new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 29

Position: The Complexity of Perfect AI Alignment -- Formalizing the RLHF Trilemma

Reinforcement Learning from Human Feedback (RLHF) is widely used for aligning large language models, yet practitioners face a persistent puzzle: improving safety often reduces fairness, scaling to diverse populations becomes computationally intractable, and making systems robust often amplifies majority biases. We formalize this tension as the Alignment Trilemma: no RLHF system can simultaneously achieve (i) epsilon-representativeness across diverse human values, (ii) polynomial tractability in sample and compute complexity, and (iii) delta-robustness against adversarial perturbations and distribution shift. Through a complexity-theoretic analysis integrating statistical learning theory and robust optimization, we prove that achieving both representativeness (epsilon <= 0.01) and robustness (delta <= 0.001) for global-scale populations requires Omega(2^{d_context}) operations, which is super-polynomial in the context dimensionality. We show that current RLHF implementations resolve this trilemma by sacrificing representativeness: they collect only 10^3--10^4 samples from homogeneous annotator pools while 10^7--10^8 samples are needed for true global representation. Our framework provides a unified explanation for documented RLHF pathologies including preference collapse, sycophancy, and systematic bias amplification. We conclude with concrete directions for navigating these fundamental trade-offs through strategic relaxations of alignment requirements.

  • 4 authors
·
Nov 23 2

EchoDistill: Bidirectional Concept Distillation for One-Step Diffusion Personalization

Recent advances in accelerating text-to-image (T2I) diffusion models have enabled the synthesis of high-fidelity images even in a single step. However, personalizing these models to incorporate novel concepts remains a challenge due to the limited capacity of one-step models to capture new concept distributions effectively. We propose a bidirectional concept distillation framework, EchoDistill, to enable one-step diffusion personalization (1-SDP). Our approach involves an end-to-end training process where a multi-step diffusion model (teacher) and a one-step diffusion model (student) are trained simultaneously. The concept is first distilled from the teacher model to the student, and then echoed back from the student to the teacher. During the EchoDistill, we share the text encoder between the two models to ensure consistent semantic understanding. Following this, the student model is optimized with adversarial losses to align with the real image distribution and with alignment losses to maintain consistency with the teacher's output. Furthermore, we introduce the bidirectional echoing refinement strategy, wherein the student model leverages its faster generation capability to feedback to the teacher model. This bidirectional concept distillation mechanism not only enhances the student ability to personalize novel concepts but also improves the generative quality of the teacher model. Our experiments demonstrate that this collaborative framework significantly outperforms existing personalization methods over the 1-SDP setup, establishing a novel paradigm for rapid and effective personalization in T2I diffusion models.

  • 7 authors
·
Oct 23 1

AmpleGCG-Plus: A Strong Generative Model of Adversarial Suffixes to Jailbreak LLMs with Higher Success Rates in Fewer Attempts

Although large language models (LLMs) are typically aligned, they remain vulnerable to jailbreaking through either carefully crafted prompts in natural language or, interestingly, gibberish adversarial suffixes. However, gibberish tokens have received relatively less attention despite their success in attacking aligned LLMs. Recent work, AmpleGCG~liao2024amplegcg, demonstrates that a generative model can quickly produce numerous customizable gibberish adversarial suffixes for any harmful query, exposing a range of alignment gaps in out-of-distribution (OOD) language spaces. To bring more attention to this area, we introduce AmpleGCG-Plus, an enhanced version that achieves better performance in fewer attempts. Through a series of exploratory experiments, we identify several training strategies to improve the learning of gibberish suffixes. Our results, verified under a strict evaluation setting, show that it outperforms AmpleGCG on both open-weight and closed-source models, achieving increases in attack success rate (ASR) of up to 17\% in the white-box setting against Llama-2-7B-chat, and more than tripling ASR in the black-box setting against GPT-4. Notably, AmpleGCG-Plus jailbreaks the newer GPT-4o series of models at similar rates to GPT-4, and, uncovers vulnerabilities against the recently proposed circuit breakers defense. We publicly release AmpleGCG-Plus along with our collected training datasets.

  • 4 authors
·
Oct 29, 2024

Adversarial Defence without Adversarial Defence: Enhancing Language Model Robustness via Instance-level Principal Component Removal

Pre-trained language models (PLMs) have driven substantial progress in natural language processing but remain vulnerable to adversarial attacks, raising concerns about their robustness in real-world applications. Previous studies have sought to mitigate the impact of adversarial attacks by introducing adversarial perturbations into the training process, either implicitly or explicitly. While both strategies enhance robustness, they often incur high computational costs. In this work, we propose a simple yet effective add-on module that enhances the adversarial robustness of PLMs by removing instance-level principal components, without relying on conventional adversarial defences or perturbing the original training data. Our approach transforms the embedding space to approximate Gaussian properties, thereby reducing its susceptibility to adversarial perturbations while preserving semantic relationships. This transformation aligns embedding distributions in a way that minimises the impact of adversarial noise on decision boundaries, enhancing robustness without requiring adversarial examples or costly training-time augmentation. Evaluations on eight benchmark datasets show that our approach improves adversarial robustness while maintaining comparable before-attack accuracy to baselines, achieving a balanced trade-off between robustness and generalisation.

  • 6 authors
·
Jul 29

Adversarial Attacks against Closed-Source MLLMs via Feature Optimal Alignment

Multimodal large language models (MLLMs) remain vulnerable to transferable adversarial examples. While existing methods typically achieve targeted attacks by aligning global features-such as CLIP's [CLS] token-between adversarial and target samples, they often overlook the rich local information encoded in patch tokens. This leads to suboptimal alignment and limited transferability, particularly for closed-source models. To address this limitation, we propose a targeted transferable adversarial attack method based on feature optimal alignment, called FOA-Attack, to improve adversarial transfer capability. Specifically, at the global level, we introduce a global feature loss based on cosine similarity to align the coarse-grained features of adversarial samples with those of target samples. At the local level, given the rich local representations within Transformers, we leverage clustering techniques to extract compact local patterns to alleviate redundant local features. We then formulate local feature alignment between adversarial and target samples as an optimal transport (OT) problem and propose a local clustering optimal transport loss to refine fine-grained feature alignment. Additionally, we propose a dynamic ensemble model weighting strategy to adaptively balance the influence of multiple models during adversarial example generation, thereby further improving transferability. Extensive experiments across various models demonstrate the superiority of the proposed method, outperforming state-of-the-art methods, especially in transferring to closed-source MLLMs. The code is released at https://github.com/jiaxiaojunQAQ/FOA-Attack.

