new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 29

A Comprehensive Survey on World Models for Embodied AI

Embodied AI requires agents that perceive, act, and anticipate how actions reshape future world states. World models serve as internal simulators that capture environment dynamics, enabling forward and counterfactual rollouts to support perception, prediction, and decision making. This survey presents a unified framework for world models in embodied AI. Specifically, we formalize the problem setting and learning objectives, and propose a three-axis taxonomy encompassing: (1) Functionality, Decision-Coupled vs. General-Purpose; (2) Temporal Modeling, Sequential Simulation and Inference vs. Global Difference Prediction; (3) Spatial Representation, Global Latent Vector, Token Feature Sequence, Spatial Latent Grid, and Decomposed Rendering Representation. We systematize data resources and metrics across robotics, autonomous driving, and general video settings, covering pixel prediction quality, state-level understanding, and task performance. Furthermore, we offer a quantitative comparison of state-of-the-art models and distill key open challenges, including the scarcity of unified datasets and the need for evaluation metrics that assess physical consistency over pixel fidelity, the trade-off between model performance and the computational efficiency required for real-time control, and the core modeling difficulty of achieving long-horizon temporal consistency while mitigating error accumulation. Finally, we maintain a curated bibliography at https://github.com/Li-Zn-H/AwesomeWorldModels.

  • 4 authors
·
Oct 19, 2025

Reinforcement learning with combinatorial actions for coupled restless bandits

Reinforcement learning (RL) has increasingly been applied to solve real-world planning problems, with progress in handling large state spaces and time horizons. However, a key bottleneck in many domains is that RL methods cannot accommodate large, combinatorially structured action spaces. In such settings, even representing the set of feasible actions at a single step may require a complex discrete optimization formulation. We leverage recent advances in embedding trained neural networks into optimization problems to propose SEQUOIA, an RL algorithm that directly optimizes for long-term reward over the feasible action space. Our approach embeds a Q-network into a mixed-integer program to select a combinatorial action in each timestep. Here, we focus on planning over restless bandits, a class of planning problems which capture many real-world examples of sequential decision making. We introduce coRMAB, a broader class of restless bandits with combinatorial actions that cannot be decoupled across the arms of the restless bandit, requiring direct solving over the joint, exponentially large action space. We empirically validate SEQUOIA on four novel restless bandit problems with combinatorial constraints: multiple interventions, path constraints, bipartite matching, and capacity constraints. Our approach significantly outperforms existing methods -- which cannot address sequential planning and combinatorial selection simultaneously -- by an average of 24.8\% on these difficult instances.

  • 4 authors
·
Mar 1, 2025

Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in Self-Refined Open-Source Models

The dominance of proprietary LLMs has led to restricted access and raised information privacy concerns. High-performing open-source alternatives are crucial for information-sensitive and high-volume applications but often lag behind in performance. To address this gap, we propose (1) A untargeted variant of iterative self-critique and self-refinement devoid of external influence. (2) A novel ranking metric - Performance, Refinement, and Inference Cost Score (PeRFICS) - to find the optimal model for a given task considering refined performance and cost. Our experiments show that SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance. Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks on the Vicuna benchmark. Vicuna-13B takes it a step further and outperforms ChatGPT post-refinement. This work has profound implications for resource-constrained and information-sensitive environments seeking to leverage LLMs without incurring prohibitive costs, compromising on performance and privacy. The domain-agnostic self-refinement process coupled with our novel ranking metric facilitates informed decision-making in model selection, thereby reducing costs and democratizing access to high-performing language models, as evidenced by case studies.

  • 5 authors
·
Oct 11, 2023

PhysMaster: Building an Autonomous AI Physicist for Theoretical and Computational Physics Research

Advances in LLMs have produced agents with knowledge and operational capabilities comparable to human scientists, suggesting potential to assist, accelerate, and automate research. However, existing studies mainly evaluate such systems on well-defined benchmarks or general tasks like literature retrieval, limiting their end-to-end problem-solving ability in open scientific scenarios. This is particularly true in physics, which is abstract, mathematically intensive, and requires integrating analytical reasoning with code-based computation. To address this, we propose PhysMaster, an LLM-based agent functioning as an autonomous theoretical and computational physicist. PhysMaster couples absract reasoning with numerical computation and leverages LANDAU, the Layered Academic Data Universe, which preserves retrieved literature, curated prior knowledge, and validated methodological traces, enhancing decision reliability and stability. It also employs an adaptive exploration strategy balancing efficiency and open-ended exploration, enabling robust performance in ultra-long-horizon tasks. We evaluate PhysMaster on problems from high-energy theory, condensed matter theory to astrophysics, including: (i) acceleration, compressing labor-intensive research from months to hours; (ii) automation, autonomously executing hypothesis-driven loops ; and (iii) autonomous discovery, independently exploring open problems.

  • 21 authors
·
Dec 22, 2025