new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

An Integrated AI-Enabled System Using One Class Twin Cross Learning (OCT-X) for Early Gastric Cancer Detection

Early detection of gastric cancer, a leading cause of cancer-related mortality worldwide, remains hampered by the limitations of current diagnostic technologies, leading to high rates of misdiagnosis and missed diagnoses. To address these challenges, we propose an integrated system that synergizes advanced hardware and software technologies to balance speed-accuracy. Our study introduces the One Class Twin Cross Learning (OCT-X) algorithm. Leveraging a novel fast double-threshold grid search strategy (FDT-GS) and a patch-based deep fully convolutional network, OCT-X maximizes diagnostic accuracy through real-time data processing and seamless lesion surveillance. The hardware component includes an all-in-one point-of-care testing (POCT) device with high-resolution imaging sensors, real-time data processing, and wireless connectivity, facilitated by the NI CompactDAQ and LabVIEW software. Our integrated system achieved an unprecedented diagnostic accuracy of 99.70%, significantly outperforming existing models by up to 4.47%, and demonstrated a 10% improvement in multirate adaptability. These findings underscore the potential of OCT-X as well as the integrated system in clinical diagnostics, offering a path toward more accurate, efficient, and less invasive early gastric cancer detection. Future research will explore broader applications, further advancing oncological diagnostics. Code is available at https://github.com/liu37972/Multirate-Location-on-OCT-X-Learning.git.

  • 12 authors
·
Mar 31, 2025

XOCT: Enhancing OCT to OCTA Translation via Cross-Dimensional Supervised Multi-Scale Feature Learning

Optical Coherence Tomography Angiography (OCTA) and its derived en-face projections provide high-resolution visualization of the retinal and choroidal vasculature, which is critical for the rapid and accurate diagnosis of retinal diseases. However, acquiring high-quality OCTA images is challenging due to motion sensitivity and the high costs associated with software modifications for conventional OCT devices. Moreover, current deep learning methods for OCT-to-OCTA translation often overlook the vascular differences across retinal layers and struggle to reconstruct the intricate, dense vascular details necessary for reliable diagnosis. To overcome these limitations, we propose XOCT, a novel deep learning framework that integrates Cross-Dimensional Supervision (CDS) with a Multi-Scale Feature Fusion (MSFF) network for layer-aware vascular reconstruction. Our CDS module leverages 2D layer-wise en-face projections, generated via segmentation-weighted z-axis averaging, as supervisory signals to compel the network to learn distinct representations for each retinal layer through fine-grained, targeted guidance. Meanwhile, the MSFF module enhances vessel delineation through multi-scale feature extraction combined with a channel reweighting strategy, effectively capturing vascular details at multiple spatial scales. Our experiments on the OCTA-500 dataset demonstrate XOCT's improvements, especially for the en-face projections which are significant for clinical evaluation of retinal pathologies, underscoring its potential to enhance OCTA accessibility, reliability, and diagnostic value for ophthalmic disease detection and monitoring. The code is available at https://github.com/uci-cbcl/XOCT.

  • 6 authors
·
Sep 9, 2025

Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision benchmarks. A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample. However, a recurring issue with this approach is the existence of trivial constant solutions. Most current methods avoid such solutions by careful implementation details. We propose an objective function that naturally avoids collapse by measuring the cross-correlation matrix between the outputs of two identical networks fed with distorted versions of a sample, and making it as close to the identity matrix as possible. This causes the embedding vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of these vectors. The method is called Barlow Twins, owing to neuroscientist H. Barlow's redundancy-reduction principle applied to a pair of identical networks. Barlow Twins does not require large batches nor asymmetry between the network twins such as a predictor network, gradient stopping, or a moving average on the weight updates. Intriguingly it benefits from very high-dimensional output vectors. Barlow Twins outperforms previous methods on ImageNet for semi-supervised classification in the low-data regime, and is on par with current state of the art for ImageNet classification with a linear classifier head, and for transfer tasks of classification and object detection.

  • 5 authors
·
Mar 4, 2021

KD-OCT: Efficient Knowledge Distillation for Clinical-Grade Retinal OCT Classification

Age-related macular degeneration (AMD) and choroidal neovascularization (CNV)-related conditions are leading causes of vision loss worldwide, with optical coherence tomography (OCT) serving as a cornerstone for early detection and management. However, deploying state-of-the-art deep learning models like ConvNeXtV2-Large in clinical settings is hindered by their computational demands. Therefore, it is desirable to develop efficient models that maintain high diagnostic performance while enabling real-time deployment. In this study, a novel knowledge distillation framework, termed KD-OCT, is proposed to compress a high-performance ConvNeXtV2-Large teacher model, enhanced with advanced augmentations, stochastic weight averaging, and focal loss, into a lightweight EfficientNet-B2 student for classifying normal, drusen, and CNV cases. KD-OCT employs real-time distillation with a combined loss balancing soft teacher knowledge transfer and hard ground-truth supervision. The effectiveness of the proposed method is evaluated on the Noor Eye Hospital (NEH) dataset using patient-level cross-validation. Experimental results demonstrate that KD-OCT outperforms comparable multi-scale or feature-fusion OCT classifiers in efficiency- accuracy balance, achieving near-teacher performance with substantial reductions in model size and inference time. Despite the compression, the student model exceeds most existing frameworks, facilitating edge deployment for AMD screening. Code is available at https://github.com/erfan-nourbakhsh/KD- OCT.

  • 3 authors
·
Dec 9, 2025 2

Guarding Barlow Twins Against Overfitting with Mixed Samples

Self-supervised Learning (SSL) aims to learn transferable feature representations for downstream applications without relying on labeled data. The Barlow Twins algorithm, renowned for its widespread adoption and straightforward implementation compared to its counterparts like contrastive learning methods, minimizes feature redundancy while maximizing invariance to common corruptions. Optimizing for the above objective forces the network to learn useful representations, while avoiding noisy or constant features, resulting in improved downstream task performance with limited adaptation. Despite Barlow Twins' proven effectiveness in pre-training, the underlying SSL objective can inadvertently cause feature overfitting due to the lack of strong interaction between the samples unlike the contrastive learning approaches. From our experiments, we observe that optimizing for the Barlow Twins objective doesn't necessarily guarantee sustained improvements in representation quality beyond a certain pre-training phase, and can potentially degrade downstream performance on some datasets. To address this challenge, we introduce Mixed Barlow Twins, which aims to improve sample interaction during Barlow Twins training via linearly interpolated samples. This results in an additional regularization term to the original Barlow Twins objective, assuming linear interpolation in the input space translates to linearly interpolated features in the feature space. Pre-training with this regularization effectively mitigates feature overfitting and further enhances the downstream performance on CIFAR-10, CIFAR-100, TinyImageNet, STL-10, and ImageNet datasets. The code and checkpoints are available at: https://github.com/wgcban/mix-bt.git

  • 3 authors
·
Dec 4, 2023

OCTCube-M: A 3D multimodal optical coherence tomography foundation model for retinal and systemic diseases with cross-cohort and cross-device validation

We present OCTCube-M, a 3D OCT-based multi-modal foundation model for jointly analyzing OCT and en face images. OCTCube-M first developed OCTCube, a 3D foundation model pre-trained on 26,685 3D OCT volumes encompassing 1.62 million 2D OCT images. It then exploits a novel multi-modal contrastive learning framework COEP to integrate other retinal imaging modalities, such as fundus autofluorescence and infrared retinal imaging, into OCTCube, efficiently extending it into multi-modal foundation models. OCTCube achieves best performance on predicting 8 retinal diseases, demonstrating strong generalizability on cross-cohort, cross-device and cross-modality prediction. OCTCube can also predict cross-organ nodule malignancy (CT) and low cardiac ejection fraction as well as systemic diseases, such as diabetes and hypertension, revealing its wide applicability beyond retinal diseases. We further develop OCTCube-IR using COEP with 26,685 OCT and IR image pairs. OCTCube-IR can accurately retrieve between OCT and IR images, allowing joint analysis between 3D and 2D retinal imaging modalities. Finally, we trained a tri-modal foundation model OCTCube-EF from 4 million 2D OCT images and 400K en face retinal images. OCTCube-EF attains the best performance on predicting the growth rate of geographic atrophy (GA) across datasets collected from 6 multi-center global trials conducted in 23 countries. This improvement is statistically equivalent to running a clinical trial with more than double the size of the original study. Our analysis based on another retrospective case study reveals OCTCube-EF's ability to avoid false positive Phase-III results according to its accurate treatment effect estimation on the Phase-II results. In sum, OCTCube-M is a 3D multi-modal foundation model framework that integrates OCT and other retinal imaging modalities revealing substantial diagnostic and prognostic benefits.

  • 12 authors
·
Aug 20, 2024

X-Cross: Dynamic Integration of Language Models for Cross-Domain Sequential Recommendation

As new products are emerging daily, recommendation systems are required to quickly adapt to possible new domains without needing extensive retraining. This work presents ``X-Cross'' -- a novel cross-domain sequential-recommendation model that recommends products in new domains by integrating several domain-specific language models; each model is fine-tuned with low-rank adapters (LoRA). Given a recommendation prompt, operating layer by layer, X-Cross dynamically refines the representation of each source language model by integrating knowledge from all other models. These refined representations are propagated from one layer to the next, leveraging the activations from each domain adapter to ensure domain-specific nuances are preserved while enabling adaptability across domains. Using Amazon datasets for sequential recommendation, X-Cross achieves performance comparable to a model that is fine-tuned with LoRA, while using only 25% of the additional parameters. In cross-domain tasks, such as adapting from Toys domain to Tools, Electronics or Sports, X-Cross demonstrates robust performance, while requiring about 50%-75% less fine-tuning data than LoRA to make fine-tuning effective. Furthermore, X-Cross achieves significant improvement in accuracy over alternative cross-domain baselines. Overall, X-Cross enables scalable and adaptive cross-domain recommendations, reducing computational overhead and providing an efficient solution for data-constrained environments.

  • 5 authors
·
Apr 29, 2025 3

Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning

Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples while preserving the knowledge of previously learned classes. Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially, prone to overfitting to the current session. Existing dynamic strategies require the expansion of the parameter space continually, leading to increased complexity. To address these challenges, we integrate the recently proposed selective state space model (SSM) into FSCIL. Concretely, we propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation. The dual design enables the model to maintain the robust features of base classes, while adaptively learning distinctive feature shifts for novel classes. Additionally, we develop a class-sensitive selective scan mechanism to guide dynamic adaptation. It minimizes the disruption to base-class representations caused by training on novel data, and meanwhile, forces the selective scan to perform in distinct patterns between base and novel classes. Experiments on miniImageNet, CUB-200, and CIFAR-100 demonstrate that our framework outperforms the existing state-of-the-art methods. The code is available at https://github.com/xiaojieli0903/Mamba-FSCIL.

  • 6 authors
·
Jul 8, 2024

RetFiner: A Vision-Language Refinement Scheme for Retinal Foundation Models

The rise of imaging techniques such as optical coherence tomography (OCT) and advances in deep learning (DL) have enabled clinicians and researchers to streamline retinal disease staging. A popular DL approach is self-supervised learning (SSL), where models learn from vast amounts of unlabeled data, avoiding costly annotation. SSL has allowed the development of foundation models (FMs), large models that can be used for a variety of downstream tasks. However, existing FMs for OCT, trained solely on image data, lack a comprehensive and robust semantic understanding of images, as evidenced by their downstream performance (especially for complex tasks), and thus require supervised fine-tuning (which may be unfeasible) to better adapt to specific applications and populations. To address this, we propose RetFiner, an SSL vision-language refinement scheme that improves the representations of existing FMs and enables their efficient and direct adaptation to specific populations for improved downstream performance. Our method uses a diverse set of training objectives which take advantage of the rich supervisory signal found in textual data. We tested RetFiner on the retinal FMs RETFound, UrFound, and VisionFM, showing significant improvements in linear probing performance on seven highly diverse OCT classification tasks, with an average increase of 5.8, 3.9, and 2.1 percentage points over their baselines, respectively. Our code and model weights are publicly available at https://github.com/ronnief1/RetFiner.