  • 10 authors
·
May 27 2

Efficient Adversarial Training in LLMs with Continuous Attacks

Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial training has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on four models from different families (Gemma, Phi3, Mistral, Zephyr) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.

  • 5 authors
·
May 24, 2024

Large Language Model Alignment: A Survey

Recent years have witnessed remarkable progress made in large language models (LLMs). Such advancements, while garnering significant attention, have concurrently elicited various concerns. The potential of these models is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental. Consequently, it becomes paramount to employ alignment techniques to ensure these models to exhibit behaviors consistent with human values. This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs, in conjunction with the extant capability research in this domain. Adopting the lens of AI alignment, we categorize the prevailing methods and emergent proposals for the alignment of LLMs into outer and inner alignment. We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks. To assess LLM alignment, we present a wide variety of benchmarks and evaluation methodologies. After discussing the state of alignment research for LLMs, we finally cast a vision toward the future, contemplating the promising avenues of research that lie ahead. Our aspiration for this survey extends beyond merely spurring research interests in this realm. We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.

  • 9 authors
·
Sep 26, 2023

Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization

Large language models (LLMs) have revolutionized the role of AI, yet also pose potential risks of propagating unethical content. Alignment technologies have been introduced to steer LLMs towards human preference, gaining increasing attention. Despite notable breakthroughs in this direction, existing methods heavily rely on high-quality positive-negative training pairs, suffering from noisy labels and the marginal distinction between preferred and dispreferred response data. Given recent LLMs' proficiency in generating helpful responses, this work pivots towards a new research focus: achieving alignment using solely human-annotated negative samples, preserving helpfulness while reducing harmfulness. For this purpose, we propose Distributional Dispreference Optimization (D^2O), which maximizes the discrepancy between the generated responses and the dispreferred ones to effectively eschew harmful information. We theoretically demonstrate that D^2O is equivalent to learning a distributional instead of instance-level preference model reflecting human dispreference against the distribution of negative responses. Besides, D^2O integrates an implicit Jeffrey Divergence regularization to balance the exploitation and exploration of reference policies and converges to a non-negative one during training. Extensive experiments demonstrate that our method achieves comparable generation quality and surpasses the latest baselines in producing less harmful and more informative responses with better training stability and faster convergence.

  • 6 authors
·
Mar 5, 2024

SeaS: Few-shot Industrial Anomaly Image Generation with Separation and Sharing Fine-tuning

We introduce SeaS, a unified industrial generative model for automatically creating diverse anomalies, authentic normal products, and precise anomaly masks. While extensive research exists, most efforts either focus on specific tasks, i.e., anomalies or normal products only, or require separate models for each anomaly type. Consequently, prior methods either offer limited generative capability or depend on a vast array of anomaly-specific models. We demonstrate that U-Net's differentiated learning ability captures the distinct visual traits of slightly-varied normal products and diverse anomalies, enabling us to construct a unified model for all tasks. Specifically, we first introduce an Unbalanced Abnormal (UA) Text Prompt, comprising one normal token and multiple anomaly tokens. More importantly, our Decoupled Anomaly Alignment (DA) loss decouples anomaly attributes and binds them to distinct anomaly tokens of UA, enabling SeaS to create unseen anomalies by recombining these attributes. Furthermore, our Normal-image Alignment (NA) loss aligns the normal token to normal patterns, making generated normal products globally consistent and locally varied. Finally, SeaS produces accurate anomaly masks by fusing discriminative U-Net features with high-resolution VAE features. SeaS sets a new benchmark for industrial generation, significantly enhancing downstream applications, with average improvements of +8.66% pixel-level AP for synthesis-based AD approaches, +1.10% image-level AP for unsupervised AD methods, and +12.79% IoU for supervised segmentation models. Code is available at https://github.com/HUST-SLOW/SeaS{https://github.com/HUST-SLOW/SeaS}.

  • 6 authors
·
Oct 19, 2024

Aligning Language Models with Preferences through f-divergence Minimization

Aligning language models with preferences can be posed as approximating a target distribution representing some desired behavior. Existing approaches differ both in the functional form of the target distribution and the algorithm used to approximate it. For instance, Reinforcement Learning from Human Feedback (RLHF) corresponds to minimizing a reverse KL from an implicit target distribution arising from a KL penalty in the objective. On the other hand, Generative Distributional Control (GDC) has an explicit target distribution and minimizes a forward KL from it using the Distributional Policy Gradient (DPG) algorithm. In this paper, we propose a new approach, f-DPG, which allows the use of any f-divergence to approximate any target distribution that can be evaluated. f-DPG unifies both frameworks (RLHF, GDC) and the approximation methods (DPG, RL with KL penalties). We show the practical benefits of various choices of divergence objectives and demonstrate that there is no universally optimal objective but that different divergences present different alignment and diversity trade-offs. We show that Jensen-Shannon divergence strikes a good balance between these objectives, and frequently outperforms forward KL divergence by a wide margin, leading to significant improvements over prior work. These distinguishing characteristics between divergences persist as the model size increases, highlighting the importance of selecting appropriate divergence objectives.

  • 6 authors
·
Feb 16, 2023

Adversarial Robustness for Unified Multi-Modal Encoders via Efficient Calibration

Recent unified multi-modal encoders align a wide range of modalities into a shared representation space, enabling diverse cross-modal tasks. Despite their impressive capabilities, the robustness of these models under adversarial perturbations remains underexplored, which is a critical concern for safety-sensitive applications. In this work, we present the first comprehensive study of adversarial vulnerability in unified multi-modal encoders. We find that even mild adversarial perturbations lead to substantial performance drops across all modalities. Non-visual inputs, such as audio and point clouds, are especially fragile, while visual inputs like images and videos also degrade significantly. To address this, we propose an efficient adversarial calibration framework that improves robustness across modalities without modifying pretrained encoders or semantic centers, ensuring compatibility with existing foundation models. Our method introduces modality-specific projection heads trained solely on adversarial examples, while keeping the backbone and embeddings frozen. We explore three training objectives: fixed-center cross-entropy, clean-to-adversarial L2 alignment, and clean-adversarial InfoNCE, and we introduce a regularization strategy to ensure modality-consistent alignment under attack. Experiments on six modalities and three Bind-style models show that our method improves adversarial robustness by up to 47.3 percent at epsilon = 4/255, while preserving or even improving clean zero-shot and retrieval performance with less than 1 percent trainable parameters.

