self-training, and the teachers are learned from the student by knowledge distillation. Our experiments show its superiority over state-of-the-art methods in adaptation settings with different lighting, grasping objects, backgrounds, and camera viewpoints. Our method improves by 4% the multi-task score on HO3D compared to the latest adversarial adaptation method. We also validate our method on Ego4D, egocentric videos with rapid changes in imaging conditions outdoors.

  • 6 authors
·
Mar 15, 2022

Text-conditioned State Space Model For Domain-generalized Change Detection Visual Question Answering

The Earth's surface is constantly changing, and detecting these changes provides valuable insights that benefit various aspects of human society. While traditional change detection methods have been employed to detect changes from bi-temporal images, these approaches typically require expert knowledge for accurate interpretation. To enable broader and more flexible access to change information by non-expert users, the task of Change Detection Visual Question Answering (CDVQA) has been introduced. However, existing CDVQA methods have been developed under the assumption that training and testing datasets share similar distributions. This assumption does not hold in real-world applications, where domain shifts often occur. In this paper, the CDVQA task is revisited with a focus on addressing domain shift. To this end, a new multi-modal and multi-domain dataset, BrightVQA, is introduced to facilitate domain generalization research in CDVQA. Furthermore, a novel state space model, termed Text-Conditioned State Space Model (TCSSM), is proposed. The TCSSM framework is designed to leverage both bi-temporal imagery and geo-disaster-related textual information in an unified manner to extract domain-invariant features across domains. Input-dependent parameters existing in TCSSM are dynamically predicted by using both bi-temporal images and geo-disaster-related description, thereby facilitating the alignment between bi-temporal visual data and the associated textual descriptions. Extensive experiments are conducted to evaluate the proposed method against state-of-the-art models, and superior performance is consistently demonstrated. The code and dataset will be made publicly available upon acceptance at https://github.com/Elman295/TCSSM.

  • 2 authors
·
Aug 12 2

KNN-MMD: Cross Domain Wireless Sensing via Local Distribution Alignment

Wireless sensing has recently found widespread applications in diverse environments, including homes, offices, and public spaces. By analyzing patterns in channel state information (CSI), it is possible to infer human actions for tasks such as person identification, gesture recognition, and fall detection. However, CSI is highly sensitive to environmental changes, where even minor alterations can significantly distort the CSI patterns. This sensitivity often leads to performance degradation or outright failure when applying wireless sensing models trained in one environment to another. To address this challenge, Domain Alignment (DAL) has been widely adopted for cross-domain classification tasks, as it focuses on aligning the global distributions of the source and target domains in feature space. Despite its popularity, DAL often neglects inter-category relationships, which can lead to misalignment between categories across domains, even when global alignment is achieved. To overcome these limitations, we propose K-Nearest Neighbors Maximum Mean Discrepancy (KNN-MMD), a novel few-shot method for cross-domain wireless sensing. Our approach begins by constructing a help set using KNN from the target domain, enabling local alignment between the source and target domains within each category using MMD. Additionally, we address a key instability issue commonly observed in cross-domain methods, where model performance fluctuates sharply between epochs. Further, most existing methods struggle to determine an optimal stopping point during training due to the absence of labeled data from the target domain. Our method resolves this by excluding the support set from the target domain during training and employing it as a validation set to determine the stopping criterion.The dataset and code are publicly available at https://github.com/RS2002/KNN-MMD .

  • 7 authors
·
Dec 6, 2024

VLTSeg: Simple Transfer of CLIP-Based Vision-Language Representations for Domain Generalized Semantic Segmentation

Domain generalization (DG) remains a significant challenge for perception based on deep neural networks (DNN), where domain shifts occur due to lighting, weather, or geolocation changes. In this work, we propose VLTSeg to enhance domain generalization in semantic segmentation, where the network is solely trained on the source domain and evaluated on unseen target domains. Our method leverages the inherent semantic robustness of vision-language models. First, by substituting traditional vision-only backbones with pre-trained encoders from CLIP and EVA-CLIP as transfer learning setting we find that in the field of DG, vision-language pre-training significantly outperforms supervised and self-supervised vision pre-training. We thus propose a new vision-language approach for domain generalized segmentation, which improves the domain generalization SOTA by 7.6% mIoU when training on the synthetic GTA5 dataset. We further show the superior generalization capabilities of vision-language segmentation models by reaching 76.48% mIoU on the popular Cityscapes-to-ACDC benchmark, outperforming the previous SOTA approach by 6.9% mIoU on the test set at the time of writing. Additionally, our approach shows strong in-domain generalization capabilities indicated by 86.1% mIoU on the Cityscapes test set, resulting in a shared first place with the previous SOTA on the current leaderboard at the time of submission.

  • 6 authors
·
Dec 4, 2023

FlickerFusion: Intra-trajectory Domain Generalizing Multi-Agent RL

Multi-agent reinforcement learning has demonstrated significant potential in addressing complex cooperative tasks across various real-world applications. However, existing MARL approaches often rely on the restrictive assumption that the number of entities (e.g., agents, obstacles) remains constant between training and inference. This overlooks scenarios where entities are dynamically removed or added during the inference trajectory -- a common occurrence in real-world environments like search and rescue missions and dynamic combat situations. In this paper, we tackle the challenge of intra-trajectory dynamic entity composition under zero-shot out-of-domain (OOD) generalization, where such dynamic changes cannot be anticipated beforehand. Our empirical studies reveal that existing MARL methods suffer significant performance degradation and increased uncertainty in these scenarios. In response, we propose FlickerFusion, a novel OOD generalization method that acts as a universally applicable augmentation technique for MARL backbone methods. FlickerFusion stochastically drops out parts of the observation space, emulating being in-domain when inferenced OOD. The results show that FlickerFusion not only achieves superior inference rewards but also uniquely reduces uncertainty vis-\`a-vis the backbone, compared to existing methods. Benchmarks, implementations, and model weights are organized and open-sourced at flickerfusion305.github.io, accompanied by ample demo video renderings.