  • 4 authors
·
Jun 27, 2025 1

MetaCoCo: A New Few-Shot Classification Benchmark with Spurious Correlation

Out-of-distribution (OOD) problems in few-shot classification (FSC) occur when novel classes sampled from testing distributions differ from base classes drawn from training distributions, which considerably degrades the performance of deep learning models deployed in real-world applications. Recent studies suggest that the OOD problems in FSC mainly including: (a) cross-domain few-shot classification (CD-FSC) and (b) spurious-correlation few-shot classification (SC-FSC). Specifically, CD-FSC occurs when a classifier learns transferring knowledge from base classes drawn from seen training distributions but recognizes novel classes sampled from unseen testing distributions. In contrast, SC-FSC arises when a classifier relies on non-causal features (or contexts) that happen to be correlated with the labels (or concepts) in base classes but such relationships no longer hold during the model deployment. Despite CD-FSC has been extensively studied, SC-FSC remains understudied due to lack of the corresponding evaluation benchmarks. To this end, we present Meta Concept Context (MetaCoCo), a benchmark with spurious-correlation shifts collected from real-world scenarios. Moreover, to quantify the extent of spurious-correlation shifts of the presented MetaCoCo, we further propose a metric by using CLIP as a pre-trained vision-language model. Extensive experiments on the proposed benchmark are performed to evaluate the state-of-the-art methods in FSC, cross-domain shifts, and self-supervised learning. The experimental results show that the performance of the existing methods degrades significantly in the presence of spurious-correlation shifts. We open-source all codes of our benchmark and hope that the proposed MetaCoCo can facilitate future research on spurious-correlation shifts problems in FSC. The code is available at: https://github.com/remiMZ/MetaCoCo-ICLR24.

  • 4 authors
·
Apr 30, 2024

Chest X-ray Foundation Model with Global and Local Representations Integration

Chest X-ray (CXR) is the most frequently ordered imaging test, supporting diverse clinical tasks from thoracic disease detection to postoperative monitoring. However, task-specific classification models are limited in scope, require costly labeled data, and lack generalizability to out-of-distribution datasets. To address these challenges, we introduce CheXFound, a self-supervised vision foundation model that learns robust CXR representations and generalizes effectively across a wide range of downstream tasks. We pretrain CheXFound on a curated CXR-1M dataset, comprising over one million unique CXRs from publicly available sources. We propose a Global and Local Representations Integration (GLoRI) module for downstream adaptations, by incorporating disease-specific local features with global image features for enhanced performance in multilabel classification. Our experimental results show that CheXFound outperforms state-of-the-art models in classifying 40 disease findings across different prevalence levels on the CXR-LT 24 dataset and exhibits superior label efficiency on downstream tasks with limited training data. Additionally, CheXFound achieved significant improvements on new tasks with out-of-distribution datasets, including opportunistic cardiovascular disease risk estimation and mortality prediction. These results highlight CheXFound's strong generalization capabilities, enabling diverse adaptations with improved label efficiency. The project source code is publicly available at https://github.com/RPIDIAL/CheXFound.

  • 6 authors
·
Feb 7, 2025

Uni-X: Mitigating Modality Conflict with a Two-End-Separated Architecture for Unified Multimodal Models

Unified Multimodal Models (UMMs) built on shared autoregressive (AR) transformers are attractive for their architectural simplicity. However, we identify a critical limitation: when trained on multimodal inputs, modality-shared transformers suffer from severe gradient conflicts between vision and text, particularly in shallow and deep layers. We trace this issue to the fundamentally different low-level statistical properties of images and text, while noting that conflicts diminish in middle layers where representations become more abstract and semantically aligned. To overcome this challenge, we propose Uni-X, a two-end-separated, middle-shared architecture. Uni-X dedicates its initial and final layers to modality-specific processing, while maintaining shared parameters in the middle layers for high-level semantic fusion. This X-shaped design not only eliminates gradient conflicts at both ends but also further alleviates residual conflicts in the shared layers. Extensive experiments validate the effectiveness of Uni-X. Under identical training conditions, Uni-X achieves superior training efficiency compared to strong baselines. When scaled to 3B parameters with larger training data, Uni-X matches or surpasses 7B AR-based UMMs, achieving a GenEval score of 82 for image generation alongside strong performance in text and vision understanding tasks. These results establish Uni-X as a parameter-efficient and scalable foundation for future unified multimodal modeling. Our code is available at https://github.com/CURRENTF/Uni-X

  • 5 authors
·
Sep 29, 2025

CrossFi: A Cross Domain Wi-Fi Sensing Framework Based on Siamese Network

In recent years, Wi-Fi sensing has garnered significant attention due to its numerous benefits, such as privacy protection, low cost, and penetration ability. Extensive research has been conducted in this field, focusing on areas such as gesture recognition, people identification, and fall detection. However, many data-driven methods encounter challenges related to domain shift, where the model fails to perform well in environments different from the training data. One major factor contributing to this issue is the limited availability of Wi-Fi sensing datasets, which makes models learn excessive irrelevant information and over-fit to the training set. Unfortunately, collecting large-scale Wi-Fi sensing datasets across diverse scenarios is a challenging task. To address this problem, we propose CrossFi, a siamese network-based approach that excels in both in-domain scenario and cross-domain scenario, including few-shot, zero-shot scenarios, and even works in few-shot new-class scenario where testing set contains new categories. The core component of CrossFi is a sample-similarity calculation network called CSi-Net, which improves the structure of the siamese network by using an attention mechanism to capture similarity information, instead of simply calculating the distance or cosine similarity. Based on it, we develop an extra Weight-Net that can generate a template for each class, so that our CrossFi can work in different scenarios. Experimental results demonstrate that our CrossFi achieves state-of-the-art performance across various scenarios. In gesture recognition task, our CrossFi achieves an accuracy of 98.17% in in-domain scenario, 91.72% in one-shot cross-domain scenario, 64.81% in zero-shot cross-domain scenario, and 84.75% in one-shot new-class scenario. The code for our model is publicly available at https://github.com/RS2002/CrossFi.

  • 7 authors
·
Aug 20, 2024

OneEncoder: A Lightweight Framework for Progressive Alignment of Modalities

Cross-modal alignment Learning integrates information from different modalities like text, image, audio and video to create unified models. This approach develops shared representations and learns correlations between modalities, enabling applications such as visual question answering and audiovisual content analysis. Current techniques rely on large modality-specific encoders, necessitating fine-tuning or training from scratch on vast aligned datasets (e.g., text-image, text-audio, image-audio). This approach has limitations: (i) it is very expensive due to the need for training large encoders on extensive datasets, (ii) acquiring aligned large paired datasets is challenging, and (iii) adding new modalities requires retraining the entire framework to incorporate these modalities. To address these issues, we propose OneEncoder, a lightweight framework that progressively represents and aligns four modalities (image, text, audio, video). Initially, we train a lightweight Universal Projection module (UP) to align image and text modalities. Then, we freeze the pretrained UP and progressively align future modalities to those already aligned. OneEncoder operates efficiently and cost-effectively, even in scenarios where vast aligned datasets are unavailable, due to its lightweight design. Trained on small paired datasets, it shows strong performance in tasks like classification, querying, and visual question answering, surpassing methods that rely on large datasets and specialized encoders.

  • 3 authors
·
Sep 17, 2024

Point2RBox: Combine Knowledge from Synthetic Visual Patterns for End-to-end Oriented Object Detection with Single Point Supervision

With the rapidly increasing demand for oriented object detection (OOD), recent research involving weakly-supervised detectors for learning rotated box (RBox) from the horizontal box (HBox) has attracted more and more attention. In this paper, we explore a more challenging yet label-efficient setting, namely single point-supervised OOD, and present our approach called Point2RBox. Specifically, we propose to leverage two principles: 1) Synthetic pattern knowledge combination: By sampling around each labeled point on the image, we spread the object feature to synthetic visual patterns with known boxes to provide the knowledge for box regression. 2) Transform self-supervision: With a transformed input image (e.g. scaled/rotated), the output RBoxes are trained to follow the same transformation so that the network can perceive the relative size/rotation between objects. The detector is further enhanced by a few devised techniques to cope with peripheral issues, e.g. the anchor/layer assignment as the size of the object is not available in our point supervision setting. To our best knowledge, Point2RBox is the first end-to-end solution for point-supervised OOD. In particular, our method uses a lightweight paradigm, yet it achieves a competitive performance among point-supervised alternatives, 41.05%/27.62%/80.01% on DOTA/DIOR/HRSC datasets.

  • 7 authors
·
Nov 23, 2023

Uni4Eye: Unified 2D and 3D Self-supervised Pre-training via Masked Image Modeling Transformer for Ophthalmic Image Classification

A large-scale labeled dataset is a key factor for the success of supervised deep learning in computer vision. However, a limited number of annotated data is very common, especially in ophthalmic image analysis, since manual annotation is time-consuming and labor-intensive. Self-supervised learning (SSL) methods bring huge opportunities for better utilizing unlabeled data, as they do not need massive annotations. With an attempt to use as many as possible unlabeled ophthalmic images, it is necessary to break the dimension barrier, simultaneously making use of both 2D and 3D images. In this paper, we propose a universal self-supervised Transformer framework, named Uni4Eye, to discover the inherent image property and capture domain-specific feature embedding in ophthalmic images. Uni4Eye can serve as a global feature extractor, which builds its basis on a Masked Image Modeling task with a Vision Transformer (ViT) architecture. We employ a Unified Patch Embedding module to replace the origin patch embedding module in ViT for jointly processing both 2D and 3D input images. Besides, we design a dual-branch multitask decoder module to simultaneously perform two reconstruction tasks on the input image and its gradient map, delivering discriminative representations for better convergence. We evaluate the performance of our pre-trained Uni4Eye encoder by fine-tuning it on six downstream ophthalmic image classification tasks. The superiority of Uni4Eye is successfully established through comparisons to other state-of-the-art SSL pre-training methods.

  • 4 authors
·
Mar 9, 2022

X2I: Seamless Integration of Multimodal Understanding into Diffusion Transformer via Attention Distillation

Text-to-image (T2I) models are well known for their ability to produce highly realistic images, while multimodal large language models (MLLMs) are renowned for their proficiency in understanding and integrating multiple modalities. However, currently there is no straightforward and efficient framework to transfer the multimodal comprehension abilities of MLLMs to T2I models to enable them to understand multimodal inputs. In this paper, we propose the X2I framework, which endows Diffusion Transformer (DiT) models with the capability to comprehend various modalities, including multilingual text, screenshot documents, images, videos, and audio. X2I is trained using merely 100K English corpus with 160 GPU hours. Building on the DiT teacher model, we adopt an innovative distillation method to extract the inference capabilities of the teacher model and design a lightweight AlignNet structure to serve as an intermediate bridge. Compared to the teacher model, X2I shows a decrease in performance degradation of less than 1\% while gaining various multimodal understanding abilities, including multilingual to image, image to image, image-text to image, video to image, audio to image, and utilizing creative fusion to enhance imagery. Furthermore, it is applicable for LoRA training in the context of image-text to image generation, filling a void in the industry in this area. We further design a simple LightControl to enhance the fidelity of instructional image editing. Finally, extensive experiments demonstrate the effectiveness, efficiency, multifunctionality, and transferability of our X2I. The open-source code and checkpoints for X2I can be found at the following link: https://github.com/OPPO-Mente-Lab/X2I.