  • 4 authors
·
May 17

Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer

Aligning generative models with human preference via RLHF typically suffers from overoptimization, where an imperfectly learned reward model can misguide the generative model to output undesired responses. We investigate this problem in a principled manner by identifying the source of the misalignment as a form of distributional shift and uncertainty in learning human preferences. To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model; one that simultaneously minimizes the maximum likelihood estimation of the loss and a reward penalty term. Here, the reward penalty term is introduced to prevent the policy from choosing actions with spurious high proxy rewards, resulting in provable sample efficiency of the algorithm under a partial coverage style condition. Moving from theory to practice, the proposed algorithm further enjoys an equivalent but surprisingly easy-to-implement reformulation. Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines: (i) a preference optimization loss that directly aligns the policy with human preference, and (ii) a supervised learning loss that explicitly imitates the policy with a (suitable) baseline distribution. In the context of aligning large language models (LLM), this objective fuses the direct preference optimization (DPO) loss with the supervised fune-tuning (SFT) loss to help mitigate the overoptimization towards undesired responses, for which we name the algorithm Regularized Preference Optimization (RPO). Experiments of aligning LLMs demonstrate the improved performance of RPO compared with DPO baselines. Our work sheds light on the interplay between preference optimization and SFT in tuning LLMs with both theoretical guarantees and empirical evidence.

  • 8 authors
·
May 26, 2024

Task-Specific Data Selection for Instruction Tuning via Monosemantic Neuronal Activations

Instruction tuning improves the ability of large language models (LLMs) to follow diverse human instructions, but achieving strong performance on specific target tasks remains challenging. A critical bottleneck is selecting the most relevant data to maximize task-specific performance. Existing data selection approaches include unstable influence-based methods and more stable distribution alignment methods, the latter of which critically rely on the underlying sample representation. In practice, most distribution alignment methods, from shallow features (e.g., BM25) to neural embeddings (e.g., BGE, LLM2Vec), may fail to capture how the model internally processes samples. To bridge this gap, we adopt a model-centric strategy in which each sample is represented by its neuronal activation pattern in the model, directly reflecting internal computation. However, directly using raw neuron activations leads to spurious similarity between unrelated samples due to neuron polysemanticity, where a single neuron may respond to multiple, unrelated concepts. To address this, we employ sparse autoencoders to disentangle polysemantic activations into sparse, monosemantic representations, and introduce a dedicated similarity metric for this space to better identify task-relevant data. Comprehensive experiments across multiple instruction datasets, models, tasks, and selection ratios show that our approach consistently outperforms existing data selection baselines in both stability and task-specific performance.

  • 9 authors
·
Mar 19

Towards Viewpoint-Invariant Visual Recognition via Adversarial Training

Visual recognition models are not invariant to viewpoint changes in the 3D world, as different viewing directions can dramatically affect the predictions given the same object. Although many efforts have been devoted to making neural networks invariant to 2D image translations and rotations, viewpoint invariance is rarely investigated. As most models process images in the perspective view, it is challenging to impose invariance to 3D viewpoint changes based only on 2D inputs. Motivated by the success of adversarial training in promoting model robustness, we propose Viewpoint-Invariant Adversarial Training (VIAT) to improve viewpoint robustness of common image classifiers. By regarding viewpoint transformation as an attack, VIAT is formulated as a minimax optimization problem, where the inner maximization characterizes diverse adversarial viewpoints by learning a Gaussian mixture distribution based on a new attack GMVFool, while the outer minimization trains a viewpoint-invariant classifier by minimizing the expected loss over the worst-case adversarial viewpoint distributions. To further improve the generalization performance, a distribution sharing strategy is introduced leveraging the transferability of adversarial viewpoints across objects. Experiments validate the effectiveness of VIAT in improving the viewpoint robustness of various image classifiers based on the diversity of adversarial viewpoints generated by GMVFool.

  • 6 authors
·
Jul 16, 2023

BECLR: Batch Enhanced Contrastive Few-Shot Learning

Learning quickly from very few labeled samples is a fundamental attribute that separates machines and humans in the era of deep representation learning. Unsupervised few-shot learning (U-FSL) aspires to bridge this gap by discarding the reliance on annotations at training time. Intrigued by the success of contrastive learning approaches in the realm of U-FSL, we structurally approach their shortcomings in both pretraining and downstream inference stages. We propose a novel Dynamic Clustered mEmory (DyCE) module to promote a highly separable latent representation space for enhancing positive sampling at the pretraining phase and infusing implicit class-level insights into unsupervised contrastive learning. We then tackle the, somehow overlooked yet critical, issue of sample bias at the few-shot inference stage. We propose an iterative Optimal Transport-based distribution Alignment (OpTA) strategy and demonstrate that it efficiently addresses the problem, especially in low-shot scenarios where FSL approaches suffer the most from sample bias. We later on discuss that DyCE and OpTA are two intertwined pieces of a novel end-to-end approach (we coin as BECLR), constructively magnifying each other's impact. We then present a suite of extensive quantitative and qualitative experimentation to corroborate that BECLR sets a new state-of-the-art across ALL existing U-FSL benchmarks (to the best of our knowledge), and significantly outperforms the best of the current baselines (codebase available at: https://github.com/stypoumic/BECLR).

