- Predicting Cellular Responses to Novel Drug Perturbations at a Single-Cell Resolution Single-cell transcriptomics enabled the study of cellular heterogeneity in response to perturbations at the resolution of individual cells. However, scaling high-throughput screens (HTSs) to measure cellular responses for many drugs remains a challenge due to technical limitations and, more importantly, the cost of such multiplexed experiments. Thus, transferring information from routinely performed bulk RNA HTS is required to enrich single-cell data meaningfully. We introduce chemCPA, a new encoder-decoder architecture to study the perturbational effects of unseen drugs. We combine the model with an architecture surgery for transfer learning and demonstrate how training on existing bulk RNA HTS datasets can improve generalisation performance. Better generalisation reduces the need for extensive and costly screens at single-cell resolution. We envision that our proposed method will facilitate more efficient experiment designs through its ability to generate in-silico hypotheses, ultimately accelerating drug discovery. 6 authors · Apr 28, 2022
- Polar nano-clusters in nominally paraelectric ceramics demonstrating high microwave tunability for wireless communication Dielectric materials, with high tunability at microwave frequencies, are key components in the design of microwave communication systems. Dense Ba0.6Sr0.4TiO3 (BST) ceramics, with different grain sizes, were prepared in order to optimise the dielectric tunability via polar nano cluster effects. Dielectric permittivity and loss measurements were carried at both high and low frequencies and were supported by results from X-ray powder diffraction, scanning and transmission electron microscopies, Raman spectroscopy and piezoresponse force microscopy. The concentration of polar nano clusters, whose sizes are found to be in the range 20 to 50 nm, and the dielectric tunability increase with increasing grain size. A novel method for measurement of the microwave tunability in bulk dielectrics is presented. The highest tunability of 32% is achieved in ceramics with an average grain size of 10 um. The tunability of BST ceramics with applied DC field is demonstrated in a prototype small resonant antenna. 10 authors · Apr 14, 2020
- BMFM-RNA: An Open Framework for Building and Evaluating Transcriptomic Foundation Models Transcriptomic foundation models (TFMs) have recently emerged as powerful tools for analyzing gene expression in cells and tissues, supporting key tasks such as cell-type annotation, batch correction, and perturbation prediction. However, the diversity of model implementations and training strategies across recent TFMs, though promising, makes it challenging to isolate the contribution of individual design choices or evaluate their potential synergies. This hinders the field's ability to converge on best practices and limits the reproducibility of insights across studies. We present BMFM-RNA, an open-source, modular software package that unifies diverse TFM pretraining and fine-tuning objectives within a single framework. Leveraging this capability, we introduce a novel training objective, whole cell expression decoder (WCED), which captures global expression patterns using an autoencoder-like CLS bottleneck representation. In this paper, we describe the framework, supported input representations, and training objectives. We evaluated four model checkpoints pretrained on CELLxGENE using combinations of masked language modeling (MLM), WCED and multitask learning. Using the benchmarking capabilities of BMFM-RNA, we show that WCED-based models achieve performance that matches or exceeds state-of-the-art approaches like scGPT across more than a dozen datasets in both zero-shot and fine-tuning tasks. BMFM-RNA, available as part of the biomed-multi-omics project ( https://github.com/BiomedSciAI/biomed-multi-omic ), offers a reproducible foundation for systematic benchmarking and community-driven exploration of optimal TFM training strategies, enabling the development of more effective tools to leverage the latest advances in AI for understanding cell biology. IBM Research · Jun 17, 2025
- RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks Ribonucleic acid (RNA) plays a variety of crucial roles in fundamental biological processes. Recently, RNA has become an interesting drug target, emphasizing the need to improve our understanding of its structures and functions. Over the years, sequencing technologies have produced an enormous amount of unlabeled RNA data, which hides important knowledge and potential. Motivated by the successes of protein language models, we introduce RiboNucleic Acid Language Model (RiNALMo) to help unveil the hidden code of RNA. RiNALMo is the largest RNA language model to date with 650 million parameters pre-trained on 36 million non-coding RNA sequences from several available databases. RiNALMo is able to extract hidden knowledge and capture the underlying structure information implicitly embedded within the RNA sequences. RiNALMo achieves state-of-the-art results on several downstream tasks. Notably, we show that its generalization capabilities can overcome the inability of other deep learning methods for secondary structure prediction to generalize on unseen RNA families. The code has been made publicly available on https://github.com/lbcb-sci/RiNALMo. 5 authors · Feb 29, 2024
4 ATLAS: Benchmarking and Adapting LLMs for Global Trade via Harmonized Tariff Code Classification Accurate classification of products under the Harmonized Tariff Schedule (HTS) is a critical bottleneck in global trade, yet it has received little attention from the machine learning community. Misclassification can halt shipments entirely, with major postal operators suspending deliveries to the U.S. due to incomplete customs documentation. We introduce the first benchmark for HTS code classification, derived from the U.S. Customs Rulings Online Search System (CROSS). Evaluating leading LLMs, we find that our fine-tuned Atlas model (LLaMA-3.3-70B) achieves 40 percent fully correct 10-digit classifications and 57.5 percent correct 6-digit classifications, improvements of 15 points over GPT-5-Thinking and 27.5 points over Gemini-2.5-Pro-Thinking. Beyond accuracy, Atlas is roughly five times cheaper than GPT-5-Thinking and eight times cheaper than Gemini-2.5-Pro-Thinking, and can be self-hosted to guarantee data privacy in high-stakes trade and compliance workflows. While Atlas sets a strong baseline, the benchmark remains highly challenging, with only 40 percent 10-digit accuracy. By releasing both dataset and model, we aim to position HTS classification as a new community benchmark task and invite future work in retrieval, reasoning, and alignment. 2 authors · Sep 22, 2025 2
4 HTSC-2025: A Benchmark Dataset of Ambient-Pressure High-Temperature Superconductors for AI-Driven Critical Temperature Prediction The discovery of high-temperature superconducting materials holds great significance for human industry and daily life. In recent years, research on predicting superconducting transition temperatures using artificial intelligence~(AI) has gained popularity, with most of these tools claiming to achieve remarkable accuracy. However, the lack of widely accepted benchmark datasets in this field has severely hindered fair comparisons between different AI algorithms and impeded further advancement of these methods. In this work, we present the HTSC-2025, an ambient-pressure high-temperature superconducting benchmark dataset. This comprehensive compilation encompasses theoretically predicted superconducting materials discovered by theoretical physicists from 2023 to 2025 based on BCS superconductivity theory, including the renowned X_2YH_6 system, perovskite MXH_3 system, M_3XH_8 system, cage-like BCN-doped metal atomic systems derived from LaH_{10} structural evolution, and two-dimensional honeycomb-structured systems evolving from MgB_2. The HTSC-2025 benchmark has been open-sourced at https://github.com/xqh19970407/HTSC-2025 and will be continuously updated. This benchmark holds significant importance for accelerating the discovery of superconducting materials using AI-based methods. 6 authors · Jun 4, 2025 2
1 HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection Audio classification is an important task of mapping audio samples into their corresponding labels. Recently, the transformer model with self-attention mechanisms has been adopted in this field. However, existing audio transformers require large GPU memories and long training time, meanwhile relying on pretrained vision models to achieve high performance, which limits the model's scalability in audio tasks. To combat these problems, we introduce HTS-AT: an audio transformer with a hierarchical structure to reduce the model size and training time. It is further combined with a token-semantic module to map final outputs into class featuremaps, thus enabling the model for the audio event detection (i.e. localization in time). We evaluate HTS-AT on three datasets of audio classification where it achieves new state-of-the-art (SOTA) results on AudioSet and ESC-50, and equals the SOTA on Speech Command V2. It also achieves better performance in event localization than the previous CNN-based models. Moreover, HTS-AT requires only 35% model parameters and 15% training time of the previous audio transformer. These results demonstrate the high performance and high efficiency of HTS-AT. 6 authors · Feb 1, 2022