  • 6 authors
·
Mar 8, 2025

OLIVES Dataset: Ophthalmic Labels for Investigating Visual Eye Semantics

Clinical diagnosis of the eye is performed over multifarious data modalities including scalar clinical labels, vectorized biomarkers, two-dimensional fundus images, and three-dimensional Optical Coherence Tomography (OCT) scans. Clinical practitioners use all available data modalities for diagnosing and treating eye diseases like Diabetic Retinopathy (DR) or Diabetic Macular Edema (DME). Enabling usage of machine learning algorithms within the ophthalmic medical domain requires research into the relationships and interactions between all relevant data over a treatment period. Existing datasets are limited in that they neither provide data nor consider the explicit relationship modeling between the data modalities. In this paper, we introduce the Ophthalmic Labels for Investigating Visual Eye Semantics (OLIVES) dataset that addresses the above limitation. This is the first OCT and near-IR fundus dataset that includes clinical labels, biomarker labels, disease labels, and time-series patient treatment information from associated clinical trials. The dataset consists of 1268 near-IR fundus images each with at least 49 OCT scans, and 16 biomarkers, along with 4 clinical labels and a disease diagnosis of DR or DME. In total, there are 96 eyes' data averaged over a period of at least two years with each eye treated for an average of 66 weeks and 7 injections. We benchmark the utility of OLIVES dataset for ophthalmic data as well as provide benchmarks and concrete research directions for core and emerging machine learning paradigms within medical image analysis.

  • 6 authors
·
Sep 22, 2022

OCTolyzer: Fully automatic toolkit for segmentation and feature extracting in optical coherence tomography and scanning laser ophthalmoscopy data

Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) of the eye has become essential to ophthalmology and the emerging field of oculomics, thus requiring a need for transparent, reproducible, and rapid analysis of this data for clinical research and the wider research community. Here, we introduce OCTolyzer, the first open-source toolkit for retinochoroidal analysis in OCT/SLO data. It features two analysis suites for OCT and SLO data, facilitating deep learning-based anatomical segmentation and feature extraction of the cross-sectional retinal and choroidal layers and en face retinal vessels. We describe OCTolyzer and evaluate the reproducibility of its OCT choroid analysis. At the population level, metrics for choroid region thickness were highly reproducible, with a mean absolute error (MAE)/Pearson correlation for macular volume choroid thickness (CT) of 6.7mum/0.99, macular B-scan CT of 11.6mum/0.99, and peripapillary CT of 5.0mum/0.99. Macular choroid vascular index (CVI) also showed strong reproducibility, with MAE/Pearson for volume CVI yielding 0.0271/0.97 and B-scan CVI 0.0130/0.91. At the eye level, measurement noise for regional and vessel metrics was below 5% and 20% of the population's variability, respectively. Outliers were caused by poor-quality B-scans with thick choroids and invisible choroid-sclera boundary. Processing times on a laptop CPU were under three seconds for macular/peripapillary B-scans and 85 seconds for volume scans. OCTolyzer can convert OCT/SLO data into reproducible and clinically meaningful retinochoroidal features and will improve the standardisation of ocular measurements in OCT/SLO image analysis, requiring no specialised training or proprietary software to be used. OCTolyzer is freely available here: https://github.com/jaburke166/OCTolyzer.

  • 12 authors
·
Jul 19, 2024

Few-Shot Class-Incremental Learning via Training-Free Prototype Calibration

Real-world scenarios are usually accompanied by continuously appearing classes with scare labeled samples, which require the machine learning model to incrementally learn new classes and maintain the knowledge of base classes. In this Few-Shot Class-Incremental Learning (FSCIL) scenario, existing methods either introduce extra learnable components or rely on a frozen feature extractor to mitigate catastrophic forgetting and overfitting problems. However, we find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes. In other words, the strong discriminability of base classes distracts the classification of new classes. To figure out this intriguing phenomenon, we observe that although the feature extractor is only trained on base classes, it can surprisingly represent the semantic similarity between the base and unseen new classes. Building upon these analyses, we propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes by fusing the new prototypes (i.e., mean features of a class) with weighted base prototypes. In addition to standard benchmarks in FSCIL, TEEN demonstrates remarkable performance and consistent improvements over baseline methods in the few-shot learning scenario. Code is available at: https://github.com/wangkiw/TEEN

  • 5 authors
·
Dec 8, 2023

Dual-Encoders for Extreme Multi-Label Classification

Dual-encoder (DE) models are widely used in retrieval tasks, most commonly studied on open QA benchmarks that are often characterized by multi-class and limited training data. In contrast, their performance in multi-label and data-rich retrieval settings like extreme multi-label classification (XMC), remains under-explored. Current empirical evidence indicates that DE models fall significantly short on XMC benchmarks, where SOTA methods linearly scale the number of learnable parameters with the total number of classes (documents in the corpus) by employing per-class classification head. To this end, we first study and highlight that existing multi-label contrastive training losses are not appropriate for training DE models on XMC tasks. We propose decoupled softmax loss - a simple modification to the InfoNCE loss - that overcomes the limitations of existing contrastive losses. We further extend our loss design to a soft top-k operator-based loss which is tailored to optimize top-k prediction performance. When trained with our proposed loss functions, standard DE models alone can match or outperform SOTA methods by up to 2% at Precision@1 even on the largest XMC datasets while being 20x smaller in terms of the number of trainable parameters. This leads to more parameter-efficient and universally applicable solutions for retrieval tasks. Our code and models are publicly available at https://github.com/nilesh2797/dexml.

  • 6 authors
·
Oct 16, 2023

Boosting Novel Category Discovery Over Domains with Soft Contrastive Learning and All-in-One Classifier

Unsupervised domain adaptation (UDA) has proven to be highly effective in transferring knowledge from a label-rich source domain to a label-scarce target domain. However, the presence of additional novel categories in the target domain has led to the development of open-set domain adaptation (ODA) and universal domain adaptation (UNDA). Existing ODA and UNDA methods treat all novel categories as a single, unified unknown class and attempt to detect it during training. However, we found that domain variance can lead to more significant view-noise in unsupervised data augmentation, which affects the effectiveness of contrastive learning (CL) and causes the model to be overconfident in novel category discovery. To address these issues, a framework named Soft-contrastive All-in-one Network (SAN) is proposed for ODA and UNDA tasks. SAN includes a novel data-augmentation-based soft contrastive learning (SCL) loss to fine-tune the backbone for feature transfer and a more human-intuitive classifier to improve new class discovery capability. The SCL loss weakens the adverse effects of the data augmentation view-noise problem which is amplified in domain transfer tasks. The All-in-One (AIO) classifier overcomes the overconfidence problem of current mainstream closed-set and open-set classifiers. Visualization and ablation experiments demonstrate the effectiveness of the proposed innovations. Furthermore, extensive experiment results on ODA and UNDA show that SAN outperforms existing state-of-the-art methods.

  • 7 authors
·
Nov 21, 2022

xCoT: Cross-lingual Instruction Tuning for Cross-lingual Chain-of-Thought Reasoning

Chain-of-thought (CoT) has emerged as a powerful technique to elicit reasoning in large language models and improve a variety of downstream tasks. CoT mainly demonstrates excellent performance in English, but its usage in low-resource languages is constrained due to poor language generalization. To bridge the gap among different languages, we propose a cross-lingual instruction fine-tuning framework (xCOT) to transfer knowledge from high-resource languages to low-resource languages. Specifically, the multilingual instruction training data (xCOT-INSTRUCT) is created to encourage the semantic alignment of multiple languages. We introduce cross-lingual in-context few-shot learning (xICL)) to accelerate multilingual agreement in instruction tuning, where some fragments of source languages in examples are randomly substituted by their counterpart translations of target languages. During multilingual instruction tuning, we adopt the randomly online CoT strategy to enhance the multilingual reasoning ability of the large language model by first translating the query to another language and then answering in English. To further facilitate the language transfer, we leverage the high-resource CoT to supervise the training of low-resource languages with cross-lingual distillation. Experimental results on previous benchmarks demonstrate the superior performance of xCoT in reducing the gap among different languages, highlighting its potential to reduce the cross-lingual gap.

  • 11 authors
·
Jan 13, 2024

Robust Mean Teacher for Continual and Gradual Test-Time Adaptation

Since experiencing domain shifts during test-time is inevitable in practice, test-time adaption (TTA) continues to adapt the model after deployment. Recently, the area of continual and gradual test-time adaptation (TTA) emerged. In contrast to standard TTA, continual TTA considers not only a single domain shift, but a sequence of shifts. Gradual TTA further exploits the property that some shifts evolve gradually over time. Since in both settings long test sequences are present, error accumulation needs to be addressed for methods relying on self-training. In this work, we propose and show that in the setting of TTA, the symmetric cross-entropy is better suited as a consistency loss for mean teachers compared to the commonly used cross-entropy. This is justified by our analysis with respect to the (symmetric) cross-entropy's gradient properties. To pull the test feature space closer to the source domain, where the pre-trained model is well posed, contrastive learning is leveraged. Since applications differ in their requirements, we address several settings, including having source data available and the more challenging source-free setting. We demonstrate the effectiveness of our proposed method 'robust mean teacher' (RMT) on the continual and gradual corruption benchmarks CIFAR10C, CIFAR100C, and Imagenet-C. We further consider ImageNet-R and propose a new continual DomainNet-126 benchmark. State-of-the-art results are achieved on all benchmarks.

  • 3 authors
·
Nov 23, 2022

OneFormer: One Transformer to Rule Universal Image Segmentation

Universal Image Segmentation is not a new concept. Past attempts to unify image segmentation in the last decades include scene parsing, panoptic segmentation, and, more recently, new panoptic architectures. However, such panoptic architectures do not truly unify image segmentation because they need to be trained individually on the semantic, instance, or panoptic segmentation to achieve the best performance. Ideally, a truly universal framework should be trained only once and achieve SOTA performance across all three image segmentation tasks. To that end, we propose OneFormer, a universal image segmentation framework that unifies segmentation with a multi-task train-once design. We first propose a task-conditioned joint training strategy that enables training on ground truths of each domain (semantic, instance, and panoptic segmentation) within a single multi-task training process. Secondly, we introduce a task token to condition our model on the task at hand, making our model task-dynamic to support multi-task training and inference. Thirdly, we propose using a query-text contrastive loss during training to establish better inter-task and inter-class distinctions. Notably, our single OneFormer model outperforms specialized Mask2Former models across all three segmentation tasks on ADE20k, CityScapes, and COCO, despite the latter being trained on each of the three tasks individually with three times the resources. With new ConvNeXt and DiNAT backbones, we observe even more performance improvement. We believe OneFormer is a significant step towards making image segmentation more universal and accessible. To support further research, we open-source our code and models at https://github.com/SHI-Labs/OneFormer

  • 6 authors
·
Nov 10, 2022

Harvard Glaucoma Detection and Progression: A Multimodal Multitask Dataset and Generalization-Reinforced Semi-Supervised Learning

Glaucoma is the number one cause of irreversible blindness globally. A major challenge for accurate glaucoma detection and progression forecasting is the bottleneck of limited labeled patients with the state-of-the-art (SOTA) 3D retinal imaging data of optical coherence tomography (OCT). To address the data scarcity issue, this paper proposes two solutions. First, we develop a novel generalization-reinforced semi-supervised learning (SSL) model called pseudo supervisor to optimally utilize unlabeled data. Compared with SOTA models, the proposed pseudo supervisor optimizes the policy of predicting pseudo labels with unlabeled samples to improve empirical generalization. Our pseudo supervisor model is evaluated with two clinical tasks consisting of glaucoma detection and progression forecasting. The progression forecasting task is evaluated both unimodally and multimodally. Our pseudo supervisor model demonstrates superior performance than SOTA SSL comparison models. Moreover, our model also achieves the best results on the publicly available LAG fundus dataset. Second, we introduce the Harvard Glaucoma Detection and Progression (Harvard-GDP) Dataset, a multimodal multitask dataset that includes data from 1,000 patients with OCT imaging data, as well as labels for glaucoma detection and progression. This is the largest glaucoma detection dataset with 3D OCT imaging data and the first glaucoma progression forecasting dataset that is publicly available. Detailed sex and racial analysis are provided, which can be used by interested researchers for fairness learning studies. Our released dataset is benchmarked with several SOTA supervised CNN and transformer deep learning models. The dataset and code are made publicly available via https://ophai.hms.harvard.edu/datasets/harvard-gdp1000.