  • 2 authors
·
Feb 4, 2024

Ensemble everything everywhere: Multi-scale aggregation for adversarial robustness

Adversarial examples pose a significant challenge to the robustness, reliability and alignment of deep neural networks. We propose a novel, easy-to-use approach to achieving high-quality representations that lead to adversarial robustness through the use of multi-resolution input representations and dynamic self-ensembling of intermediate layer predictions. We demonstrate that intermediate layer predictions exhibit inherent robustness to adversarial attacks crafted to fool the full classifier, and propose a robust aggregation mechanism based on Vickrey auction that we call CrossMax to dynamically ensemble them. By combining multi-resolution inputs and robust ensembling, we achieve significant adversarial robustness on CIFAR-10 and CIFAR-100 datasets without any adversarial training or extra data, reaching an adversarial accuracy of approx72% (CIFAR-10) and approx48% (CIFAR-100) on the RobustBench AutoAttack suite (L_infty=8/255) with a finetuned ImageNet-pretrained ResNet152. This represents a result comparable with the top three models on CIFAR-10 and a +5 % gain compared to the best current dedicated approach on CIFAR-100. Adding simple adversarial training on top, we get approx78% on CIFAR-10 and approx51% on CIFAR-100, improving SOTA by 5 % and 9 % respectively and seeing greater gains on the harder dataset. We validate our approach through extensive experiments and provide insights into the interplay between adversarial robustness, and the hierarchical nature of deep representations. We show that simple gradient-based attacks against our model lead to human-interpretable images of the target classes as well as interpretable image changes. As a byproduct, using our multi-resolution prior, we turn pre-trained classifiers and CLIP models into controllable image generators and develop successful transferable attacks on large vision language models.

  • 2 authors
·
Aug 8, 2024

Hierarchical Visual Categories Modeling: A Joint Representation Learning and Density Estimation Framework for Out-of-Distribution Detection

Detecting out-of-distribution inputs for visual recognition models has become critical in safe deep learning. This paper proposes a novel hierarchical visual category modeling scheme to separate out-of-distribution data from in-distribution data through joint representation learning and statistical modeling. We learn a mixture of Gaussian models for each in-distribution category. There are many Gaussian mixture models to model different visual categories. With these Gaussian models, we design an in-distribution score function by aggregating multiple Mahalanobis-based metrics. We don't use any auxiliary outlier data as training samples, which may hurt the generalization ability of out-of-distribution detection algorithms. We split the ImageNet-1k dataset into ten folds randomly. We use one fold as the in-distribution dataset and the others as out-of-distribution datasets to evaluate the proposed method. We also conduct experiments on seven popular benchmarks, including CIFAR, iNaturalist, SUN, Places, Textures, ImageNet-O, and OpenImage-O. Extensive experiments indicate that the proposed method outperforms state-of-the-art algorithms clearly. Meanwhile, we find that our visual representation has a competitive performance when compared with features learned by classical methods. These results demonstrate that the proposed method hasn't weakened the discriminative ability of visual recognition models and keeps high efficiency in detecting out-of-distribution samples.

  • 7 authors
·
Aug 28, 2024

CAFA: Class-Aware Feature Alignment for Test-Time Adaptation

Despite recent advancements in deep learning, deep neural networks continue to suffer from performance degradation when applied to new data that differs from training data. Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time. TTA can be applied to pretrained networks without modifying their training procedures, enabling them to utilize a well-formed source distribution for adaptation. One possible approach is to align the representation space of test samples to the source distribution (i.e., feature alignment). However, performing feature alignment in TTA is especially challenging in that access to labeled source data is restricted during adaptation. That is, a model does not have a chance to learn test data in a class-discriminative manner, which was feasible in other adaptation tasks (e.g., unsupervised domain adaptation) via supervised losses on the source data. Based on this observation, we propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously 1) encourages a model to learn target representations in a class-discriminative manner and 2) effectively mitigates the distribution shifts at test time. Our method does not require any hyper-parameters or additional losses, which are required in previous approaches. We conduct extensive experiments on 6 different datasets and show our proposed method consistently outperforms existing baselines.

  • 6 authors
·
May 31, 2022

Adversarial Style Augmentation for Domain Generalization

It is well-known that the performance of well-trained deep neural networks may degrade significantly when they are applied to data with even slightly shifted distributions. Recent studies have shown that introducing certain perturbation on feature statistics (\eg, mean and standard deviation) during training can enhance the cross-domain generalization ability. Existing methods typically conduct such perturbation by utilizing the feature statistics within a mini-batch, limiting their representation capability. Inspired by the domain generalization objective, we introduce a novel Adversarial Style Augmentation (ASA) method, which explores broader style spaces by generating more effective statistics perturbation via adversarial training. Specifically, we first search for the most sensitive direction and intensity for statistics perturbation by maximizing the task loss. By updating the model against the adversarial statistics perturbation during training, we allow the model to explore the worst-case domain and hence improve its generalization performance. To facilitate the application of ASA, we design a simple yet effective module, namely AdvStyle, which instantiates the ASA method in a plug-and-play manner. We justify the efficacy of AdvStyle on tasks of cross-domain classification and instance retrieval. It achieves higher mean accuracy and lower performance fluctuation. Especially, our method significantly outperforms its competitors on the PACS dataset under the single source generalization setting, \eg, boosting the classification accuracy from 61.2\% to 67.1\% with a ResNet50 backbone. Our code will be available at https://github.com/YBZh/AdvStyle.

  • 5 authors
·
Jan 29, 2023

One Perturbation is Enough: On Generating Universal Adversarial Perturbations against Vision-Language Pre-training Models

Vision-Language Pre-training (VLP) models have exhibited unprecedented capability in many applications by taking full advantage of the multimodal alignment. However, previous studies have shown they are vulnerable to maliciously crafted adversarial samples. Despite recent success, these methods are generally instance-specific and require generating perturbations for each input sample. In this paper, we reveal that VLP models are also vulnerable to the instance-agnostic universal adversarial perturbation (UAP). Specifically, we design a novel Contrastive-training Perturbation Generator with Cross-modal conditions (C-PGC) to achieve the attack. In light that the pivotal multimodal alignment is achieved through the advanced contrastive learning technique, we devise to turn this powerful weapon against themselves, i.e., employ a malicious version of contrastive learning to train the C-PGC based on our carefully crafted positive and negative image-text pairs for essentially destroying the alignment relationship learned by VLP models. Besides, C-PGC fully utilizes the characteristics of Vision-and-Language (V+L) scenarios by incorporating both unimodal and cross-modal information as effective guidance. Extensive experiments show that C-PGC successfully forces adversarial samples to move away from their original area in the VLP model's feature space, thus essentially enhancing attacks across various victim models and V+L tasks. The GitHub repository is available at https://github.com/ffhibnese/CPGC_VLP_Universal_Attacks.