  • 8 authors
·
Oct 21, 2024

Multi-Layer Deep xVA: Structural Credit Models, Measure Changes and Convergence Analysis

We propose a structural default model for portfolio-wide valuation adjustments (xVAs) and represent it as a system of coupled backward stochastic differential equations. The framework is divided into four layers, each capturing a key component: (i) clean values, (ii) initial margin and Collateral Valuation Adjustment (ColVA), (iii) Credit/Debit Valuation Adjustments (CVA/DVA) together with Margin Valuation Adjustment (MVA), and (iv) Funding Valuation Adjustment (FVA). Because these layers depend on one another through collateral and default effects, a naive Monte Carlo approach would require deeply nested simulations, making the problem computationally intractable. To address this challenge, we use an iterative deep BSDE approach, handling each layer sequentially so that earlier outputs serve as inputs to the subsequent layers. Initial margin is computed via deep quantile regression to reflect margin requirements over the Margin Period of Risk. We also adopt a change-of-measure method that highlights rare but significant defaults of the bank or counterparty, ensuring that these events are accurately captured in the training process. We further extend Han and Long's (2020) a posteriori error analysis to BSDEs on bounded domains. Due to the random exit from the domain, we obtain an order of convergence of O(h^{1/4-epsilon}) rather than the usual O(h^{1/2}). Numerical experiments illustrate that this method drastically reduces computational demands and successfully scales to high-dimensional, non-symmetric portfolios. The results confirm its effectiveness and accuracy, offering a practical alternative to nested Monte Carlo simulations in multi-counterparty xVA analyses.

  • 2 authors
·
Feb 20

Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

In autonomous driving, learning a segmentation model that can adapt to various environmental conditions is crucial. In particular, copying with severe illumination changes is an impelling need, as models trained on daylight data will perform poorly at nighttime. In this paper, we study the problem of Domain Adaptive Nighttime Semantic Segmentation (DANSS), which aims to learn a discriminative nighttime model with a labeled daytime dataset and an unlabeled dataset, including coarsely aligned day-night image pairs. To this end, we propose a novel Bidirectional Mixing (Bi-Mix) framework for DANSS, which can contribute to both image translation and segmentation adaptation processes. Specifically, in the image translation stage, Bi-Mix leverages the knowledge of day-night image pairs to improve the quality of nighttime image relighting. On the other hand, in the segmentation adaptation stage, Bi-Mix effectively bridges the distribution gap between day and night domains for adapting the model to the night domain. In both processes, Bi-Mix simply operates by mixing two samples without extra hyper-parameters, thus it is easy to implement. Extensive experiments on Dark Zurich and Nighttime Driving datasets demonstrate the advantage of the proposed Bi-Mix and show that our approach obtains state-of-the-art performance in DANSS. Our code is available at https://github.com/ygjwd12345/BiMix.

  • 6 authors
·
Nov 19, 2021

Learning multi-domain feature relation for visible and Long-wave Infrared image patch matching

Recently, learning-based algorithms have achieved promising performance on cross-spectral image patch matching, which, however, is still far from satisfactory for practical application. On the one hand, a lack of large-scale dataset with diverse scenes haunts its further improvement for learning-based algorithms, whose performances and generalization rely heavily on the dataset size and diversity. On the other hand, more emphasis has been put on feature relation in the spatial domain whereas the scale dependency between features has often been ignored, leading to performance degeneration especially when encountering significant appearance variations for cross-spectral patches. To address these issues, we publish, to be best of our knowledge, the largest visible and Long-wave Infrared (LWIR) image patch matching dataset, termed VL-CMIM, which contains 1300 pairs of strictly aligned visible and LWIR images and over 2 million patch pairs covering diverse scenes such as asteroid, field, country, build, street and water.In addition, a multi-domain feature relation learning network (MD-FRN) is proposed. Input by the features extracted from a four-branch network, both feature relations in spatial and scale domains are learned via a spatial correlation module (SCM) and multi-scale adaptive aggregation module (MSAG), respectively. To further aggregate the multi-domain relations, a deep domain interactive mechanism (DIM) is applied, where the learnt spatial-relation and scale-relation features are exchanged and further input into MSCRM and SCM. This mechanism allows our model to learn interactive cross-domain feature relations, leading to improved robustness to significant appearance changes due to different modality.

  • 5 authors
·
Aug 9, 2023

FashionVQA: A Domain-Specific Visual Question Answering System

Humans apprehend the world through various sensory modalities, yet language is their predominant communication channel. Machine learning systems need to draw on the same multimodal richness to have informed discourses with humans in natural language; this is particularly true for systems specialized in visually-dense information, such as dialogue, recommendation, and search engines for clothing. To this end, we train a visual question answering (VQA) system to answer complex natural language questions about apparel in fashion photoshoot images. The key to the successful training of our VQA model is the automatic creation of a visual question-answering dataset with 168 million samples from item attributes of 207 thousand images using diverse templates. The sample generation employs a strategy that considers the difficulty of the question-answer pairs to emphasize challenging concepts. Contrary to the recent trends in using several datasets for pretraining the visual question answering models, we focused on keeping the dataset fixed while training various models from scratch to isolate the improvements from model architecture changes. We see that using the same transformer for encoding the question and decoding the answer, as in language models, achieves maximum accuracy, showing that visual language models (VLMs) make the best visual question answering systems for our dataset. The accuracy of the best model surpasses the human expert level, even when answering human-generated questions that are not confined to the template formats. Our approach for generating a large-scale multimodal domain-specific dataset provides a path for training specialized models capable of communicating in natural language. The training of such domain-expert models, e.g., our fashion VLM model, cannot rely solely on the large-scale general-purpose datasets collected from the web.