  • 5 authors
·
Aug 25, 2023

SMILe: Leveraging Submodular Mutual Information For Robust Few-Shot Object Detection

Confusion and forgetting of object classes have been challenges of prime interest in Few-Shot Object Detection (FSOD). To overcome these pitfalls in metric learning based FSOD techniques, we introduce a novel Submodular Mutual Information Learning (SMILe) framework which adopts combinatorial mutual information functions to enforce the creation of tighter and discriminative feature clusters in FSOD. Our proposed approach generalizes to several existing approaches in FSOD, agnostic of the backbone architecture demonstrating elevated performance gains. A paradigm shift from instance based objective functions to combinatorial objectives in SMILe naturally preserves the diversity within an object class resulting in reduced forgetting when subjected to few training examples. Furthermore, the application of mutual information between the already learnt (base) and newly added (novel) objects ensures sufficient separation between base and novel classes, minimizing the effect of class confusion. Experiments on popular FSOD benchmarks, PASCAL-VOC and MS-COCO show that our approach generalizes to State-of-the-Art (SoTA) approaches improving their novel class performance by up to 5.7% (3.3 mAP points) and 5.4% (2.6 mAP points) on the 10-shot setting of VOC (split 3) and 30-shot setting of COCO datasets respectively. Our experiments also demonstrate better retention of base class performance and up to 2x faster convergence over existing approaches agnostic of the underlying architecture.

  • 3 authors
·
Jul 2, 2024

Breast Cancer Diagnosis in Two-View Mammography Using End-to-End Trained EfficientNet-Based Convolutional Network

Some recent studies have described deep convolutional neural networks to diagnose breast cancer in mammograms with similar or even superior performance to that of human experts. One of the best techniques does two transfer learnings: the first uses a model trained on natural images to create a "patch classifier" that categorizes small subimages; the second uses the patch classifier to scan the whole mammogram and create the "single-view whole-image classifier". We propose to make a third transfer learning to obtain a "two-view classifier" to use the two mammographic views: bilateral craniocaudal and mediolateral oblique. We use EfficientNet as the basis of our model. We "end-to-end" train the entire system using CBIS-DDSM dataset. To ensure statistical robustness, we test our system twice using: (a) 5-fold cross validation; and (b) the original training/test division of the dataset. Our technique reached an AUC of 0.9344 using 5-fold cross validation (accuracy, sensitivity and specificity are 85.13% at the equal error rate point of ROC). Using the original dataset division, our technique achieved an AUC of 0.8483, as far as we know the highest reported AUC for this problem, although the subtle differences in the testing conditions of each work do not allow for an accurate comparison. The inference code and model are available at https://github.com/dpetrini/two-views-classifier

  • 6 authors
·
Oct 1, 2021

POA: Pre-training Once for Models of All Sizes

Large-scale self-supervised pre-training has paved the way for one foundation model to handle many different vision tasks. Most pre-training methodologies train a single model of a certain size at one time. Nevertheless, various computation or storage constraints in real-world scenarios require substantial efforts to develop a series of models with different sizes to deploy. Thus, in this study, we propose a novel tri-branch self-supervised training framework, termed as POA (Pre-training Once for All), to tackle this aforementioned issue. Our approach introduces an innovative elastic student branch into a modern self-distillation paradigm. At each pre-training step, we randomly sample a sub-network from the original student to form the elastic student and train all branches in a self-distilling fashion. Once pre-trained, POA allows the extraction of pre-trained models of diverse sizes for downstream tasks. Remarkably, the elastic student facilitates the simultaneous pre-training of multiple models with different sizes, which also acts as an additional ensemble of models of various sizes to enhance representation learning. Extensive experiments, including k-nearest neighbors, linear probing evaluation and assessments on multiple downstream tasks demonstrate the effectiveness and advantages of our POA. It achieves state-of-the-art performance using ViT, Swin Transformer and ResNet backbones, producing around a hundred models with different sizes through a single pre-training session. The code is available at: https://github.com/Qichuzyy/POA.

  • 10 authors
·
Aug 2, 2024 3

OTOv3: Automatic Architecture-Agnostic Neural Network Training and Compression from Structured Pruning to Erasing Operators

Compressing a predefined deep neural network (DNN) into a compact sub-network with competitive performance is crucial in the efficient machine learning realm. This topic spans various techniques, from structured pruning to neural architecture search, encompassing both pruning and erasing operators perspectives. Despite advancements, existing methods suffers from complex, multi-stage processes that demand substantial engineering and domain knowledge, limiting their broader applications. We introduce the third-generation Only-Train-Once (OTOv3), which first automatically trains and compresses a general DNN through pruning and erasing operations, creating a compact and competitive sub-network without the need of fine-tuning. OTOv3 simplifies and automates the training and compression process, minimizes the engineering efforts required from users. It offers key technological advancements: (i) automatic search space construction for general DNNs based on dependency graph analysis; (ii) Dual Half-Space Projected Gradient (DHSPG) and its enhanced version with hierarchical search (H2SPG) to reliably solve (hierarchical) structured sparsity problems and ensure sub-network validity; and (iii) automated sub-network construction using solutions from DHSPG/H2SPG and dependency graphs. Our empirical results demonstrate the efficacy of OTOv3 across various benchmarks in structured pruning and neural architecture search. OTOv3 produces sub-networks that match or exceed the state-of-the-arts. The source code will be available at https://github.com/tianyic/only_train_once.

  • 7 authors
·
Dec 14, 2023

Does Prior Data Matter? Exploring Joint Training in the Context of Few-Shot Class-Incremental Learning

Class-incremental learning (CIL) aims to adapt to continuously emerging new classes while preserving knowledge of previously learned ones. Few-shot class-incremental learning (FSCIL) presents a greater challenge that requires the model to learn new classes from only a limited number of samples per class. While incremental learning typically assumes restricted access to past data, it often remains available in many real-world scenarios. This raises a practical question: should one retrain the model on the full dataset (i.e., joint training), or continue updating it solely with new data? In CIL, joint training is considered an ideal benchmark that provides a reference for evaluating the trade-offs between performance and computational cost. However, in FSCIL, joint training becomes less reliable due to severe imbalance between base and incremental classes. This results in the absence of a practical baseline, making it unclear which strategy is preferable for practitioners. To this end, we revisit joint training in the context of FSCIL by incorporating imbalance mitigation techniques, and suggest a new imbalance-aware joint training benchmark for FSCIL. We then conduct extensive comparisons between this benchmark and FSCIL methods to analyze which approach is most suitable when prior data is accessible. Our analysis offers realistic insights and guidance for selecting training strategies in real-world FSCIL scenarios. Code is available at: https://github.com/shiwonkim/Joint_FSCIL

  • 4 authors
·
Mar 12, 2025

Few-shot Tuning of Foundation Models for Class-incremental Learning

For the first time, we explore few-shot tuning of vision foundation models for class-incremental learning. Unlike existing few-shot class incremental learning (FSCIL) methods, which train an encoder on a base session to ensure forward compatibility for future continual learning, foundation models are generally trained on large unlabelled data without such considerations. This renders prior methods from traditional FSCIL incompatible for FSCIL with the foundation model. To this end, we propose Consistency-guided Asynchronous Contrastive Tuning (CoACT), a new approach to continually tune foundation models for new classes in few-shot settings. CoACT comprises three components: (i) asynchronous contrastive tuning, which learns new classes by including LoRA modules in the pre-trained encoder, while enforcing consistency between two asynchronous encoders; (ii) controlled fine-tuning, which facilitates effective tuning of a subset of the foundation model; and (iii) consistency-guided incremental tuning, which enforces additional regularization during later sessions to reduce forgetting of the learned classes. We perform an extensive study on 16 diverse datasets and demonstrate the effectiveness of CoACT, outperforming the best baseline method by 2.47% on average and with up to 12.52% on individual datasets. Additionally, CoACT shows reduced forgetting and robustness in low-shot experiments. As an added bonus, CoACT shows up to 13.5% improvement in standard FSCIL over the current SOTA on benchmark evaluations. We make our code publicly available at https://github.com/ShuvenduRoy/CoACT-FSCIL.

  • 4 authors
·
May 26, 2024

Barlow-Swin: Toward a novel siamese-based segmentation architecture using Swin-Transformers

Medical image segmentation is a critical task in clinical workflows, particularly for the detection and delineation of pathological regions. While convolutional architectures like U-Net have become standard for such tasks, their limited receptive field restricts global context modeling. Recent efforts integrating transformers have addressed this, but often result in deep, computationally expensive models unsuitable for real-time use. In this work, we present a novel end-to-end lightweight architecture designed specifically for real-time binary medical image segmentation. Our model combines a Swin Transformer-like encoder with a U-Net-like decoder, connected via skip pathways to preserve spatial detail while capturing contextual information. Unlike existing designs such as Swin Transformer or U-Net, our architecture is significantly shallower and competitively efficient. To improve the encoder's ability to learn meaningful features without relying on large amounts of labeled data, we first train it using Barlow Twins, a self-supervised learning method that helps the model focus on important patterns by reducing unnecessary repetition in the learned features. After this pretraining, we fine-tune the entire model for our specific task. Experiments on benchmark binary segmentation tasks demonstrate that our model achieves competitive accuracy with substantially reduced parameter count and faster inference, positioning it as a practical alternative for deployment in real-time and resource-limited clinical environments. The code for our method is available at Github repository: https://github.com/mkianih/Barlow-Swin.

  • 5 authors
·
Sep 8, 2025

First Session Adaptation: A Strong Replay-Free Baseline for Class-Incremental Learning

In Class-Incremental Learning (CIL) an image classification system is exposed to new classes in each learning session and must be updated incrementally. Methods approaching this problem have updated both the classification head and the feature extractor body at each session of CIL. In this work, we develop a baseline method, First Session Adaptation (FSA), that sheds light on the efficacy of existing CIL approaches and allows us to assess the relative performance contributions from head and body adaption. FSA adapts a pre-trained neural network body only on the first learning session and fixes it thereafter; a head based on linear discriminant analysis (LDA), is then placed on top of the adapted body, allowing exact updates through CIL. FSA is replay-free i.e.~it does not memorize examples from previous sessions of continual learning. To empirically motivate FSA, we first consider a diverse selection of 22 image-classification datasets, evaluating different heads and body adaptation techniques in high/low-shot offline settings. We find that the LDA head performs well and supports CIL out-of-the-box. We also find that Featurewise Layer Modulation (FiLM) adapters are highly effective in the few-shot setting, and full-body adaption in the high-shot setting. Second, we empirically investigate various CIL settings including high-shot CIL and few-shot CIL, including settings that have previously been used in the literature. We show that FSA significantly improves over the state-of-the-art in 15 of the 16 settings considered. FSA with FiLM adapters is especially performant in the few-shot setting. These results indicate that current approaches to continuous body adaptation are not working as expected. Finally, we propose a measure that can be applied to a set of unlabelled inputs which is predictive of the benefits of body adaptation.