  • 8 authors
·
Jun 8, 2024

Real-World Image Variation by Aligning Diffusion Inversion Chain

Recent diffusion model advancements have enabled high-fidelity images to be generated using text prompts. However, a domain gap exists between generated images and real-world images, which poses a challenge in generating high-quality variations of real-world images. Our investigation uncovers that this domain gap originates from a latents' distribution gap in different diffusion processes. To address this issue, we propose a novel inference pipeline called Real-world Image Variation by ALignment (RIVAL) that utilizes diffusion models to generate image variations from a single image exemplar. Our pipeline enhances the generation quality of image variations by aligning the image generation process to the source image's inversion chain. Specifically, we demonstrate that step-wise latent distribution alignment is essential for generating high-quality variations. To attain this, we design a cross-image self-attention injection for feature interaction and a step-wise distribution normalization to align the latent features. Incorporating these alignment processes into a diffusion model allows RIVAL to generate high-quality image variations without further parameter optimization. Our experimental results demonstrate that our proposed approach outperforms existing methods with respect to semantic-condition similarity and perceptual quality. Furthermore, this generalized inference pipeline can be easily applied to other diffusion-based generation tasks, such as image-conditioned text-to-image generation and example-based image inpainting.

  • 4 authors
·
May 30, 2023 1

All You Need is RAW: Defending Against Adversarial Attacks with Camera Image Pipelines

Existing neural networks for computer vision tasks are vulnerable to adversarial attacks: adding imperceptible perturbations to the input images can fool these methods to make a false prediction on an image that was correctly predicted without the perturbation. Various defense methods have proposed image-to-image mapping methods, either including these perturbations in the training process or removing them in a preprocessing denoising step. In doing so, existing methods often ignore that the natural RGB images in today's datasets are not captured but, in fact, recovered from RAW color filter array captures that are subject to various degradations in the capture. In this work, we exploit this RAW data distribution as an empirical prior for adversarial defense. Specifically, we proposed a model-agnostic adversarial defensive method, which maps the input RGB images to Bayer RAW space and back to output RGB using a learned camera image signal processing (ISP) pipeline to eliminate potential adversarial patterns. The proposed method acts as an off-the-shelf preprocessing module and, unlike model-specific adversarial training methods, does not require adversarial images to train. As a result, the method generalizes to unseen tasks without additional retraining. Experiments on large-scale datasets (e.g., ImageNet, COCO) for different vision tasks (e.g., classification, semantic segmentation, object detection) validate that the method significantly outperforms existing methods across task domains.

  • 3 authors
·
Dec 16, 2021

DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection

Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.

  • 5 authors
·
Jan 14

Domain Adaptive Few-Shot Open-Set Learning

Few-shot learning has made impressive strides in addressing the crucial challenges of recognizing unknown samples from novel classes in target query sets and managing visual shifts between domains. However, existing techniques fall short when it comes to identifying target outliers under domain shifts by learning to reject pseudo-outliers from the source domain, resulting in an incomplete solution to both problems. To address these challenges comprehensively, we propose a novel approach called Domain Adaptive Few-Shot Open Set Recognition (DA-FSOS) and introduce a meta-learning-based architecture named DAFOSNET. During training, our model learns a shared and discriminative embedding space while creating a pseudo open-space decision boundary, given a fully-supervised source domain and a label-disjoint few-shot target domain. To enhance data density, we use a pair of conditional adversarial networks with tunable noise variances to augment both domains closed and pseudo-open spaces. Furthermore, we propose a domain-specific batch-normalized class prototypes alignment strategy to align both domains globally while ensuring class-discriminativeness through novel metric objectives. Our training approach ensures that DAFOS-NET can generalize well to new scenarios in the target domain. We present three benchmarks for DA-FSOS based on the Office-Home, mini-ImageNet/CUB, and DomainNet datasets and demonstrate the efficacy of DAFOS-NET through extensive experimentation

  • 6 authors
·
Sep 22, 2023

A likelihood approach to nonparametric estimation of a singular distribution using deep generative models

We investigate statistical properties of a likelihood approach to nonparametric estimation of a singular distribution using deep generative models. More specifically, a deep generative model is used to model high-dimensional data that are assumed to concentrate around some low-dimensional structure. Estimating the distribution supported on this low-dimensional structure, such as a low-dimensional manifold, is challenging due to its singularity with respect to the Lebesgue measure in the ambient space. In the considered model, a usual likelihood approach can fail to estimate the target distribution consistently due to the singularity. We prove that a novel and effective solution exists by perturbing the data with an instance noise, which leads to consistent estimation of the underlying distribution with desirable convergence rates. We also characterize the class of distributions that can be efficiently estimated via deep generative models. This class is sufficiently general to contain various structured distributions such as product distributions, classically smooth distributions and distributions supported on a low-dimensional manifold. Our analysis provides some insights on how deep generative models can avoid the curse of dimensionality for nonparametric distribution estimation. We conduct a thorough simulation study and real data analysis to empirically demonstrate that the proposed data perturbation technique improves the estimation performance significantly.

  • 4 authors
·
May 9, 2021

A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1

Despite promising performance on open-source large vision-language models (LVLMs), transfer-based targeted attacks often fail against black-box commercial LVLMs. Analyzing failed adversarial perturbations reveals that the learned perturbations typically originate from a uniform distribution and lack clear semantic details, resulting in unintended responses. This critical absence of semantic information leads commercial LVLMs to either ignore the perturbation entirely or misinterpret its embedded semantics, thereby causing the attack to fail. To overcome these issues, we notice that identifying core semantic objects is a key objective for models trained with various datasets and methodologies. This insight motivates our approach that refines semantic clarity by encoding explicit semantic details within local regions, thus ensuring interoperability and capturing finer-grained features, and by concentrating modifications on semantically rich areas rather than applying them uniformly. To achieve this, we propose a simple yet highly effective solution: at each optimization step, the adversarial image is cropped randomly by a controlled aspect ratio and scale, resized, and then aligned with the target image in the embedding space. Experimental results confirm our hypothesis. Our adversarial examples crafted with local-aggregated perturbations focused on crucial regions exhibit surprisingly good transferability to commercial LVLMs, including GPT-4.5, GPT-4o, Gemini-2.0-flash, Claude-3.5-sonnet, Claude-3.7-sonnet, and even reasoning models like o1, Claude-3.7-thinking and Gemini-2.0-flash-thinking. Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods. Our optimized adversarial examples under different configurations and training code are available at https://github.com/VILA-Lab/M-Attack.