  • 3 authors
·
Aug 23, 2022

MAKIMA: Tuning-free Multi-Attribute Open-domain Video Editing via Mask-Guided Attention Modulation

Diffusion-based text-to-image (T2I) models have demonstrated remarkable results in global video editing tasks. However, their focus is primarily on global video modifications, and achieving desired attribute-specific changes remains a challenging task, specifically in multi-attribute editing (MAE) in video. Contemporary video editing approaches either require extensive fine-tuning or rely on additional networks (such as ControlNet) for modeling multi-object appearances, yet they remain in their infancy, offering only coarse-grained MAE solutions. In this paper, we present MAKIMA, a tuning-free MAE framework built upon pretrained T2I models for open-domain video editing. Our approach preserves video structure and appearance information by incorporating attention maps and features from the inversion process during denoising. To facilitate precise editing of multiple attributes, we introduce mask-guided attention modulation, enhancing correlations between spatially corresponding tokens and suppressing cross-attribute interference in both self-attention and cross-attention layers. To balance video frame generation quality and efficiency, we implement consistent feature propagation, which generates frame sequences by editing keyframes and propagating their features throughout the sequence. Extensive experiments demonstrate that MAKIMA outperforms existing baselines in open-domain multi-attribute video editing tasks, achieving superior results in both editing accuracy and temporal consistency while maintaining computational efficiency.

  • 11 authors
·
Dec 27, 2024

Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation

Contemporary domain adaptation offers a practical solution for achieving cross-domain transfer of semantic segmentation between labeled source data and unlabeled target data. These solutions have gained significant popularity; however, they require the model to be retrained when the test environment changes. This can result in unbearable costs in certain applications due to the time-consuming training process and concerns regarding data privacy. One-shot domain adaptation methods attempt to overcome these challenges by transferring the pre-trained source model to the target domain using only one target data. Despite this, the referring style transfer module still faces issues with computation cost and over-fitting problems. To address this problem, we propose a novel framework called Informative Data Mining (IDM) that enables efficient one-shot domain adaptation for semantic segmentation. Specifically, IDM provides an uncertainty-based selection criterion to identify the most informative samples, which facilitates quick adaptation and reduces redundant training. We then perform a model adaptation method using these selected samples, which includes patch-wise mixing and prototype-based information maximization to update the model. This approach effectively enhances adaptation and mitigates the overfitting problem. In general, we provide empirical evidence of the effectiveness and efficiency of IDM. Our approach outperforms existing methods and achieves a new state-of-the-art one-shot performance of 56.7\%/55.4\% on the GTA5/SYNTHIA to Cityscapes adaptation tasks, respectively. The code will be released at https://github.com/yxiwang/IDM.

  • 6 authors
·
Sep 25, 2023

Does your data spark joy? Performance gains from domain upsampling at the end of training

Pretraining datasets for large language models (LLMs) have grown to trillions of tokens composed of large amounts of CommonCrawl (CC) web scrape along with smaller, domain-specific datasets. It is expensive to understand the impact of these domain-specific datasets on model capabilities as training at large FLOP scales is required to reveal significant changes to difficult and emergent benchmarks. Given the increasing cost of experimenting with pretraining data, how does one determine the optimal balance between the diversity in general web scrapes and the information density of domain specific data? In this work, we show how to leverage the smaller domain specific datasets by upsampling them relative to CC at the end of training to drive performance improvements on difficult benchmarks. This simple technique allows us to improve up to 6.90 pp on MMLU, 8.26 pp on GSM8K, and 6.17 pp on HumanEval relative to the base data mix for a 7B model trained for 1 trillion (T) tokens, thus rivaling Llama-2 (7B)x2014a model trained for twice as long. We experiment with ablating the duration of domain upsampling from 5% to 30% of training and find that 10% to 20% percent is optimal for navigating the tradeoff between general language modeling capabilities and targeted benchmarks. We also use domain upsampling to characterize at scale the utility of individual datasets for improving various benchmarks by removing them during this final phase of training. This tool opens up the ability to experiment with the impact of different pretraining datasets at scale, but at an order of magnitude lower cost compared to full pretraining runs.

  • 5 authors
·
Jun 5, 2024

D-CTNet: A Dual-Branch Channel-Temporal Forecasting Network with Frequency-Domain Correction

Accurate Multivariate Time Series (MTS) forecasting is crucial for collaborative design of complex systems, Digital Twin building, and maintenance ahead of time. However, the collaborative industrial environment presents new challenges for MTS forecasting models: models should decouple complex inter-variable dependencies while addressing non-stationary distribution shift brought by environmental changes. To address these challenges and improve collaborative sensing reliability, we propose a Patch-Based Dual-Branch Channel-Temporal Forecasting Network (D-CTNet). Particularly, with a parallel dual-branch design incorporating linear temporal modeling layer and channel attention mechanism, our method explicitly decouples and jointly learns intra-channel temporal evolution patterns and dynamic multivariate correlations. Furthermore, a global patch attention fusion module goes beyond the local window scope to model long range dependencies. Most importantly, aiming at non-stationarity, a Frequency-Domain Stationarity Correction mechanism adaptively suppresses distribution shift impacts from environment change by spectrum alignment. Evaluations on seven benchmark datasets show that our model achieves better forecasting accuracy and robustness compared with state-of-the-art methods. Our work shows great promise as a new forecasting engine for industrial collaborative systems.