  • 5 authors
·
Mar 23, 2023

UrFound: Towards Universal Retinal Foundation Models via Knowledge-Guided Masked Modeling

Retinal foundation models aim to learn generalizable representations from diverse retinal images, facilitating label-efficient model adaptation across various ophthalmic tasks. Despite their success, current retinal foundation models are generally restricted to a single imaging modality, such as Color Fundus Photography (CFP) or Optical Coherence Tomography (OCT), limiting their versatility. Moreover, these models may struggle to fully leverage expert annotations and overlook the valuable domain knowledge essential for domain-specific representation learning. To overcome these limitations, we introduce UrFound, a retinal foundation model designed to learn universal representations from both multimodal retinal images and domain knowledge. UrFound is equipped with a modality-agnostic image encoder and accepts either CFP or OCT images as inputs. To integrate domain knowledge into representation learning, we encode expert annotation in text supervision and propose a knowledge-guided masked modeling strategy for model pre-training. It involves reconstructing randomly masked patches of retinal images while predicting masked text tokens conditioned on the corresponding retinal image. This approach aligns multimodal images and textual expert annotations within a unified latent space, facilitating generalizable and domain-specific representation learning. Experimental results demonstrate that UrFound exhibits strong generalization ability and data efficiency when adapting to various tasks in retinal image analysis. By training on ~180k retinal images, UrFound significantly outperforms the state-of-the-art retinal foundation model trained on up to 1.6 million unlabelled images across 8 public retinal datasets. Our code and data are available at https://github.com/yukkai/UrFound.

  • 8 authors
·
Aug 10, 2024

Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch and Beyond

This paper presents our work on the Light-R1 series, with models, data, and code all released. We first focus on training long COT models from scratch, specifically starting from models initially lacking long COT capabilities. Using a curriculum training recipe consisting of two-stage SFT and semi-on-policy DPO, we train our model Light-R1-32B from Qwen2.5-32B-Instruct, resulting in superior math performance compared to DeepSeek-R1-Distill-Qwen-32B. Despite being trained exclusively on math data, Light-R1-32B shows strong generalization across other domains. In the subsequent phase of this work, we highlight the significant benefit of the 3k dataset constructed for the second SFT stage on enhancing other models. By fine-tuning DeepSeek-R1-Distilled models using this dataset, we obtain new SOTA models in 7B and 14B, while the 32B model, Light-R1-32B-DS performed comparably to QwQ-32B and DeepSeek-R1. Furthermore, we extend our work by applying reinforcement learning, specifically GRPO, on long-COT models to further improve reasoning performance. We successfully train our final Light-R1-14B-DS with RL, achieving SOTA performance among 14B parameter models in math. With AIME24 & 25 scores of 74.0 and 60.2 respectively, Light-R1-14B-DS surpasses even many 32B models and DeepSeek-R1-Distill-Llama-70B. Its RL training also exhibits well expected behavior, showing simultaneous increase in response length and reward score. The Light-R1 series of work validates training long-COT models from scratch, showcases the art in SFT data and releases SOTA models from RL.

  • 14 authors
·
Mar 13, 2025 4

Towards General Purpose Medical AI: Continual Learning Medical Foundation Model

Inevitable domain and task discrepancies in real-world scenarios can impair the generalization performance of the pre-trained deep models for medical data. Therefore, we audaciously propose that we should build a general-purpose medical AI system that can be seamlessly adapted to downstream domains/tasks. Since the domain/task adaption procedures usually involve additional labeling work for the target data, designing a data-efficient adaption algorithm is desired to save the cost of transferring the learned knowledge. Our recent work found that vision-language models (VLMs) are efficient learners with extraordinary cross-domain ability. Therefore, in this work, we further explore the possibility of leveraging pre-trained VLMs as medical foundation models for building general-purpose medical AI, where we thoroughly investigate three machine-learning paradigms, i.e., domain/task-specialized learning, joint learning, and continual learning, for training the VLMs and evaluate their generalization performance on cross-domain and cross-task test sets. To alleviate the catastrophic forgetting during sequential training, we employ rehearsal learning and receive a sharp boost in terms of generalization capability. In a nutshell, our empirical evidence suggests that continual learning may be a practical and efficient learning paradigm for the medical foundation model. And we hope researchers can use our empirical evidence as basement to further explore the path toward medical foundation model.

  • 8 authors
·
Mar 12, 2023

Taming Generative Synthetic Data for X-ray Prohibited Item Detection

Training prohibited item detection models requires a large amount of X-ray security images, but collecting and annotating these images is time-consuming and laborious. To address data insufficiency, X-ray security image synthesis methods composite images to scale up datasets. However, previous methods primarily follow a two-stage pipeline, where they implement labor-intensive foreground extraction in the first stage and then composite images in the second stage. Such a pipeline introduces inevitable extra labor cost and is not efficient. In this paper, we propose a one-stage X-ray security image synthesis pipeline (Xsyn) based on text-to-image generation, which incorporates two effective strategies to improve the usability of synthetic images. The Cross-Attention Refinement (CAR) strategy leverages the cross-attention map from the diffusion model to refine the bounding box annotation. The Background Occlusion Modeling (BOM) strategy explicitly models background occlusion in the latent space to enhance imaging complexity. To the best of our knowledge, compared with previous methods, Xsyn is the first to achieve high-quality X-ray security image synthesis without extra labor cost. Experiments demonstrate that our method outperforms all previous methods with 1.2% mAP improvement, and the synthetic images generated by our method are beneficial to improve prohibited item detection performance across various X-ray security datasets and detectors. Code is available at https://github.com/pILLOW-1/Xsyn/.

  • 6 authors
·
Nov 19, 2025 2

URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics

Chain-of-thought (CoT) reasoning has been widely applied in the mathematical reasoning of Large Language Models (LLMs). Recently, the introduction of derivative process supervision on CoT trajectories has sparked discussions on enhancing scaling capabilities during test time, thereby boosting the potential of these models. However, in multimodal mathematical reasoning, the scarcity of high-quality CoT training data has hindered existing models from achieving high-precision CoT reasoning and has limited the realization of reasoning potential during test time. In this work, we propose a three-module synthesis strategy that integrates CoT distillation, trajectory-format rewriting, and format unification. It results in a high-quality CoT reasoning instruction fine-tuning dataset in multimodal mathematics, MMathCoT-1M. We comprehensively validate the state-of-the-art (SOTA) performance of the trained URSA-7B model on multiple multimodal mathematical benchmarks. For test-time scaling, we introduce a data synthesis strategy that automatically generates process annotation datasets, known as DualMath-1.1M, focusing on both interpretation and logic. By further training URSA-7B on DualMath-1.1M, we transition from CoT reasoning capabilities to robust supervision abilities. The trained URSA-RM-7B acts as a verifier, effectively enhancing the performance of URSA-7B at test time. URSA-RM-7B also demonstrates excellent out-of-distribution (OOD) verifying capabilities, showcasing its generalization. Model weights, training data and code will be open-sourced.

  • 8 authors
·
Jan 8, 2025 3

ScaleKD: Strong Vision Transformers Could Be Excellent Teachers

In this paper, we question if well pre-trained vision transformer (ViT) models could be used as teachers that exhibit scalable properties to advance cross architecture knowledge distillation (KD) research, in the context of using large-scale datasets for evaluation. To make this possible, our analysis underlines the importance of seeking effective strategies to align (1) feature computing paradigm differences, (2) model scale differences, and (3) knowledge density differences. By combining three coupled components namely cross attention projector, dual-view feature mimicking and teacher parameter perception tailored to address the above problems, we present a simple and effective KD method, called ScaleKD. Our method can train student backbones that span across a variety of convolutional neural network (CNN), multi-layer perceptron (MLP), and ViT architectures on image classification datasets, achieving state-of-the-art distillation performance. For instance, taking a well pre-trained Swin-L as the teacher model, our method gets 75.15%|82.03%|84.16%|78.63%|81.96%|83.93%|83.80%|85.53% top-1 accuracies for MobileNet-V1|ResNet-50|ConvNeXt-T|Mixer-S/16|Mixer-B/16|ViT-S/16|Swin-T|ViT-B/16 models trained on ImageNet-1K dataset from scratch, showing 3.05%|3.39%|2.02%|4.61%|5.52%|4.03%|2.62%|3.73% absolute gains to the individually trained counterparts. Intriguingly, when scaling up the size of teacher models or their pre-training datasets, our method showcases the desired scalable properties, bringing increasingly larger gains to student models. The student backbones trained by our method transfer well on downstream MS-COCO and ADE20K datasets. More importantly, our method could be used as a more efficient alternative to the time-intensive pre-training paradigm for any target student model if a strong pre-trained ViT is available, reducing the amount of viewed training samples up to 195x.

  • 4 authors
·
Nov 11, 2024

Twin-Merging: Dynamic Integration of Modular Expertise in Model Merging

In the era of large language models, model merging is a promising way to combine multiple task-specific models into a single multitask model without extra training. However, two challenges remain: (a) interference between different models and (b) heterogeneous data during testing. Traditional model merging methods often show significant performance gaps compared to fine-tuned models due to these issues. Additionally, a one-size-fits-all model lacks flexibility for diverse test data, leading to performance degradation. We show that both shared and exclusive task-specific knowledge are crucial for merging performance, but directly merging exclusive knowledge hinders overall performance. In view of this, we propose Twin-Merging, a method that encompasses two principal stages: (1) modularizing knowledge into shared and exclusive components, with compression to reduce redundancy and enhance efficiency; (2) dynamically merging shared and task-specific knowledge based on the input. This approach narrows the performance gap between merged and fine-tuned models and improves adaptability to heterogeneous data. Extensive experiments on 12 datasets for both discriminative and generative tasks demonstrate the effectiveness of our method, showing an average improvement of 28.34% in absolute normalized score for discriminative tasks and even surpassing the fine-tuned upper bound on the generative tasks. (Our implementation is available in https://github.com/LZY-the-boys/Twin-Mergin.)

  • 6 authors
·
Jun 16, 2024

X-LLM: Bootstrapping Advanced Large Language Models by Treating Multi-Modalities as Foreign Languages

Large language models (LLMs) have demonstrated remarkable language abilities. GPT-4, based on advanced LLMs, exhibits extraordinary multimodal capabilities beyond previous visual language models. We attribute this to the use of more advanced LLMs compared with previous multimodal models. Unfortunately, the model architecture and training strategies of GPT-4 are unknown. To endow LLMs with multimodal capabilities, we propose X-LLM, which converts Multi-modalities (images, speech, videos) into foreign languages using X2L interfaces and inputs them into a large Language model (ChatGLM). Specifically, X-LLM aligns multiple frozen single-modal encoders and a frozen LLM using X2L interfaces, where ``X'' denotes multi-modalities such as image, speech, and videos, and ``L'' denotes languages. X-LLM's training consists of three stages: (1) Converting Multimodal Information: The first stage trains each X2L interface to align with its respective single-modal encoder separately to convert multimodal information into languages. (2) Aligning X2L representations with the LLM: single-modal encoders are aligned with the LLM through X2L interfaces independently. (3) Integrating multiple modalities: all single-modal encoders are aligned with the LLM through X2L interfaces to integrate multimodal capabilities into the LLM. Our experiments show that X-LLM demonstrates impressive multimodel chat abilities, sometimes exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and yields a 84.5\% relative score compared with GPT-4 on a synthetic multimodal instruction-following dataset. And we also conduct quantitative tests on using LLM for ASR and multimodal ASR, hoping to promote the era of LLM-based speech recognition.