  • 5 authors
·
Mar 13 2

Set-level Guidance Attack: Boosting Adversarial Transferability of Vision-Language Pre-training Models

Vision-language pre-training (VLP) models have shown vulnerability to adversarial examples in multimodal tasks. Furthermore, malicious adversaries can be deliberately transferred to attack other black-box models. However, existing work has mainly focused on investigating white-box attacks. In this paper, we present the first study to investigate the adversarial transferability of recent VLP models. We observe that existing methods exhibit much lower transferability, compared to the strong attack performance in white-box settings. The transferability degradation is partly caused by the under-utilization of cross-modal interactions. Particularly, unlike unimodal learning, VLP models rely heavily on cross-modal interactions and the multimodal alignments are many-to-many, e.g., an image can be described in various natural languages. To this end, we propose a highly transferable Set-level Guidance Attack (SGA) that thoroughly leverages modality interactions and incorporates alignment-preserving augmentation with cross-modal guidance. Experimental results demonstrate that SGA could generate adversarial examples that can strongly transfer across different VLP models on multiple downstream vision-language tasks. On image-text retrieval, SGA significantly enhances the attack success rate for transfer attacks from ALBEF to TCL by a large margin (at least 9.78% and up to 30.21%), compared to the state-of-the-art.

  • 6 authors
·
Jul 26, 2023

Aligning Text to Image in Diffusion Models is Easier Than You Think

While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Although many approaches have attempted to address this issue by fine-tuning models using various reward models, etc., we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages both positive and negative pairs. To achieve this efficiently even with pretrained models, we introduce a lightweight contrastive fine tuning strategy called SoftREPA that uses soft text tokens. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.

  • 4 authors
·
Mar 11

Dataset Distillation with Neural Characteristic Function: A Minmax Perspective

Dataset distillation has emerged as a powerful approach for reducing data requirements in deep learning. Among various methods, distribution matching-based approaches stand out for their balance of computational efficiency and strong performance. However, existing distance metrics used in distribution matching often fail to accurately capture distributional differences, leading to unreliable measures of discrepancy. In this paper, we reformulate dataset distillation as a minmax optimization problem and introduce Neural Characteristic Function Discrepancy (NCFD), a comprehensive and theoretically grounded metric for measuring distributional differences. NCFD leverages the Characteristic Function (CF) to encapsulate full distributional information, employing a neural network to optimize the sampling strategy for the CF's frequency arguments, thereby maximizing the discrepancy to enhance distance estimation. Simultaneously, we minimize the difference between real and synthetic data under this optimized NCFD measure. Our approach, termed Neural Characteristic Function Matching (), inherently aligns the phase and amplitude of neural features in the complex plane for both real and synthetic data, achieving a balance between realism and diversity in synthetic samples. Experiments demonstrate that our method achieves significant performance gains over state-of-the-art methods on both low- and high-resolution datasets. Notably, we achieve a 20.5\% accuracy boost on ImageSquawk. Our method also reduces GPU memory usage by over 300times and achieves 20times faster processing speeds compared to state-of-the-art methods. To the best of our knowledge, this is the first work to achieve lossless compression of CIFAR-100 on a single NVIDIA 2080 Ti GPU using only 2.3 GB of memory.

  • 7 authors
·
Feb 27

The Hitchhiker's Guide to Human Alignment with *PO

With the growing utilization of large language models (LLMs) across domains, alignment towards human preferences has become one of the most critical aspects of training models. At the forefront of state-of-the-art human alignment methods are preference optimization methods (*PO). However, prior research has often concentrated on identifying the best-performing method, typically involving a grid search over hyperparameters, which can be impractical for general practitioners. In this paper, we aim to identify the algorithm that, while being performant, is simultaneously more robust to varying hyperparameters, thereby increasing the likelihood of achieving better results. We focus on a realistic out-of-distribution (OOD) scenario that mirrors real-world applications of human alignment, offering practical insights into the strengths and weaknesses of these methods. Furthermore, to better understand the shortcomings of generations from the different methods, we analyze the model generations through the lens of KL divergence of the SFT model and the response length statistics. Our analysis reveals that the widely adopted DPO method consistently produces lengthy responses of inferior quality that are very close to the SFT responses. Motivated by these findings, we propose an embarrassingly simple extension to the DPO algorithm, LN-DPO, resulting in more concise responses without sacrificing quality compared to the policy obtained by vanilla DPO.

  • 7 authors
·
Jul 21, 2024

Tradeoffs Between Alignment and Helpfulness in Language Models with Representation Engineering

Language model alignment has become an important component of AI safety, allowing safe interactions between humans and language models, by enhancing desired behaviors and inhibiting undesired ones. It is often done by tuning the model or inserting preset aligning prompts. Recently, representation engineering, a method which alters the model's behavior via changing its representations post-training, was shown to be effective in aligning LLMs (Zou et al., 2023a). Representation engineering yields gains in alignment oriented tasks such as resistance to adversarial attacks and reduction of social biases, but was also shown to cause a decrease in the ability of the model to perform basic tasks. In this paper we study the tradeoff between the increase in alignment and decrease in helpfulness of the model. We propose a theoretical framework which provides bounds for these two quantities, and demonstrate their relevance empirically. First, we find that under the conditions of our framework, alignment can be guaranteed with representation engineering, and at the same time that helpfulness is harmed in the process. Second, we show that helpfulness is harmed quadratically with the norm of the representation engineering vector, while the alignment increases linearly with it, indicating a regime in which it is efficient to use representation engineering. We validate our findings empirically, and chart the boundaries to the usefulness of representation engineering for alignment.