  • 6 authors
·
Nov 30

GEOBench-VLM: Benchmarking Vision-Language Models for Geospatial Tasks

While numerous recent benchmarks focus on evaluating generic Vision-Language Models (VLMs), they fall short in addressing the unique demands of geospatial applications. Generic VLM benchmarks are not designed to handle the complexities of geospatial data, which is critical for applications such as environmental monitoring, urban planning, and disaster management. Some of the unique challenges in geospatial domain include temporal analysis for changes, counting objects in large quantities, detecting tiny objects, and understanding relationships between entities occurring in Remote Sensing imagery. To address this gap in the geospatial domain, we present GEOBench-VLM, a comprehensive benchmark specifically designed to evaluate VLMs on geospatial tasks, including scene understanding, object counting, localization, fine-grained categorization, and temporal analysis. Our benchmark features over 10,000 manually verified instructions and covers a diverse set of variations in visual conditions, object type, and scale. We evaluate several state-of-the-art VLMs to assess their accuracy within the geospatial context. The results indicate that although existing VLMs demonstrate potential, they face challenges when dealing with geospatial-specific examples, highlighting the room for further improvements. Specifically, the best-performing GPT4o achieves only 40\% accuracy on MCQs, which is only double the random guess performance. Our benchmark is publicly available at https://github.com/The-AI-Alliance/GEO-Bench-VLM .

  • 8 authors
·
Nov 28, 2024

IndraEye: Infrared Electro-Optical UAV-based Perception Dataset for Robust Downstream Tasks

Deep neural networks (DNNs) have shown exceptional performance when trained on well-illuminated images captured by Electro-Optical (EO) cameras, which provide rich texture details. However, in critical applications like aerial perception, it is essential for DNNs to maintain consistent reliability across all conditions, including low-light scenarios where EO cameras often struggle to capture sufficient detail. Additionally, UAV-based aerial object detection faces significant challenges due to scale variability from varying altitudes and slant angles, adding another layer of complexity. Existing methods typically address only illumination changes or style variations as domain shifts, but in aerial perception, correlation shifts also impact DNN performance. In this paper, we introduce the IndraEye dataset, a multi-sensor (EO-IR) dataset designed for various tasks. It includes 5,612 images with 145,666 instances, encompassing multiple viewing angles, altitudes, seven backgrounds, and different times of the day across the Indian subcontinent. The dataset opens up several research opportunities, such as multimodal learning, domain adaptation for object detection and segmentation, and exploration of sensor-specific strengths and weaknesses. IndraEye aims to advance the field by supporting the development of more robust and accurate aerial perception systems, particularly in challenging conditions. IndraEye dataset is benchmarked with object detection and semantic segmentation tasks. Dataset and source codes are available at https://bit.ly/indraeye.

  • 7 authors
·
Oct 28, 2024

MARK: Memory Augmented Refinement of Knowledge

Large Language Models (LLMs) assist in specialized tasks but struggle to align with evolving domain knowledge without costly fine-tuning. Domain knowledge consists of: Knowledge: Immutable facts (e.g., 'A stone is solid') and generally accepted principles (e.g., ethical standards); Refined Memory: Evolving insights shaped by business needs and real-world changes. However, a significant gap often exists between a domain expert's deep, nuanced understanding and the system's domain knowledge, which can hinder accurate information retrieval and application. Our Memory-Augmented Refinement of Knowledge (MARK) framework enables LLMs to continuously learn without retraining by leveraging structured refined memory, inspired by the Society of Mind. MARK operates through specialized agents, each serving a distinct role: Residual Refined Memory Agent: Stores and retrieves domain-specific insights to maintain context over time; User Question Refined Memory Agent: Captures user-provided facts, abbreviations, and terminology for better comprehension; LLM Response Refined Memory Agent: Extracts key elements from responses for refinement and personalization. These agents analyse stored refined memory, detect patterns, resolve contradictions, and improve response accuracy. Temporal factors like recency and frequency prioritize relevant information while discarding outdated insights. MARK enhances LLMs in multiple ways: Ground Truth Strategy: Reduces hallucinations by establishing a structured reference; Domain-Specific Adaptation: Essential for fields like healthcare, law, and manufacturing, where proprietary insights are absent from public datasets; Personalized AI Assistants: Improves virtual assistants by remembering user preferences, ensuring coherent responses over time.

  • 3 authors
·
May 8

ICAL: Continual Learning of Multimodal Agents by Transforming Trajectories into Actionable Insights

Large-scale generative language and vision-language models (LLMs and VLMs) excel in few-shot in-context learning for decision making and instruction following. However, they require high-quality exemplar demonstrations to be included in their context window. In this work, we ask: Can LLMs and VLMs generate their own prompt examples from generic, sub-optimal demonstrations? We propose In-Context Abstraction Learning (ICAL), a method that builds a memory of multimodal experience insights from sub-optimal demonstrations and human feedback. Given a noisy demonstration in a new domain, VLMs abstract the trajectory into a general program by fixing inefficient actions and annotating cognitive abstractions: task relationships, object state changes, temporal subgoals, and task construals. These abstractions are refined and adapted interactively through human feedback while the agent attempts to execute the trajectory in a similar environment. The resulting abstractions, when used as exemplars in the prompt, significantly improve decision-making in retrieval-augmented LLM and VLM agents. Our ICAL agent surpasses the state-of-the-art in dialogue-based instruction following in TEACh, multimodal web agents in VisualWebArena, and action anticipation in Ego4D. In TEACh, we achieve a 12.6% improvement in goal-condition success. In VisualWebArena, our task success rate improves over the SOTA from 14.3% to 22.7%. In Ego4D action forecasting, we improve over few-shot GPT-4V and remain competitive with supervised models. We show finetuning our retrieval-augmented in-context agent yields additional improvements. Our approach significantly reduces reliance on expert-crafted examples and consistently outperforms in-context learning from action plans that lack such insights.