  • 7 authors
·
May 6, 2023 7

Multi-aspect Knowledge Distillation with Large Language Model

Recent advancements in deep learning have significantly improved performance on computer vision tasks. Previous image classification methods primarily modify model architectures or add features, and they optimize models using cross-entropy loss on class logits. Since they focus on classifying images with considering class labels, these methods may struggle to learn various aspects of classes (e.g., natural positions and shape changes). Rethinking the previous approach from a novel view, we propose a multi-aspect knowledge distillation method using Multimodal Large Language Models (MLLMs). Our approach involves: 1) querying Large Language Model with multi-aspect questions relevant to the knowledge we want to transfer to the model, 2) extracting corresponding logits from MLLM, and 3) expanding the model's output dimensions to distill these multi-aspect logits. We then apply cross-entropy loss to class logits and binary cross-entropy loss to multi-aspect logits. Through our method, the model can learn not only the knowledge about visual aspects but also the abstract and complex aspects that require a deeper understanding. We primarily apply our method to image classification, and to explore the potential for extending our model, we expand it to other tasks, such as object detection. In all experimental results, our method improves the performance of the baselines. Additionally, we analyze the effect of multi-aspect knowledge distillation. These results demonstrate that our method can transfer knowledge about various aspects to the model and the aspect knowledge can enhance model performance in computer vision tasks. This paper demonstrates the great potential of multi-aspect knowledge distillation, and we believe it offers a promising direction for future research in computer vision and beyond.

  • 4 authors
·
Jan 22, 2025

The Role of AI in Early Detection of Life-Threatening Diseases: A Retinal Imaging Perspective

Retinal imaging has emerged as a powerful, non-invasive modality for detecting and quantifying biomarkers of systemic diseases-ranging from diabetes and hypertension to Alzheimer's disease and cardiovascular disorders but current insights remain dispersed across platforms and specialties. Recent technological advances in optical coherence tomography (OCT/OCTA) and adaptive optics (AO) now deliver ultra-high-resolution scans (down to 5 {\mu}m ) with superior contrast and spatial integration, allowing early identification of microvascular abnormalities and neurodegenerative changes. At the same time, AI-driven and machine learning (ML) algorithms have revolutionized the analysis of large-scale retinal datasets, increasing sensitivity and specificity; for example, deep learning models achieve > 90 \% sensitivity for diabetic retinopathy and AUC = 0.89 for the prediction of cardiovascular risk from fundus photographs. The proliferation of mobile health technologies and telemedicine platforms further extends access, reduces costs, and facilitates community-based screening and longitudinal monitoring. Despite these breakthroughs, translation into routine practice is hindered by heterogeneous imaging protocols, limited external validation of AI models, and integration challenges within clinical workflows. In this review, we systematically synthesize the latest OCT/OCT and AO developments, AI/ML approaches, and mHealth/Tele-ophthalmology initiatives and quantify their diagnostic performance across disease domains. Finally, we propose a roadmap for multicenter protocol standardization, prospective validation trials, and seamless incorporation of retinal screening into primary and specialty care pathways-paving the way for precision prevention, early intervention, and ongoing treatment of life-threatening systemic diseases.

  • 3 authors
·
May 27, 2025

Generalized Decoding for Pixel, Image, and Language

We present X-Decoder, a generalized decoding model that can predict pixel-level segmentation and language tokens seamlessly. X-Decodert takes as input two types of queries: (i) generic non-semantic queries and (ii) semantic queries induced from text inputs, to decode different pixel-level and token-level outputs in the same semantic space. With such a novel design, X-Decoder is the first work that provides a unified way to support all types of image segmentation and a variety of vision-language (VL) tasks. Further, our design enables seamless interactions across tasks at different granularities and brings mutual benefits by learning a common and rich pixel-level visual-semantic understanding space, without any pseudo-labeling. After pretraining on a mixed set of a limited amount of segmentation data and millions of image-text pairs, X-Decoder exhibits strong transferability to a wide range of downstream tasks in both zero-shot and finetuning settings. Notably, it achieves (1) state-of-the-art results on open-vocabulary segmentation and referring segmentation on eight datasets; (2) better or competitive finetuned performance to other generalist and specialist models on segmentation and VL tasks; and (3) flexibility for efficient finetuning and novel task composition (e.g., referring captioning and image editing). Code, demo, video, and visualization are available at https://x-decoder-vl.github.io.

  • 14 authors
·
Dec 21, 2022 1

Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data

We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics.

HIT-TMG Lychee Team
·
Nov 16, 2025 4

FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction

As an important modeling paradigm in click-through rate (CTR) prediction, the Deep & Cross Network (DCN) and its derivative models have gained widespread recognition primarily due to their success in a trade-off between computational cost and performance. This paradigm employs a cross network to explicitly model feature interactions with linear growth, while leveraging deep neural networks (DNN) to implicitly capture higher-order feature interactions. However, these models still face several key limitations: (1) The performance of existing explicit feature interaction methods lags behind that of implicit DNN, resulting in overall model performance being dominated by the DNN; (2) While these models claim to capture high-order feature interactions, they often overlook potential noise within these interactions; (3) The learning process for different interaction network branches lacks appropriate supervision signals; and (4) The high-order feature interactions captured by these models are often implicit and non-interpretable due to their reliance on DNN. To address the identified limitations, this paper proposes a novel model, called Fusing Cross Network (FCN), along with two sub-networks: Linear Cross Network (LCN) and Exponential Cross Network (ECN). FCN explicitly captures feature interactions with both linear and exponential growth, eliminating the need to rely on implicit DNN. Moreover, we introduce the Self-Mask operation to filter noise layer by layer and reduce the number of parameters in the cross network by half. To effectively train these two cross networks, we propose a simple yet effective loss function called Tri-BCE, which provides tailored supervision signals for each network. We evaluate the effectiveness, efficiency, and interpretability of FCN on six benchmark datasets. Furthermore, by integrating LCN and ECN, FCN achieves a new state-of-the-art performance.

  • 6 authors
·
Jul 18, 2024

OTOV2: Automatic, Generic, User-Friendly

The existing model compression methods via structured pruning typically require complicated multi-stage procedures. Each individual stage necessitates numerous engineering efforts and domain-knowledge from the end-users which prevent their wider applications onto broader scenarios. We propose the second generation of Only-Train-Once (OTOv2), which first automatically trains and compresses a general DNN only once from scratch to produce a more compact model with competitive performance without fine-tuning. OTOv2 is automatic and pluggable into various deep learning applications, and requires almost minimal engineering efforts from the users. Methodologically, OTOv2 proposes two major improvements: (i) Autonomy: automatically exploits the dependency of general DNNs, partitions the trainable variables into Zero-Invariant Groups (ZIGs), and constructs the compressed model; and (ii) Dual Half-Space Projected Gradient (DHSPG): a novel optimizer to more reliably solve structured-sparsity problems. Numerically, we demonstrate the generality and autonomy of OTOv2 on a variety of model architectures such as VGG, ResNet, CARN, ConvNeXt, DenseNet and StackedUnets, the majority of which cannot be handled by other methods without extensive handcrafting efforts. Together with benchmark datasets including CIFAR10/100, DIV2K, Fashion-MNIST, SVNH and ImageNet, its effectiveness is validated by performing competitively or even better than the state-of-the-arts. The source code is available at https://github.com/tianyic/only_train_once.

  • 5 authors
·
Mar 13, 2023

Cut Your Losses in Large-Vocabulary Language Models

As language models grow ever larger, so do their vocabularies. This has shifted the memory footprint of LLMs during training disproportionately to one single layer: the cross-entropy in the loss computation. Cross-entropy builds up a logit matrix with entries for each pair of input tokens and vocabulary items and, for small models, consumes an order of magnitude more memory than the rest of the LLM combined. We propose Cut Cross-Entropy (CCE), a method that computes the cross-entropy loss without materializing the logits for all tokens into global memory. Rather, CCE only computes the logit for the correct token and evaluates the log-sum-exp over all logits on the fly. We implement a custom kernel that performs the matrix multiplications and the log-sum-exp reduction over the vocabulary in flash memory, making global memory consumption for the cross-entropy computation negligible. This has a dramatic effect. Taking the Gemma 2 (2B) model as an example, CCE reduces the memory footprint of the loss computation from 24 GB to 1 MB, and the total training-time memory consumption of the classifier head from 28 GB to 1 GB. To improve the throughput of CCE, we leverage the inherent sparsity of softmax and propose to skip elements of the gradient computation that have a negligible (i.e., below numerical precision) contribution to the gradient. Experiments demonstrate that the dramatic reduction in memory consumption is accomplished without sacrificing training speed or convergence.

  • 5 authors
·
Nov 13, 2024 4

Ovis2.5 Technical Report

We present Ovis2.5, a successor to Ovis2 designed for native-resolution visual perception and strong multimodal reasoning. Ovis2.5 integrates a native-resolution vision transformer that processes images at their native, variable resolutions, avoiding the degradation from fixed-resolution tiling and preserving both fine detail and global layout -- crucial for visually dense content like complex charts. To strengthen reasoning, we train the model to move beyond linear chain-of-thought and perform reflection -- including self-checking and revision. This advanced capability is exposed as an optional "thinking mode" at inference time, allowing users to trade latency for enhanced accuracy on difficult inputs. The model is trained via a comprehensive five-phase curriculum that progressively builds its skills. The process begins with foundational visual and multimodal pretraining, advances through large-scale instruction tuning, and culminates in alignment and reasoning enhancement using DPO and GRPO. To scale these upgrades efficiently, we employ multimodal data packing and hybrid parallelism, yielding a significant end-to-end speedup. We release two open-source models: Ovis2.5-9B and Ovis2.5-2B. The latter continues the "small model, big performance" philosophy of Ovis2, making it ideal for resource-constrained, on-device scenarios. On the OpenCompass multimodal leaderboard, Ovis2.5-9B averages 78.3, marking a substantial improvement over its predecessor, Ovis2-8B, and achieving state-of-the-art results among open-source MLLMs in the sub-40B parameter range; Ovis2.5-2B scores 73.9, establishing SOTA for its size. Beyond aggregate scores, Ovis2.5 achieves leading results on STEM benchmarks, exhibits strong capabilities on grounding and video tasks, and achieves open-source SOTA at its scale for complex chart analysis.

  • 42 authors
·
Aug 15, 2025 4

Alt-MoE:A Scalable Framework for Bidirectional Multimodal Alignment and Efficient Knowledge Integration

Multimodal learning has advanced significantly by aligning different modalities within shared latent spaces, enabling tasks such as cross-modal understanding and generation. Current alignment strategies in multimodal learning primarily include direct alignment using pre-trained or unified encoders and single-directional alignment via modality-specific connectors. Direct alignment struggles to fully leverage rich intra-modal knowledge, often requiring extensive training data to achieve cross-modal representation. Meanwhile, single-directional alignment methods, despite leveraging pre-trained knowledge, restrict task adaptability and hinder the model's ability to capture bidirectional relationships, leading to incomplete knowledge fusion and underutilization of complementary modality-specific information. To address these limitations, we introduce Alt-MoE, a scalable multimodal alignment framework that employs a mixture of experts (MoE) model as a multi-directional connector across modalities. By utilizing a sequential alternating one-way alignment strategy, Alt-MoE iteratively refines the model to achieve bidirectional alignment. Alt-MoE operates in latent space, enabling efficient vector pre-storage and real-time retrieval via MoE, optimizing large-scale data processing. Extensive empirical studies demonstrate that Alt-MoE achieves competitive performance on cross-modal retrieval and visual question answering by integrating diverse modality-specific knowledge, generalizing to unseen data, and easily scaling to new tasks and modalities through dynamic adjustment of MoE capacity and expert activation.

