new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 29

Right to be Forgotten in the Era of Large Language Models: Implications, Challenges, and Solutions

The Right to be Forgotten (RTBF) was first established as the result of the ruling of Google Spain SL, Google Inc. v AEPD, Mario Costeja Gonz\'alez, and was later included as the Right to Erasure under the General Data Protection Regulation (GDPR) of European Union to allow individuals the right to request personal data be deleted by organizations. Specifically for search engines, individuals can send requests to organizations to exclude their information from the query results. It was a significant emergent right as the result of the evolution of technology. With the recent development of Large Language Models (LLMs) and their use in chatbots, LLM-enabled software systems have become popular. But they are not excluded from the RTBF. Compared with the indexing approach used by search engines, LLMs store, and process information in a completely different way. This poses new challenges for compliance with the RTBF. In this paper, we explore these challenges and provide our insights on how to implement technical solutions for the RTBF, including the use of differential privacy, machine unlearning, model editing, and guardrails. With the rapid advancement of AI and the increasing need of regulating this powerful technology, learning from the case of RTBF can provide valuable lessons for technical practitioners, legal experts, organizations, and authorities.

  • 7 authors
·
Jul 8, 2023

R2D2: Reducing Redundancy and Duplication in Data Lakes

Enterprise data lakes often suffer from substantial amounts of duplicate and redundant data, with data volumes ranging from terabytes to petabytes. This leads to both increased storage costs and unnecessarily high maintenance costs for these datasets. In this work, we focus on identifying and reducing redundancy in enterprise data lakes by addressing the problem of 'dataset containment'. To the best of our knowledge, this is one of the first works that addresses table-level containment at a large scale. We propose R2D2: a three-step hierarchical pipeline that efficiently identifies almost all instances of containment by progressively reducing the search space in the data lake. It first builds (i) a schema containment graph, followed by (ii) statistical min-max pruning, and finally, (iii) content level pruning. We further propose minimizing the total storage and access costs by optimally identifying redundant datasets that can be deleted (and reconstructed on demand) while respecting latency constraints. We implement our system on Azure Databricks clusters using Apache Spark for enterprise data stored in ADLS Gen2, and on AWS clusters for open-source data. In contrast to existing modified baselines that are inaccurate or take several days to run, our pipeline can process an enterprise customer data lake at the TB scale in approximately 5 hours with high accuracy. We present theoretical results as well as extensive empirical validation on both enterprise (scale of TBs) and open-source datasets (scale of MBs - GBs), which showcase the effectiveness of our pipeline.

  • 7 authors
·
Dec 20, 2023

Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted

Large-scale text-to-image diffusion models excel in generating high-quality images from textual inputs, yet concerns arise as research indicates their tendency to memorize and replicate training data, raising We also addressed the issue of memorization in diffusion models, where models tend to replicate exact training samples raising copyright infringement and privacy issues. Efforts within the text-to-image community to address memorization explore causes such as data duplication, replicated captions, or trigger tokens, proposing per-prompt inference-time or training-time mitigation strategies. In this paper, we focus on the feed-forward layers and begin by contrasting neuron activations of a set of memorized and non-memorized prompts. Experiments reveal a surprising finding: many different sets of memorized prompts significantly activate a common subspace in the model, demonstrating, for the first time, that memorization in the diffusion models lies in a special subspace. Subsequently, we introduce a novel post-hoc method for editing pre-trained models, whereby memorization is mitigated through the straightforward pruning of weights in specialized subspaces, avoiding the need to disrupt the training or inference process as seen in prior research. Finally, we demonstrate the robustness of the pruned model against training data extraction attacks, thereby unveiling new avenues for a practical and one-for-all solution to memorization.

  • 5 authors
·
Jun 1, 2024

Towards Bridging the Gaps between the Right to Explanation and the Right to be Forgotten

The Right to Explanation and the Right to be Forgotten are two important principles outlined to regulate algorithmic decision making and data usage in real-world applications. While the right to explanation allows individuals to request an actionable explanation for an algorithmic decision, the right to be forgotten grants them the right to ask for their data to be deleted from all the databases and models of an organization. Intuitively, enforcing the right to be forgotten may trigger model updates which in turn invalidate previously provided explanations, thus violating the right to explanation. In this work, we investigate the technical implications arising due to the interference between the two aforementioned regulatory principles, and propose the first algorithmic framework to resolve the tension between them. To this end, we formulate a novel optimization problem to generate explanations that are robust to model updates due to the removal of training data instances by data deletion requests. We then derive an efficient approximation algorithm to handle the combinatorial complexity of this optimization problem. We theoretically demonstrate that our method generates explanations that are provably robust to worst-case data deletion requests with bounded costs in case of linear models and certain classes of non-linear models. Extensive experimentation with real-world datasets demonstrates the efficacy of the proposed framework.

  • 3 authors
·
Feb 8, 2023