  • 6 authors
·
Jun 20, 2024 2

PeftCD: Leveraging Vision Foundation Models with Parameter-Efficient Fine-Tuning for Remote Sensing Change Detection

To tackle the prevalence of pseudo changes, the scarcity of labeled samples, and the difficulty of cross-domain generalization in multi-temporal and multi-source remote sensing imagery, we propose PeftCD, a change detection framework built upon Vision Foundation Models (VFMs) with Parameter-Efficient Fine-Tuning (PEFT). At its core, PeftCD employs a weight-sharing Siamese encoder derived from a VFM, into which LoRA and Adapter modules are seamlessly integrated. This design enables highly efficient task adaptation by training only a minimal set of additional parameters. To fully unlock the potential of VFMs, we investigate two leading backbones: the Segment Anything Model v2 (SAM2), renowned for its strong segmentation priors, and DINOv3, a state-of-the-art self-supervised representation learner. The framework is complemented by a deliberately lightweight decoder, ensuring the focus remains on the powerful feature representations from the backbones. Extensive experiments demonstrate that PeftCD achieves state-of-the-art performance across multiple public datasets, including SYSU-CD (IoU 73.81%), WHUCD (92.05%), MSRSCD (64.07%), MLCD (76.89%), CDD (97.01%), S2Looking (52.25%) and LEVIR-CD (85.62%), with notably precise boundary delineation and strong suppression of pseudo-changes. In summary, PeftCD presents an optimal balance of accuracy, efficiency, and generalization. It offers a powerful and scalable paradigm for adapting large-scale VFMs to real-world remote sensing change detection applications. The code and pretrained models will be released at https://github.com/dyzy41/PeftCD.

  • 5 authors
·
Sep 11

Category-Level 6D Object Pose and Size Estimation using Self-Supervised Deep Prior Deformation Networks

It is difficult to precisely annotate object instances and their semantics in 3D space, and as such, synthetic data are extensively used for these tasks, e.g., category-level 6D object pose and size estimation. However, the easy annotations in synthetic domains bring the downside effect of synthetic-to-real (Sim2Real) domain gap. In this work, we aim to address this issue in the task setting of Sim2Real, unsupervised domain adaptation for category-level 6D object pose and size estimation. We propose a method that is built upon a novel Deep Prior Deformation Network, shortened as DPDN. DPDN learns to deform features of categorical shape priors to match those of object observations, and is thus able to establish deep correspondence in the feature space for direct regression of object poses and sizes. To reduce the Sim2Real domain gap, we formulate a novel self-supervised objective upon DPDN via consistency learning; more specifically, we apply two rigid transformations to each object observation in parallel, and feed them into DPDN respectively to yield dual sets of predictions; on top of the parallel learning, an inter-consistency term is employed to keep cross consistency between dual predictions for improving the sensitivity of DPDN to pose changes, while individual intra-consistency ones are used to enforce self-adaptation within each learning itself. We train DPDN on both training sets of the synthetic CAMERA25 and real-world REAL275 datasets; our results outperform the existing methods on REAL275 test set under both the unsupervised and supervised settings. Ablation studies also verify the efficacy of our designs. Our code is released publicly at https://github.com/JiehongLin/Self-DPDN.

  • 4 authors
·
Jul 12, 2022

FSG-Net: Frequency-Spatial Synergistic Gated Network for High-Resolution Remote Sensing Change Detection

Change detection from high-resolution remote sensing images lies as a cornerstone of Earth observation applications, yet its efficacy is often compromised by two critical challenges. First, false alarms are prevalent as models misinterpret radiometric variations from temporal shifts (e.g., illumination, season) as genuine changes. Second, a non-negligible semantic gap between deep abstract features and shallow detail-rich features tends to obstruct their effective fusion, culminating in poorly delineated boundaries. To step further in addressing these issues, we propose the Frequency-Spatial Synergistic Gated Network (FSG-Net), a novel paradigm that aims to systematically disentangle semantic changes from nuisance variations. Specifically, FSG-Net first operates in the frequency domain, where a Discrepancy-Aware Wavelet Interaction Module (DAWIM) adaptively mitigates pseudo-changes by discerningly processing different frequency components. Subsequently, the refined features are enhanced in the spatial domain by a Synergistic Temporal-Spatial Attention Module (STSAM), which amplifies the saliency of genuine change regions. To finally bridge the semantic gap, a Lightweight Gated Fusion Unit (LGFU) leverages high-level semantics to selectively gate and integrate crucial details from shallow layers. Comprehensive experiments on the CDD, GZ-CD, and LEVIR-CD benchmarks validate the superiority of FSG-Net, establishing a new state-of-the-art with F1-scores of 94.16%, 89.51%, and 91.27%, respectively. The code will be made available at https://github.com/zxXie-Air/FSG-Net after a possible publication.

  • 8 authors
·
Sep 8 2

ParGANDA: Making Synthetic Pedestrians A Reality For Object Detection

Object detection is the key technique to a number of Computer Vision applications, but it often requires large amounts of annotated data to achieve decent results. Moreover, for pedestrian detection specifically, the collected data might contain some personally identifiable information (PII), which is highly restricted in many countries. This label intensive and privacy concerning task has recently led to an increasing interest in training the detection models using synthetically generated pedestrian datasets collected with a photo-realistic video game engine. The engine is able to generate unlimited amounts of data with precise and consistent annotations, which gives potential for significant gains in the real-world applications. However, the use of synthetic data for training introduces a synthetic-to-real domain shift aggravating the final performance. To close the gap between the real and synthetic data, we propose to use a Generative Adversarial Network (GAN), which performsparameterized unpaired image-to-image translation to generate more realistic images. The key benefit of using the GAN is its intrinsic preference of low-level changes to geometric ones, which means annotations of a given synthetic image remain accurate even after domain translation is performed thus eliminating the need for labeling real data. We extensively experimented with the proposed method using MOTSynth dataset to train and MOT17 and MOT20 detection datasets to test, with experimental results demonstrating the effectiveness of this method. Our approach not only produces visually plausible samples but also does not require any labels of the real domain thus making it applicable to the variety of downstream tasks.