  • 11 authors
·
Sep 9, 2024

Exploring Multimodal Large Language Models for Radiology Report Error-checking

This paper proposes one of the first clinical applications of multimodal large language models (LLMs) as an assistant for radiologists to check errors in their reports. We created an evaluation dataset from two real-world radiology datasets (MIMIC-CXR and IU-Xray), with 1,000 subsampled reports each. A subset of original reports was modified to contain synthetic errors by introducing various type of mistakes. The evaluation contained two difficulty levels: SIMPLE for binary error-checking and COMPLEX for identifying error types. LLaVA (Large Language and Visual Assistant) variant models, including our instruction-tuned model, were used for the evaluation. Additionally, a domain expert evaluation was conducted on a small test set. At the SIMPLE level, the LLaVA v1.5 model outperformed other publicly available models. Instruction tuning significantly enhanced performance by 47.4% and 25.4% on MIMIC-CXR and IU-Xray data, respectively. The model also surpassed the domain experts accuracy in the MIMIC-CXR dataset by 1.67%. Notably, among the subsets (N=21) of the test set where a clinician did not achieve the correct conclusion, the LLaVA ensemble mode correctly identified 71.4% of these cases. This study marks a promising step toward utilizing multi-modal LLMs to enhance diagnostic accuracy in radiology. The ensemble model demonstrated comparable performance to clinicians, even capturing errors overlooked by humans. Nevertheless, future work is needed to improve the model ability to identify the types of inconsistency.

  • 10 authors
·
Dec 20, 2023

XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models

Omni-modal large language models (OLLMs) aim to unify audio, vision, and text understanding within a single framework. While existing benchmarks primarily evaluate general cross-modal question-answering ability, it remains unclear whether OLLMs achieve modality-invariant reasoning or exhibit modality-specific biases. We introduce XModBench, a large-scale tri-modal benchmark explicitly designed to measure cross-modal consistency. XModBench comprises 60,828 multiple-choice questions spanning five task families and systematically covers all six modality compositions in question-answer pairs, enabling fine-grained diagnosis of an OLLM's modality-invariant reasoning, modality disparity, and directional imbalance. Experiments show that even the strongest model, Gemini 2.5 Pro, (i) struggles with spatial and temporal reasoning, achieving less than 60% accuracy, (ii) reveals persistent modality disparities, with performance dropping substantially when the same semantic content is conveyed through audio rather than text, and (iii) shows systematic directional imbalance, exhibiting lower consistency when vision serves as context compared to text. These findings indicate that current OLLMs remain far from truly modality-invariant reasoning and position XModBench as a fundamental diagnostic tool for evaluating and improving cross-modal competence. All data and evaluation tools will be available at https://xingruiwang.github.io/projects/XModBench/.

amd AMD
·
Oct 16, 2025

ONE-PEACE: Exploring One General Representation Model Toward Unlimited Modalities

In this work, we explore a scalable way for building a general representation model toward unlimited modalities. We release ONE-PEACE, a highly extensible model with 4B parameters that can seamlessly align and integrate representations across vision, audio, and language modalities. The architecture of ONE-PEACE comprises modality adapters, shared self-attention layers, and modality FFNs. This design allows for the easy extension of new modalities by adding adapters and FFNs, while also enabling multi-modal fusion through self-attention layers. To pretrain ONE-PEACE, we develop two modality-agnostic pretraining tasks, cross-modal aligning contrast and intra-modal denoising contrast, which align the semantic space of different modalities and capture fine-grained details within modalities concurrently. With the scaling-friendly architecture and pretraining tasks, ONE-PEACE has the potential to expand to unlimited modalities. Without using any vision or language pretrained model for initialization, ONE-PEACE achieves leading results on a wide range of uni-modal and multi-modal tasks, including image classification (ImageNet), semantic segmentation (ADE20K), audio-text retrieval (AudioCaps, Clotho), audio classification (ESC-50, FSD50K, VGGSound), audio question answering (AVQA), image-text retrieval (MSCOCO, Flickr30K), and visual grounding (RefCOCO/+/g). Code is available at https://github.com/OFA-Sys/ONE-PEACE.

  • 8 authors
·
May 18, 2023

OneThinker: All-in-one Reasoning Model for Image and Video

Reinforcement learning (RL) has recently achieved remarkable success in eliciting visual reasoning within Multimodal Large Language Models (MLLMs). However, existing approaches typically train separate models for different tasks and treat image and video reasoning as disjoint domains. This results in limited scalability toward a multimodal reasoning generalist, which restricts practical versatility and hinders potential knowledge sharing across tasks and modalities. To this end, we propose OneThinker, an all-in-one reasoning model that unifies image and video understanding across diverse fundamental visual tasks, including question answering, captioning, spatial and temporal grounding, tracking, and segmentation. To achieve this, we construct the OneThinker-600k training corpus covering all these tasks and employ commercial models for CoT annotation, resulting in OneThinker-SFT-340k for SFT cold start. Furthermore, we propose EMA-GRPO to handle reward heterogeneity in multi-task RL by tracking task-wise moving averages of reward standard deviations for balanced optimization. Extensive experiments on diverse visual benchmarks show that OneThinker delivers strong performance on 31 benchmarks, across 10 fundamental visual understanding tasks. Moreover, it exhibits effective knowledge transfer between certain tasks and preliminary zero-shot generalization ability, marking a step toward a unified multimodal reasoning generalist. All code, model, and data are released.

  • 14 authors
·
Dec 2, 2025 2

LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation

Following the impressive development of LLMs, vision-language alignment in LLMs is actively being researched to enable multimodal reasoning and visual IO. This direction of research is particularly relevant to medical imaging because medical image analysis and generation consist of reasoning based on a combination of visual features and prior knowledge. Many recent works have focused on training adapter networks that serve as an information bridge between image processing networks and LLMs; but presumably, in order to achieve maximum reasoning potential of LLMs on visual information as well, visual and language features should be allowed to interact more freely. This is especially important in the medical domain because understanding and generating medical images such as chest X-rays (CXR) require not only accurate visual and language-based reasoning but also a more intimate mapping between the two modalities. Thus, taking inspiration from previous work on the transformer and VQ-GAN combination for bidirectional image and text generation, we build upon this approach and develop a method for instruction-tuning an LLM pre-trained only on text to gain vision-language capabilities for medical images. Specifically, we leverage a pretrained LLM's existing question-answering and instruction-following abilities to teach it to understand visual inputs by instructing it to answer questions about image inputs and, symmetrically, output both text and image responses appropriate to a given query by tuning the LLM with diverse tasks that encompass image-based text-generation and text-based image-generation. We show that our model, LLM-CXR, trained in this approach shows better image-text alignment in both CXR understanding and generation tasks while being smaller in size compared to previously developed models that perform a narrower range of tasks. The code is at https://github.com/hyn2028/llm-cxr.

  • 4 authors
·
May 19, 2023

MoRE: Multi-Modal Contrastive Pre-training with Transformers on X-Rays, ECGs, and Diagnostic Report

In this paper, we introduce a novel Multi-Modal Contrastive Pre-training Framework that synergistically combines X-rays, electrocardiograms (ECGs), and radiology/cardiology reports. Our approach leverages transformers to encode these diverse modalities into a unified representation space, aiming to enhance diagnostic accuracy and facilitate comprehensive patient assessments. We utilize LoRA-Peft to significantly reduce trainable parameters in the LLM and incorporate recent linear attention dropping strategy in the Vision Transformer(ViT) for smoother attention. Furthermore, we provide novel multimodal attention explanations and retrieval for our model. To the best of our knowledge, we are the first to propose an integrated model that combines X-ray, ECG, and Radiology/Cardiology Report with this approach. By utilizing contrastive loss, MoRE effectively aligns modality-specific features into a coherent embedding, which supports various downstream tasks such as zero-shot classification and multimodal retrieval. Employing our proposed methodology, we achieve state-of-the-art (SOTA) on the Mimic-IV, CheXpert, Edema Severity, and PtbXl downstream datasets, surpassing existing multimodal approaches. Our proposed framework shows significant improvements in capturing intricate inter-modal relationships and its robustness in medical diagnosis that establishes a framework for future research in multimodal learning in the healthcare sector.

  • 4 authors
·
Oct 21, 2024

Multi-student Diffusion Distillation for Better One-step Generators

Diffusion models achieve high-quality sample generation at the cost of a lengthy multistep inference procedure. To overcome this, diffusion distillation techniques produce student generators capable of matching or surpassing the teacher in a single step. However, the student model's inference speed is limited by the size of the teacher architecture, preventing real-time generation for computationally heavy applications. In this work, we introduce Multi-Student Distillation (MSD), a framework to distill a conditional teacher diffusion model into multiple single-step generators. Each student generator is responsible for a subset of the conditioning data, thereby obtaining higher generation quality for the same capacity. MSD trains multiple distilled students, allowing smaller sizes and, therefore, faster inference. Also, MSD offers a lightweight quality boost over single-student distillation with the same architecture. We demonstrate MSD is effective by training multiple same-sized or smaller students on single-step distillation using distribution matching and adversarial distillation techniques. With smaller students, MSD gets competitive results with faster inference for single-step generation. Using 4 same-sized students, MSD significantly outperforms single-student baseline counterparts and achieves remarkable FID scores for one-step image generation: 1.20 on ImageNet-64x64 and 8.20 on zero-shot COCO2014.

  • 5 authors
·
Oct 30, 2024

DB-SAM: Delving into High Quality Universal Medical Image Segmentation

Recently, the Segment Anything Model (SAM) has demonstrated promising segmentation capabilities in a variety of downstream segmentation tasks. However in the context of universal medical image segmentation there exists a notable performance discrepancy when directly applying SAM due to the domain gap between natural and 2D/3D medical data. In this work, we propose a dual-branch adapted SAM framework, named DB-SAM, that strives to effectively bridge this domain gap. Our dual-branch adapted SAM contains two branches in parallel: a ViT branch and a convolution branch. The ViT branch incorporates a learnable channel attention block after each frozen attention block, which captures domain-specific local features. On the other hand, the convolution branch employs a light-weight convolutional block to extract domain-specific shallow features from the input medical image. To perform cross-branch feature fusion, we design a bilateral cross-attention block and a ViT convolution fusion block, which dynamically combine diverse information of two branches for mask decoder. Extensive experiments on large-scale medical image dataset with various 3D and 2D medical segmentation tasks reveal the merits of our proposed contributions. On 21 3D medical image segmentation tasks, our proposed DB-SAM achieves an absolute gain of 8.8%, compared to a recent medical SAM adapter in the literature. The code and model are available at https://github.com/AlfredQin/DB-SAM.

  • 5 authors
·
Oct 5, 2024

Enhanced Contrastive Learning with Multi-view Longitudinal Data for Chest X-ray Report Generation

Automated radiology report generation offers an effective solution to alleviate radiologists' workload. However, most existing methods focus primarily on single or fixed-view images to model current disease conditions, which limits diagnostic accuracy and overlooks disease progression. Although some approaches utilize longitudinal data to track disease progression, they still rely on single images to analyze current visits. To address these issues, we propose enhanced contrastive learning with Multi-view Longitudinal data to facilitate chest X-ray Report Generation, named MLRG. Specifically, we introduce a multi-view longitudinal contrastive learning method that integrates spatial information from current multi-view images and temporal information from longitudinal data. This method also utilizes the inherent spatiotemporal information of radiology reports to supervise the pre-training of visual and textual representations. Subsequently, we present a tokenized absence encoding technique to flexibly handle missing patient-specific prior knowledge, allowing the model to produce more accurate radiology reports based on available prior knowledge. Extensive experiments on MIMIC-CXR, MIMIC-ABN, and Two-view CXR datasets demonstrate that our MLRG outperforms recent state-of-the-art methods, achieving a 2.3% BLEU-4 improvement on MIMIC-CXR, a 5.5% F1 score improvement on MIMIC-ABN, and a 2.7% F1 RadGraph improvement on Two-view CXR.