  • 6 authors
·
Jan 29, 2024

Spectrum Tuning: Post-Training for Distributional Coverage and In-Context Steerability

Language model post-training has enhanced instruction-following and performance on many downstream tasks, but also comes with an often-overlooked cost on tasks with many possible valid answers. We characterize three desiderata for conditional distributional modeling: in-context steerability, valid output space coverage, and distributional alignment, and document across three model families how current post-training can reduce these properties. In particular, we disambiguate between two kinds of in-context learning: ICL for eliciting existing underlying knowledge or capabilities, and in-context steerability, where a model must use in-context information to override its priors and steer to a novel data generating distribution. To better evaluate and improve these desiderata, we introduce Spectrum Suite, a large-scale resource compiled from >40 data sources and spanning >90 tasks requiring models to steer to and match diverse distributions ranging from varied human preferences to numerical distributions and more. We find that while current post-training techniques help elicit underlying capabilities and knowledge, they hurt models' ability to flexibly steer in-context. To mitigate these issues, we propose Spectrum Tuning, a post-training method using Spectrum Suite to improve steerability and distributional coverage. We find that Spectrum Tuning often improves over pretrained models and their instruction-tuned counterparts, enhancing steerability, spanning more of the output space, and improving distributional alignment on held-out datasets.

  • 8 authors
·
Oct 7

Dynamic Gradient Alignment for Online Data Mixing

The composition of training data mixtures is critical for effectively training large language models (LLMs), as it directly impacts their performance on downstream tasks. Our goal is to identify an optimal data mixture to specialize an LLM for a specific task with access to only a few examples. Traditional approaches to this problem include ad-hoc reweighting methods, importance sampling, and gradient alignment techniques. This paper focuses on gradient alignment and introduces Dynamic Gradient Alignment (DGA), a scalable online gradient alignment algorithm. DGA dynamically estimates the pre-training data mixture on which the models' gradients align as well as possible with those of the model on the specific task. DGA is the first gradient alignment approach that incurs minimal overhead compared to standard pre-training and outputs a competitive model, eliminating the need for retraining the model. Experimentally, we demonstrate significant improvements over importance sampling in two key scenarios: (i) when the pre-training set is small and importance sampling overfits due to limited data; and (ii) when there is insufficient specialized data, trapping importance sampling on narrow pockets of data. Our findings underscore the effectiveness of gradient alignment methods in optimizing training data mixtures, particularly in data-constrained environments, and offer a practical solution for enhancing LLM performance on specific tasks with limited data availability.

  • 3 authors
·
Oct 3, 2024

I See Dead People: Gray-Box Adversarial Attack on Image-To-Text Models

Modern image-to-text systems typically adopt the encoder-decoder framework, which comprises two main components: an image encoder, responsible for extracting image features, and a transformer-based decoder, used for generating captions. Taking inspiration from the analysis of neural networks' robustness against adversarial perturbations, we propose a novel gray-box algorithm for creating adversarial examples in image-to-text models. Unlike image classification tasks that have a finite set of class labels, finding visually similar adversarial examples in an image-to-text task poses greater challenges because the captioning system allows for a virtually infinite space of possible captions. In this paper, we present a gray-box adversarial attack on image-to-text, both untargeted and targeted. We formulate the process of discovering adversarial perturbations as an optimization problem that uses only the image-encoder component, meaning the proposed attack is language-model agnostic. Through experiments conducted on the ViT-GPT2 model, which is the most-used image-to-text model in Hugging Face, and the Flickr30k dataset, we demonstrate that our proposed attack successfully generates visually similar adversarial examples, both with untargeted and targeted captions. Notably, our attack operates in a gray-box manner, requiring no knowledge about the decoder module. We also show that our attacks fool the popular open-source platform Hugging Face.

  • 2 authors
·
Jun 13, 2023

ConR: Contrastive Regularizer for Deep Imbalanced Regression

Imbalanced distributions are ubiquitous in real-world data. They create constraints on Deep Neural Networks to represent the minority labels and avoid bias towards majority labels. The extensive body of imbalanced approaches address categorical label spaces but fail to effectively extend to regression problems where the label space is continuous. Local and global correlations among continuous labels provide valuable insights towards effectively modelling relationships in feature space. In this work, we propose ConR, a contrastive regularizer that models global and local label similarities in feature space and prevents the features of minority samples from being collapsed into their majority neighbours. ConR discerns the disagreements between the label space and feature space and imposes a penalty on these disagreements. ConR addresses the continuous nature of label space with two main strategies in a contrastive manner: incorrect proximities are penalized proportionate to the label similarities and the correct ones are encouraged to model local similarities. ConR consolidates essential considerations into a generic, easy-to-integrate, and efficient method that effectively addresses deep imbalanced regression. Moreover, ConR is orthogonal to existing approaches and smoothly extends to uni- and multi-dimensional label spaces. Our comprehensive experiments show that ConR significantly boosts the performance of all the state-of-the-art methods on four large-scale deep imbalanced regression benchmarks. Our code is publicly available in https://github.com/BorealisAI/ConR.

  • 3 authors
·
Sep 12, 2023

Negative Token Merging: Image-based Adversarial Feature Guidance

Text-based adversarial guidance using a negative prompt has emerged as a widely adopted approach to push the output features away from undesired concepts. While useful, performing adversarial guidance using text alone can be insufficient to capture complex visual concepts and avoid undesired visual elements like copyrighted characters. In this paper, for the first time we explore an alternate modality in this direction by performing adversarial guidance directly using visual features from a reference image or other images in a batch. In particular, we introduce negative token merging (NegToMe), a simple but effective training-free approach which performs adversarial guidance by selectively pushing apart matching semantic features (between reference and output generation) during the reverse diffusion process. When used w.r.t. other images in the same batch, we observe that NegToMe significantly increases output diversity (racial, gender, visual) without sacrificing output image quality. Similarly, when used w.r.t. a reference copyrighted asset, NegToMe helps reduce visual similarity with copyrighted content by 34.57%. NegToMe is simple to implement using just few-lines of code, uses only marginally higher (<4%) inference times and generalizes to different diffusion architectures like Flux, which do not natively support the use of a separate negative prompt. Code is available at https://negtome.github.io

  • 10 authors
·
Dec 2, 2024 6

Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval

Text-to-image person retrieval aims to identify the target person based on a given textual description query. The primary challenge is to learn the mapping of visual and textual modalities into a common latent space. Prior works have attempted to address this challenge by leveraging separately pre-trained unimodal models to extract visual and textual features. However, these approaches lack the necessary underlying alignment capabilities required to match multimodal data effectively. Besides, these works use prior information to explore explicit part alignments, which may lead to the distortion of intra-modality information. To alleviate these issues, we present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework that learns relations between local visual-textual tokens and enhances global image-text matching without requiring additional prior supervision. Specifically, we first design an Implicit Relation Reasoning module in a masked language modeling paradigm. This achieves cross-modal interaction by integrating the visual cues into the textual tokens with a cross-modal multimodal interaction encoder. Secondly, to globally align the visual and textual embeddings, Similarity Distribution Matching is proposed to minimize the KL divergence between image-text similarity distributions and the normalized label matching distributions. The proposed method achieves new state-of-the-art results on all three public datasets, with a notable margin of about 3%-9% for Rank-1 accuracy compared to prior methods.