  • 5 authors
·
Jul 21, 2023

Wavelet Diffusion Neural Operator

Simulating and controlling physical systems described by partial differential equations (PDEs) are crucial tasks across science and engineering. Recently, diffusion generative models have emerged as a competitive class of methods for these tasks due to their ability to capture long-term dependencies and model high-dimensional states. However, diffusion models typically struggle with handling system states with abrupt changes and generalizing to higher resolutions. In this work, we propose Wavelet Diffusion Neural Operator (WDNO), a novel PDE simulation and control framework that enhances the handling of these complexities. WDNO comprises two key innovations. Firstly, WDNO performs diffusion-based generative modeling in the wavelet domain for the entire trajectory to handle abrupt changes and long-term dependencies effectively. Secondly, to address the issue of poor generalization across different resolutions, which is one of the fundamental tasks in modeling physical systems, we introduce multi-resolution training. We validate WDNO on five physical systems, including 1D advection equation, three challenging physical systems with abrupt changes (1D Burgers' equation, 1D compressible Navier-Stokes equation and 2D incompressible fluid), and a real-world dataset ERA5, which demonstrates superior performance on both simulation and control tasks over state-of-the-art methods, with significant improvements in long-term and detail prediction accuracy. Remarkably, in the challenging context of the 2D high-dimensional and indirect control task aimed at reducing smoke leakage, WDNO reduces the leakage by 33.2% compared to the second-best baseline. The code can be found at https://github.com/AI4Science-WestlakeU/wdno.git.

  • 10 authors
·
Dec 6, 2024

Object Detectors in the Open Environment: Challenges, Solutions, and Outlook

With the emergence of foundation models, deep learning-based object detectors have shown practical usability in closed set scenarios. However, for real-world tasks, object detectors often operate in open environments, where crucial factors (e.g., data distribution, objective) that influence model learning are often changing. The dynamic and intricate nature of the open environment poses novel and formidable challenges to object detectors. Unfortunately, current research on object detectors in open environments lacks a comprehensive analysis of their distinctive characteristics, challenges, and corresponding solutions, which hinders their secure deployment in critical real-world scenarios. This paper aims to bridge this gap by conducting a comprehensive review and analysis of object detectors in open environments. We initially identified limitations of key structural components within the existing detection pipeline and propose the open environment object detector challenge framework that includes four quadrants (i.e., out-of-domain, out-of-category, robust learning, and incremental learning) based on the dimensions of the data / target changes. For each quadrant of challenges in the proposed framework, we present a detailed description and systematic analysis of the overarching goals and core difficulties, systematically review the corresponding solutions, and benchmark their performance over multiple widely adopted datasets. In addition, we engage in a discussion of open problems and potential avenues for future research. This paper aims to provide a fresh, comprehensive, and systematic understanding of the challenges and solutions associated with open-environment object detectors, thus catalyzing the development of more solid applications in real-world scenarios. A project related to this survey can be found at https://github.com/LiangSiyuan21/OEOD_Survey.

  • 8 authors
·
Mar 24, 2024

Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from Mixture-of-Experts

In this paper, we tackle the problem of domain shift. Most existing methods perform training on multiple source domains using a single model, and the same trained model is used on all unseen target domains. Such solutions are sub-optimal as each target domain exhibits its own specialty, which is not adapted. Furthermore, expecting single-model training to learn extensive knowledge from multiple source domains is counterintuitive. The model is more biased toward learning only domain-invariant features and may result in negative knowledge transfer. In this work, we propose a novel framework for unsupervised test-time adaptation, which is formulated as a knowledge distillation process to address domain shift. Specifically, we incorporate Mixture-of-Experts (MoE) as teachers, where each expert is separately trained on different source domains to maximize their specialty. Given a test-time target domain, a small set of unlabeled data is sampled to query the knowledge from MoE. As the source domains are correlated to the target domains, a transformer-based aggregator then combines the domain knowledge by examining the interconnection among them. The output is treated as a supervision signal to adapt a student prediction network toward the target domain. We further employ meta-learning to enforce the aggregator to distill positive knowledge and the student network to achieve fast adaptation. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art and validates the effectiveness of each proposed component. Our code is available at https://github.com/n3il666/Meta-DMoE.

  • 6 authors
·
Oct 7, 2022

GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets

Recent years have seen the advent of molecular simulation datasets that are orders of magnitude larger and more diverse. These new datasets differ substantially in four aspects of complexity: 1. Chemical diversity (number of different elements), 2. system size (number of atoms per sample), 3. dataset size (number of data samples), and 4. domain shift (similarity of the training and test set). Despite these large differences, benchmarks on small and narrow datasets remain the predominant method of demonstrating progress in graph neural networks (GNNs) for molecular simulation, likely due to cheaper training compute requirements. This raises the question -- does GNN progress on small and narrow datasets translate to these more complex datasets? This work investigates this question by first developing the GemNet-OC model based on the large Open Catalyst 2020 (OC20) dataset. GemNet-OC outperforms the previous state-of-the-art on OC20 by 16% while reducing training time by a factor of 10. We then compare the impact of 18 model components and hyperparameter choices on performance in multiple datasets. We find that the resulting model would be drastically different depending on the dataset used for making model choices. To isolate the source of this discrepancy we study six subsets of the OC20 dataset that individually test each of the above-mentioned four dataset aspects. We find that results on the OC-2M subset correlate well with the full OC20 dataset while being substantially cheaper to train on. Our findings challenge the common practice of developing GNNs solely on small datasets, but highlight ways of achieving fast development cycles and generalizable results via moderately-sized, representative datasets such as OC-2M and efficient models such as GemNet-OC. Our code and pretrained model weights are open-sourced.