  • 7 authors
·
Feb 27, 2025

Learning to Learn: How to Continuously Teach Humans and Machines

Curriculum design is a fundamental component of education. For example, when we learn mathematics at school, we build upon our knowledge of addition to learn multiplication. These and other concepts must be mastered before our first algebra lesson, which also reinforces our addition and multiplication skills. Designing a curriculum for teaching either a human or a machine shares the underlying goal of maximizing knowledge transfer from earlier to later tasks, while also minimizing forgetting of learned tasks. Prior research on curriculum design for image classification focuses on the ordering of training examples during a single offline task. Here, we investigate the effect of the order in which multiple distinct tasks are learned in a sequence. We focus on the online class-incremental continual learning setting, where algorithms or humans must learn image classes one at a time during a single pass through a dataset. We find that curriculum consistently influences learning outcomes for humans and for multiple continual machine learning algorithms across several benchmark datasets. We introduce a novel-object recognition dataset for human curriculum learning experiments and observe that curricula that are effective for humans are highly correlated with those that are effective for machines. As an initial step towards automated curriculum design for online class-incremental learning, we propose a novel algorithm, dubbed Curriculum Designer (CD), that designs and ranks curricula based on inter-class feature similarities. We find significant overlap between curricula that are empirically highly effective and those that are highly ranked by our CD. Our study establishes a framework for further research on teaching humans and machines to learn continuously using optimized curricula.

  • 10 authors
·
Nov 28, 2022

DuET: Dual Incremental Object Detection via Exemplar-Free Task Arithmetic

Real-world object detection systems, such as those in autonomous driving and surveillance, must continuously learn new object categories and simultaneously adapt to changing environmental conditions. Existing approaches, Class Incremental Object Detection (CIOD) and Domain Incremental Object Detection (DIOD) only address one aspect of this challenge. CIOD struggles in unseen domains, while DIOD suffers from catastrophic forgetting when learning new classes, limiting their real-world applicability. To overcome these limitations, we introduce Dual Incremental Object Detection (DuIOD), a more practical setting that simultaneously handles class and domain shifts in an exemplar-free manner. We propose DuET, a Task Arithmetic-based model merging framework that enables stable incremental learning while mitigating sign conflicts through a novel Directional Consistency Loss. Unlike prior methods, DuET is detector-agnostic, allowing models like YOLO11 and RT-DETR to function as real-time incremental object detectors. To comprehensively evaluate both retention and adaptation, we introduce the Retention-Adaptability Index (RAI), which combines the Average Retention Index (Avg RI) for catastrophic forgetting and the Average Generalization Index for domain adaptability into a common ground. Extensive experiments on the Pascal Series and Diverse Weather Series demonstrate DuET's effectiveness, achieving a +13.12% RAI improvement while preserving 89.3% Avg RI on the Pascal Series (4 tasks), as well as a +11.39% RAI improvement with 88.57% Avg RI on the Diverse Weather Series (3 tasks), outperforming existing methods.

  • 4 authors
·
Jun 26, 2025

DACTYL: Diverse Adversarial Corpus of Texts Yielded from Large Language Models

Existing AIG (AI-generated) text detectors struggle in real-world settings despite succeeding in internal testing, suggesting that they may not be robust enough. We rigorously examine the machine-learning procedure to build these detectors to address this. Most current AIG text detection datasets focus on zero-shot generations, but little work has been done on few-shot or one-shot generations, where LLMs are given human texts as an example. In response, we introduce the Diverse Adversarial Corpus of Texts Yielded from Language models (DACTYL), a challenging AIG text detection dataset focusing on one-shot/few-shot generations. We also include texts from domain-specific continued-pre-trained (CPT) language models, where we fully train all parameters using a memory-efficient optimization approach. Many existing AIG text detectors struggle significantly on our dataset, indicating a potential vulnerability to one-shot/few-shot and CPT-generated texts. We also train our own classifiers using two approaches: standard binary cross-entropy (BCE) optimization and a more recent approach, deep X-risk optimization (DXO). While BCE-trained classifiers marginally outperform DXO classifiers on the DACTYL test set, the latter excels on out-of-distribution (OOD) texts. In our mock deployment scenario in student essay detection with an OOD student essay dataset, the best DXO classifier outscored the best BCE-trained classifier by 50.56 macro-F1 score points at the lowest false positive rates for both. Our results indicate that DXO classifiers generalize better without overfitting to the test set. Our experiments highlight several areas of improvement for AIG text detectors.

  • 2 authors
·
Aug 1, 2025

OneReward: Unified Mask-Guided Image Generation via Multi-Task Human Preference Learning

In this paper, we introduce OneReward, a unified reinforcement learning framework that enhances the model's generative capabilities across multiple tasks under different evaluation criteria using only One Reward model. By employing a single vision-language model (VLM) as the generative reward model, which can distinguish the winner and loser for a given task and a given evaluation criterion, it can be effectively applied to multi-task generation models, particularly in contexts with varied data and diverse task objectives. We utilize OneReward for mask-guided image generation, which can be further divided into several sub-tasks such as image fill, image extend, object removal, and text rendering, involving a binary mask as the edit area. Although these domain-specific tasks share same conditioning paradigm, they differ significantly in underlying data distributions and evaluation metrics. Existing methods often rely on task-specific supervised fine-tuning (SFT), which limits generalization and training efficiency. Building on OneReward, we develop Seedream 3.0 Fill, a mask-guided generation model trained via multi-task reinforcement learning directly on a pre-trained base model, eliminating the need for task-specific SFT. Experimental results demonstrate that our unified edit model consistently outperforms both commercial and open-source competitors, such as Ideogram, Adobe Photoshop, and FLUX Fill [Pro], across multiple evaluation dimensions. Code and model are available at: https://one-reward.github.io

  • 6 authors
·
Aug 28, 2025 4

Multimodal Parameter-Efficient Few-Shot Class Incremental Learning

Few-Shot Class Incremental Learning (FSCIL) is a challenging continual learning task, where limited training examples are available during several learning sessions. To succeed in this task, it is necessary to avoid over-fitting new classes caused by biased distributions in the few-shot training sets. The general approach to address this issue involves enhancing the representational capability of a pre-defined backbone architecture by adding special modules for backward compatibility with older classes. However, this approach has not yet solved the dilemma of ensuring high classification accuracy over time while reducing the gap between the performance obtained on larger training sets and the smaller ones. In this work, we propose an alternative approach called Continual Parameter-Efficient CLIP (CPE-CLIP) to reduce the loss of information between different learning sessions. Instead of adapting additional modules to address information loss, we leverage the vast knowledge acquired by CLIP in large-scale pre-training and its effectiveness in generalizing to new concepts. Our approach is multimodal and parameter-efficient, relying on learnable prompts for both the language and vision encoders to enable transfer learning across sessions. We also introduce prompt regularization to improve performance and prevent forgetting. Our experimental results demonstrate that CPE-CLIP significantly improves FSCIL performance compared to state-of-the-art proposals while also drastically reducing the number of learnable parameters and training costs.

  • 4 authors
·
Mar 8, 2023

Enhancing Non-Core Language Instruction-Following in Speech LLMs via Semi-Implicit Cross-Lingual CoT Reasoning

Large language models have been extended to the speech domain, leading to the development of speech large language models (SLLMs). While existing SLLMs demonstrate strong performance in speech instruction-following for core languages (e.g., English), they often struggle with non-core languages due to the scarcity of paired speech-text data and limited multilingual semantic reasoning capabilities. To address this, we propose the semi-implicit Cross-lingual Speech Chain-of-Thought (XS-CoT) framework, which integrates speech-to-text translation into the reasoning process of SLLMs. The XS-CoT generates four types of tokens: instruction and response tokens in both core and non-core languages, enabling cross-lingual transfer of reasoning capabilities. To mitigate inference latency in generating target non-core response tokens, we incorporate a semi-implicit CoT scheme into XS-CoT, which progressively compresses the first three types of intermediate reasoning tokens while retaining global reasoning logic during training. By leveraging the robust reasoning capabilities of the core language, XS-CoT improves responses for non-core languages by up to 45\% in GPT-4 score when compared to direct supervised fine-tuning on two representative SLLMs, Qwen2-Audio and SALMONN. Moreover, the semi-implicit XS-CoT reduces token delay by more than 50\% with a slight drop in GPT-4 scores. Importantly, XS-CoT requires only a small amount of high-quality training data for non-core languages by leveraging the reasoning capabilities of core languages. To support training, we also develop a data pipeline and open-source speech instruction-following datasets in Japanese, German, and French.

  • 6 authors
·
Apr 29, 2025

HESSO: Towards Automatic Efficient and User Friendly Any Neural Network Training and Pruning

Structured pruning is one of the most popular approaches to effectively compress the heavy deep neural networks (DNNs) into compact sub-networks while retaining performance. The existing methods suffer from multi-stage procedures along with significant engineering efforts and human expertise. The Only-Train-Once (OTO) series has been recently proposed to resolve the many pain points by streamlining the workflow by automatically conducting (i) search space generation, (ii) structured sparse optimization, and (iii) sub-network construction. However, the built-in sparse optimizers in the OTO series, i.e., the Half-Space Projected Gradient (HSPG) family, have limitations that require hyper-parameter tuning and the implicit controls of the sparsity exploration, consequently requires intervening by human expertise. To address such limitations, we propose a Hybrid Efficient Structured Sparse Optimizer (HESSO). HESSO could automatically and efficiently train a DNN to produce a high-performing subnetwork. Meanwhile, it is almost tuning-free and enjoys user-friendly integration for generic training applications. To address another common issue of irreversible performance collapse observed in pruning DNNs, we further propose a Corrective Redundant Identification Cycle (CRIC) for reliably identifying indispensable structures. We numerically demonstrate the efficacy of HESSO and its enhanced version HESSO-CRIC on a variety of applications ranging from computer vision to natural language processing, including large language model. The numerical results showcase that HESSO can achieve competitive even superior performance to varying state-of-the-arts and support most DNN architectures. Meanwhile, CRIC can effectively prevent the irreversible performance collapse and further enhance the performance of HESSO on certain applications. The code is available at https://github.com/microsoft/only_train_once.

  • 10 authors
·
Sep 11, 2024

Scaling Multimodal Pre-Training via Cross-Modality Gradient Harmonization

Self-supervised pre-training recently demonstrates success on large-scale multimodal data, and state-of-the-art contrastive learning methods often enforce the feature consistency from cross-modality inputs, such as video/audio or video/text pairs. Despite its convenience to formulate and leverage in practice, such cross-modality alignment (CMA) is only a weak and noisy supervision, since two modalities can be semantically misaligned even they are temporally aligned. For example, even in the commonly adopted instructional videos, a speaker can sometimes refer to something that is not visually present in the current frame; and the semantic misalignment would only be more unpredictable for the raw videos from the internet. We conjecture that might cause conflicts and biases among modalities, and may hence prohibit CMA from scaling up to training with larger and more heterogeneous data. This paper first verifies our conjecture by observing that, even in the latest VATT pre-training using only instructional videos, there exist strong gradient conflicts between different CMA losses within the same video, audio, text triplet, indicating them as the noisy source of supervision. We then propose to harmonize such gradients, via two techniques: (i) cross-modality gradient realignment: modifying different CMA loss gradients for each sample triplet, so that their gradient directions are more aligned; and (ii) gradient-based curriculum learning: leveraging the gradient conflict information on an indicator of sample noisiness, to develop a curriculum learning strategy to prioritize training on less noisy sample triplets. Applying those techniques to pre-training VATT on the HowTo100M dataset, we consistently improve its performance on different downstream tasks. Moreover, we are able to scale VATT pre-training to more complicated non-narrative Youtube8M dataset to further improve the state-of-the-arts.

  • 6 authors
·
Nov 3, 2022