  • 2 authors
·
Mar 22, 2023

Watermarking Degrades Alignment in Language Models: Analysis and Mitigation

Watermarking techniques for large language models (LLMs) can significantly impact output quality, yet their effects on truthfulness, safety, and helpfulness remain critically underexamined. This paper presents a systematic analysis of how two popular watermarking approaches-Gumbel and KGW-affect these core alignment properties across four aligned LLMs. Our experiments reveal two distinct degradation patterns: guard attenuation, where enhanced helpfulness undermines model safety, and guard amplification, where excessive caution reduces model helpfulness. These patterns emerge from watermark-induced shifts in token distribution, surfacing the fundamental tension that exists between alignment objectives. To mitigate these degradations, we propose Alignment Resampling (AR), an inference-time sampling method that uses an external reward model to restore alignment. We establish a theoretical lower bound on the improvement in expected reward score as the sample size is increased and empirically demonstrate that sampling just 2-4 watermarked generations effectively recovers or surpasses baseline (unwatermarked) alignment scores. To overcome the limited response diversity of standard Gumbel watermarking, our modified implementation sacrifices strict distortion-freeness while maintaining robust detectability, ensuring compatibility with AR. Experimental results confirm that AR successfully recovers baseline alignment in both watermarking approaches, while maintaining strong watermark detectability. This work reveals the critical balance between watermark strength and model alignment, providing a simple inference-time solution to responsibly deploy watermarked LLMs in practice.

  • 3 authors
·
Jun 4 1

Generative Distribution Embeddings

Many real-world problems require reasoning across multiple scales, demanding models which operate not on single data points, but on entire distributions. We introduce generative distribution embeddings (GDE), a framework that lifts autoencoders to the space of distributions. In GDEs, an encoder acts on sets of samples, and the decoder is replaced by a generator which aims to match the input distribution. This framework enables learning representations of distributions by coupling conditional generative models with encoder networks which satisfy a criterion we call distributional invariance. We show that GDEs learn predictive sufficient statistics embedded in the Wasserstein space, such that latent GDE distances approximately recover the W_2 distance, and latent interpolation approximately recovers optimal transport trajectories for Gaussian and Gaussian mixture distributions. We systematically benchmark GDEs against existing approaches on synthetic datasets, demonstrating consistently stronger performance. We then apply GDEs to six key problems in computational biology: learning representations of cell populations from lineage-tracing data (150K cells), predicting perturbation effects on single-cell transcriptomes (1M cells), predicting perturbation effects on cellular phenotypes (20M single-cell images), modeling tissue-specific DNA methylation patterns (253M sequences), designing synthetic yeast promoters (34M sequences), and spatiotemporal modeling of viral protein sequences (1M sequences).

  • 5 authors
·
May 23

Is There a Better Source Distribution than Gaussian? Exploring Source Distributions for Image Flow Matching

Flow matching has emerged as a powerful generative modeling approach with flexible choices of source distribution. While Gaussian distributions are commonly used, the potential for better alternatives in high-dimensional data generation remains largely unexplored. In this paper, we propose a novel 2D simulation that captures high-dimensional geometric properties in an interpretable 2D setting, enabling us to analyze the learning dynamics of flow matching during training. Based on this analysis, we derive several key insights about flow matching behavior: (1) density approximation can paradoxically degrade performance due to mode discrepancy, (2) directional alignment suffers from path entanglement when overly concentrated, (3) Gaussian's omnidirectional coverage ensures robust learning, and (4) norm misalignment incurs substantial learning costs. Building on these insights, we propose a practical framework that combines norm-aligned training with directionally-pruned sampling. This approach maintains the robust omnidirectional supervision essential for stable flow learning, while eliminating initializations in data-sparse regions during inference. Importantly, our pruning strategy can be applied to any flow matching model trained with a Gaussian source, providing immediate performance gains without the need for retraining. Empirical evaluations demonstrate consistent improvements in both generation quality and sampling efficiency. Our findings provide practical insights and guidelines for source distribution design and introduce a readily applicable technique for improving existing flow matching models. Our code is available at https://github.com/kwanseokk/SourceFM.

  • 3 authors
·
Dec 19 1

UniGame: Turning a Unified Multimodal Model Into Its Own Adversary

Unified Multimodal Models (UMMs) have shown impressive performance in both understanding and generation with a single architecture. However, UMMs still exhibit a fundamental inconsistency: understanding favors compact embeddings, whereas generation favors reconstruction-rich representations. This structural trade-off produces misaligned decision boundaries, degraded cross-modal coherence, and heightened vulnerability under distributional and adversarial shifts. In this paper, we present UniGame, a self-adversarial post-training framework that directly targets the inconsistencies. By applying a lightweight perturber at the shared token interface, UniGame enables the generation branch to actively seek and challenge fragile understanding, turning the model itself into its own adversary. Experiments demonstrate that UniGame significantly improves the consistency (+4.6%). Moreover, it also achieves substantial improvements in understanding (+3.6%), generation (+0.02), out-of-distribution and adversarial robustness (+4.8% and +6.2% on NaturalBench and AdVQA). The framework is architecture-agnostic, introduces less than 1% additional parameters, and is complementary to existing post-training methods. These results position adversarial self-play as a general and effective principle for enhancing the coherence, stability, and unified competence of future multimodal foundation models. The official code is available at: https://github.com/AIFrontierLab/UniGame

  • 5 authors
·
Nov 24 2