  • 7 authors
·
Apr 6, 2022

Grounding Stylistic Domain Generalization with Quantitative Domain Shift Measures and Synthetic Scene Images

Domain Generalization (DG) is a challenging task in machine learning that requires a coherent ability to comprehend shifts across various domains through extraction of domain-invariant features. DG performance is typically evaluated by performing image classification in domains of various image styles. However, current methodology lacks quantitative understanding about shifts in stylistic domain, and relies on a vast amount of pre-training data, such as ImageNet1K, which are predominantly in photo-realistic style with weakly supervised class labels. Such a data-driven practice could potentially result in spurious correlation and inflated performance on DG benchmarks. In this paper, we introduce a new DG paradigm to address these risks. We first introduce two new quantitative measures ICV and IDD to describe domain shifts in terms of consistency of classes within one domain and similarity between two stylistic domains. We then present SuperMarioDomains (SMD), a novel synthetic multi-domain dataset sampled from video game scenes with more consistent classes and sufficient dissimilarity compared to ImageNet1K. We demonstrate our DG method SMOS. SMOS first uses SMD to train a precursor model, which is then used to ground the training on a DG benchmark. We observe that SMOS contributes to state-of-the-art performance across five DG benchmarks, gaining large improvements to performances on abstract domains along with on-par or slight improvements to those on photo-realistic domains. Our qualitative analysis suggests that these improvements can be attributed to reduced distributional divergence between originally distant domains. Our data are available at https://github.com/fpsluozi/SMD-SMOS .

  • 6 authors
·
May 24, 2024

Crafting Distribution Shifts for Validation and Training in Single Source Domain Generalization

Single-source domain generalization attempts to learn a model on a source domain and deploy it to unseen target domains. Limiting access only to source domain data imposes two key challenges - how to train a model that can generalize and how to verify that it does. The standard practice of validation on the training distribution does not accurately reflect the model's generalization ability, while validation on the test distribution is a malpractice to avoid. In this work, we construct an independent validation set by transforming source domain images with a comprehensive list of augmentations, covering a broad spectrum of potential distribution shifts in target domains. We demonstrate a high correlation between validation and test performance for multiple methods and across various datasets. The proposed validation achieves a relative accuracy improvement over the standard validation equal to 15.4% or 1.6% when used for method selection or learning rate tuning, respectively. Furthermore, we introduce a novel family of methods that increase the shape bias through enhanced edge maps. To benefit from the augmentations during training and preserve the independence of the validation set, a k-fold validation process is designed to separate the augmentation types used in training and validation. The method that achieves the best performance on the augmented validation is selected from the proposed family. It achieves state-of-the-art performance on various standard benchmarks. Code at: https://github.com/NikosEfth/crafting-shifts

  • 3 authors
·
Sep 29, 2024

A Change Language for Ontologies and Knowledge Graphs

Ontologies and knowledge graphs (KGs) are general-purpose computable representations of some domain, such as human anatomy, and are frequently a crucial part of modern information systems. Most of these structures change over time, incorporating new knowledge or information that was previously missing. Managing these changes is a challenge, both in terms of communicating changes to users, and providing mechanisms to make it easier for multiple stakeholders to contribute. To fill that need, we have created KGCL, the Knowledge Graph Change Language, a standard data model for describing changes to KGs and ontologies at a high level, and an accompanying human-readable controlled natural language. This language serves two purposes: a curator can use it to request desired changes, and it can also be used to describe changes that have already happened, corresponding to the concepts of "apply patch" and "diff" commonly used for managing changes in text documents and computer programs. Another key feature of KGCL is that descriptions are at a high enough level to be useful and understood by a variety of stakeholders--for example, ontology edits can be specified by commands like "add synonym 'arm' to 'forelimb'" or "move 'Parkinson disease' under 'neurodegenerative disease'". We have also built a suite of tools for managing ontology changes. These include an automated agent that integrates with and monitors GitHub ontology repositories and applies any requested changes, and a new component in the BioPortal ontology resource that allows users to make change requests directly from within the BioPortal user interface. Overall, the KGCL data model, its controlled natural language, and associated tooling allow for easier management and processing of changes associated with the development of ontologies and KGs.

  • 12 authors
·
Sep 20, 2024

Pareto Domain Adaptation

Domain adaptation (DA) attempts to transfer the knowledge from a labeled source domain to an unlabeled target domain that follows different distribution from the source. To achieve this, DA methods include a source classification objective to extract the source knowledge and a domain alignment objective to diminish the domain shift, ensuring knowledge transfer. Typically, former DA methods adopt some weight hyper-parameters to linearly combine the training objectives to form an overall objective. However, the gradient directions of these objectives may conflict with each other due to domain shift. Under such circumstances, the linear optimization scheme might decrease the overall objective value at the expense of damaging one of the training objectives, leading to restricted solutions. In this paper, we rethink the optimization scheme for DA from a gradient-based perspective. We propose a Pareto Domain Adaptation (ParetoDA) approach to control the overall optimization direction, aiming to cooperatively optimize all training objectives. Specifically, to reach a desirable solution on the target domain, we design a surrogate loss mimicking target classification. To improve target-prediction accuracy to support the mimicking, we propose a target-prediction refining mechanism which exploits domain labels via Bayes' theorem. On the other hand, since prior knowledge of weighting schemes for objectives is often unavailable to guide optimization to approach the optimal solution on the target domain, we propose a dynamic preference mechanism to dynamically guide our cooperative optimization by the gradient of the surrogate loss on a held-out unlabeled target dataset. Extensive experiments on image classification and semantic segmentation benchmarks demonstrate the effectiveness of ParetoDA

  • 8 authors
·
Dec 8, 2021

Pursuing Counterfactual Fairness via Sequential Autoencoder Across Domains

Recognizing the prevalence of domain shift as a common challenge in machine learning, various domain generalization (DG) techniques have been developed to enhance the performance of machine learning systems when dealing with out-of-distribution (OOD) data. Furthermore, in real-world scenarios, data distributions can gradually change across a sequence of sequential domains. While current methodologies primarily focus on improving model effectiveness within these new domains, they often overlook fairness issues throughout the learning process. In response, we introduce an innovative framework called Counterfactual Fairness-Aware Domain Generalization with Sequential Autoencoder (CDSAE). This approach effectively separates environmental information and sensitive attributes from the embedded representation of classification features. This concurrent separation not only greatly improves model generalization across diverse and unfamiliar domains but also effectively addresses challenges related to unfair classification. Our strategy is rooted in the principles of causal inference to tackle these dual issues. To examine the intricate relationship between semantic information, sensitive attributes, and environmental cues, we systematically categorize exogenous uncertainty factors into four latent variables: 1) semantic information influenced by sensitive attributes, 2) semantic information unaffected by sensitive attributes, 3) environmental cues influenced by sensitive attributes, and 4) environmental cues unaffected by sensitive attributes. By incorporating fairness regularization, we exclusively employ semantic information for classification purposes. Empirical validation on synthetic and real-world datasets substantiates the effectiveness of our approach, demonstrating improved accuracy levels while ensuring the preservation of fairness in the evolving landscape of continuous domains.

  • 6 authors
·
Sep 22, 2023

Domain-Adversarial Training of Neural Networks

We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains. The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages. We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.

  • 8 authors
·
May 28, 2015

Generalized Face Anti-spoofing via Finer Domain Partition and Disentangling Liveness-irrelevant Factors

Face anti-spoofing techniques based on domain generalization have recently been studied widely. Adversarial learning and meta-learning techniques have been adopted to learn domain-invariant representations. However, prior approaches often consider the dataset gap as the primary factor behind domain shifts. This perspective is not fine-grained enough to reflect the intrinsic gap among the data accurately. In our work, we redefine domains based on identities rather than datasets, aiming to disentangle liveness and identity attributes. We emphasize ignoring the adverse effect of identity shift, focusing on learning identity-invariant liveness representations through orthogonalizing liveness and identity features. To cope with style shifts, we propose Style Cross module to expand the stylistic diversity and Channel-wise Style Attention module to weaken the sensitivity to style shifts, aiming to learn robust liveness representations. Furthermore, acknowledging the asymmetry between live and spoof samples, we introduce a novel contrastive loss, Asymmetric Augmented Instance Contrast. Extensive experiments on four public datasets demonstrate that our method achieves state-of-the-art performance under cross-dataset and limited source dataset scenarios. Additionally, our method has good scalability when expanding diversity of identities. The codes will be released soon.

  • 5 authors
·
Jul 11, 2024

SAMGPT: Text-free Graph Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation

Graphs are able to model interconnected entities in many online services, supporting a wide range of applications on the Web. This raises an important question: How can we train a graph foundational model on multiple source domains and adapt to an unseen target domain? A major obstacle is that graphs from different domains often exhibit divergent characteristics. Some studies leverage large language models to align multiple domains based on textual descriptions associated with the graphs, limiting their applicability to text-attributed graphs. For text-free graphs, a few recent works attempt to align different feature distributions across domains, while generally neglecting structural differences. In this work, we propose a novel Structure Alignment framework for text-free Multi-domain Graph Pre-Training and cross-domain adaptation (SAMGPT). It is designed to learn multi-domain knowledge from graphs originating in multiple source domains, which can then be adapted to address applications in an unseen target domain. Specifically, we introduce a set of structure tokens to harmonize structure-based aggregation across source domains during the pre-training phase. Next, for cross-domain adaptation, we design dual prompts, namely, holistic prompts and specific prompts, which adapt unified multi-domain structural knowledge and fine-grained, domain-specific information, respectively, to a target domain. Finally, we conduct comprehensive experiments on seven public datasets to evaluate and analyze the effectiveness of SAMGPT.

  • 5 authors
·
Feb 7

Upcycling Models under Domain and Category Shift

Deep neural networks (DNNs) often perform poorly in the presence of domain shift and category shift. How to upcycle DNNs and adapt them to the target task remains an important open problem. Unsupervised Domain Adaptation (UDA), especially recently proposed Source-free Domain Adaptation (SFDA), has become a promising technology to address this issue. Nevertheless, existing SFDA methods require that the source domain and target domain share the same label space, consequently being only applicable to the vanilla closed-set setting. In this paper, we take one step further and explore the Source-free Universal Domain Adaptation (SF-UniDA). The goal is to identify "known" data samples under both domain and category shift, and reject those "unknown" data samples (not present in source classes), with only the knowledge from standard pre-trained source model. To this end, we introduce an innovative global and local clustering learning technique (GLC). Specifically, we design a novel, adaptive one-vs-all global clustering algorithm to achieve the distinction across different target classes and introduce a local k-NN clustering strategy to alleviate negative transfer. We examine the superiority of our GLC on multiple benchmarks with different category shift scenarios, including partial-set, open-set, and open-partial-set DA. Remarkably, in the most challenging open-partial-set DA scenario, GLC outperforms UMAD by 14.8\% on the VisDA benchmark. The code is available at https://github.com/ispc-lab/GLC.

  • 7 authors
·
Mar 13, 2023

Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence

Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain. This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation, and a minimum amount of annotation budget is available in the target domain. Without referencing the source data, new challenges emerge in identifying the most informative target samples for labeling, establishing cross-domain alignment during adaptation, and ensuring continuous performance improvements through the iterative query-and-adaptation process. In response, we present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead. We propose Contrastive Active Sampling to learn from the hypotheses of the preceding model, thereby querying target samples that are both informative to the current model and persistently challenging throughout active learning. During adaptation, we learn from features of actively selected anchors obtained from previous intermediate models, so that the Visual Persistence-guided Adaptation can facilitate feature distribution alignment and active sample exploitation. Extensive experiments on three widely-used benchmarks show that our LFTL achieves state-of-the-art performance, superior computational efficiency and continuous improvements as the annotation budget increases. Our code is available at https://github.com/lyumengyao/lftl.

  • 7 authors
·
Jul 26, 2024